
29 November 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

A very brief introduction

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Types -- SMP
 Symmetric multiprocessors

(SMP)
 Small number of cores
 AKA Tightly coupled

multiprocessors
 Share single memory with

uniform memory latency
 Bus is a bottleneck
 Most of the communication is

handled by OS/HW
 Existing multi-core

Introduction

Common
(shared) bus

29 November 2018

Chapter 2 — Instructions: Language of the Computer 2

3Copyright © 2012, Elsevier Inc. All rights reserved.

Types -- DSM

 Distributed shared memory (DSM)
 Memory distributed among processors
 Loosely Coupled multiprocessors
 Non-uniform memory access/latency (NUMA)
 Processors connected via direct (switched) and non-direct (multi-

hop) interconnection networks
 Communication handled by programmer (message passing)

(Synchronization explicitly required

Introduction

4

Design issue

 Shared memory synchronization
 How to handle locks, atomic operations

 Cache coherence
 How to ensure correct operation in the presence of

private caches

 Memory consistency: Ordering of memory
operations
 What should the programmer expect the hardware to

provide?

 Shared resource management

 Communication: Interconnects

Copyright © 2012, Elsevier Inc. All rights reserved.

Slide credit : Onur Mutlu

29 November 2018

Chapter 2 — Instructions: Language of the Computer 3

5

Programming Issues

 Load imbalance
 How to partition a single task into multiple tasks

 Synchronization
 How to synchronize (efficiently) between tasks

 How to communicate between tasks

 Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, …

 Ensuring correct operation while optimizing for
performance

Copyright © 2012, Elsevier Inc. All rights reserved.

Slide credit : Onur Mutlu

6Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Processors may see different values through
their caches:

C
entralized S

hared-M
em

ory A
rchitectures

29 November 2018

Chapter 2 — Instructions: Language of the Computer 4

7

Memory ordering

 In a single processor
 Load and stores are executed according to program

order

 Sometimes, out-of-order execution, but that doesn’t
change the semantics

 Same thing happens every time we run the
program (good for debugging)

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Memory ordering

 multiprocessors
 Memory operations happens concurrently

 We need some sort of global order

 If completely independent, we don’t care

 The problem is when they share some data.

Copyright © 2012, Elsevier Inc. All rights reserved.

29 November 2018

Chapter 2 — Instructions: Language of the Computer 5

9Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Coherence: How do other processors see a
memory update?

 Writes to the same location by any two
processors are seen in the same order by all
processors

 Consistency
 When a written value will be returned by a read
 If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized S

hared-M
em

ory A
rchitectures

10

Cache Coherence -- more

 A memory system is coherent if
1. A read by P to location X that follows a writen by P to

location X with no writes to X in between (by any
processor) returns the value written by P.

2. A read by processor p1 to X that follows a write by P2
to X returns the value written by P2 if the read and
write are sufficiently separated in time, and no other
writes to X occurred between the two accesses.

3. Writes to the same location are serialized Two writes
by two processors to the same location are seen in the
same order by all processors

Copyright © 2012, Elsevier Inc. All rights reserved.

29 November 2018

Chapter 2 — Instructions: Language of the Computer 6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

 Coherent caches provide:
 Migration: movement of data
 Replication: multiple copies of data

 Cache coherence protocols
 Directory based

 Sharing status of each block kept in one location (distributed
memory model).

 Snooping
 Each core tracks sharing status of each block (SMP).

C
entralized S

hared-M
em

ory A
rchitectures

12

Cache Coherence Protocols

1. Directory based — Sharing status of a
block of physical memory is kept in just one
location, the directory

2. Snooping — Every cache with a copy of
data also has a copy of sharing status of
block, but no centralized state is kept
 All caches are accessible via some broadcast medium (a

bus or switch)

 All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that
is requested on a bus or switch access

29 November 2018

Chapter 2 — Instructions: Language of the Computer 7

13

SMP or Centralized Shared
Memory

Copyright © 2012, Elsevier Inc. All rights reserved.

P

$

P

$

P

$

P

$

Main
memory

I/O

14

Snooping Protocols

 The processor may have an exclusive access
to the data, in this case the processor may
change it. This is knows as write invalidate

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 ---- 0

B reads X Miss 1 1 1

29 November 2018

Chapter 2 — Instructions: Language of the Computer 8

15

Snooping Protocols

 The alternative is to update write update or
write broadcast and is only done for shared
blocks

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 1 1

B reads X Miss 1 1 1

16

Comparison

 Multiple writes to the same word with no
intervening reads require multiple write
broadcast for an update protocol, and one
invalidate for invalidate protocols.

 With multiword cache blocks, write to multiple
words (bytes) in the same line require multiple
broadcast, while only one invalidate
(assuming no intervening reads).

 The delay between writing a word in a
processor, and reading it by another
processor is less in write update

29 November 2018

Chapter 2 — Instructions: Language of the Computer 9

17Copyright © 2012, Elsevier Inc. All rights reserved.

Snooping Coherence Protocols
C

entralized S
hared-M

em
ory A

rchitectures

18Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 Directory keeps track of every block
 Which caches have each block
 Dirty status of each block

 Implement in shared L3 cache
 Keep bit vector of size = # cores for each block in L3
 Not scalable beyond shared L3

 Implement in a distributed fashion:

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

29 November 2018

Chapter 2 — Instructions: Language of the Computer 10

19Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For each block, maintain state:
 Shared

 One or more nodes have the block cached, value in memory
is up-to-date

 Set of node IDs

 Uncached
 Modified

 Exactly one node has a copy of the cache block, value in
memory is out-of-date

 Owner node ID

 Directory maintains block states and sends
invalidation messages

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

20Copyright © 2012, Elsevier Inc. All rights reserved.

Messages

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

29 November 2018

Chapter 2 — Instructions: Language of the Computer 11

21Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols
D

istributed S
hared M

em
ory and D

irectory-B
ased C

oherence

22Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and becomes

the sharing node, block is now exclusive

 For shared block:
 Read miss

 The requesting node is sent the requested data from
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the

sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

29 November 2018

Chapter 2 — Instructions: Language of the Computer 12

23Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the

value to the directory, requestor becomes new owner,
block remains exclusive

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

