
The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism
and Its Exploitation – Dynamic
Scheduling

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Rearrange order of instructions to reduce stalls
while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture
 Handles cases where dependencies are unknown at

compile time

 Disadvantage:
 Substantial increase in hardware complexity
 Complicates exceptions

D
ynam

ic S
che

duling

3Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Dynamic scheduling implies:
 Out-of-order execution
 Out-of-order completion

 Example 1:
fdiv.d f0,f2,f4

fadd.d f10,f0,f8

fsub.d f12,f8,f14

 fsub.d is not dependent, issue before fadd.d

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Example 2:
fdiv.d f0,f2,f4

fmul.d f6,f0,f8

fadd.d f0,f10,f14

 fadd.d is not dependent, but the antidependence
makes it impossible to issue earlier without register
renaming

D
ynam

ic S
che

duling

5Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

fdiv.d f0,f2,f4

fadd.d f6,f0,f8

fsd f6,0(x1)

fsub.d f8,f10,f14

fmul.d f6,f10,f8

 name dependence with f6

antidependence

Output dependence

D
ynam

ic S
che

duling

6Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

fdiv.d f0,f2,f4

fadd.d S,f0,f8

fsd S,0(x1)

fsub.d T,f10,f14

fmul.d f6,f10,T

 Now only RAW hazards remain, which can be strictly
ordered

D
ynam

ic S
chedulingfdiv.d f0,f2,f4

fadd.d f6,f0,f8

fsd f6,0(x1)

fsub.d f8,f10,f14

fmul.d f6,f10,f8

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 3

7Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Tomasulo’s Approach
 Tracks when operands are available
 Introduces register renaming in hardware

 Minimizes WAW and WAR hazards

 Register renaming is provided by reservation
stations (RS)
 Contains:

 The instruction
 Buffered operand values (when available)
 Reservation station number of instruction providing the

operand values

D
ynam

ic S
che

duling

8Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

 Pending instructions designate the RS to which they will
send their output
 Result values broadcast on a result bus, called the common data

bus (CDB)

 Only the last output updates the register file
 As instructions are issued, the register specifiers are

renamed with the reservation station
 May be more reservation stations than registers
 Load and store buffers

 Contain data and addresses, act like reservation stations

D
ynam

ic S
che

duling

9Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 4

10Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 Three Steps:
 Issue

 Get next instruction from FIFO queue
 If available RS, issue the instruction to the RS with operand values if

available
 If operand values not available, stall the instruction

 Execute
 When operand becomes available, store it in any reservation

stations waiting for it
 When all operands are ready, issue the instruction
 Loads and store maintained in program order through effective

address calculation
 No instruction allowed to initiate execution until all branches that

proceed it in program order have completed

 Write result
 Write result on CDB into reservation stations and store buffers

 (Stores must wait until address and value are received)

D
ynam

ic S
che

duling

11

Tomasulo’s Algorithm
Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands
 Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)

 Note: Qj,Qk=0  ready
 Store buffers only have Qj for RS producing result

A: Used to hold info for the load store (initially immediate,
then effective address)

Busy: Indicates reservation station or FU is busy

Register result status—

Qi indicates which functional unit will write each register, 0
means no write to this register

Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
che

duling

12Copyright © 2019, Elsevier Inc. All rights Reserved

Example

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 5

13Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 Example loop:

Loop: fld f0,0(x1)

fmul.d f4,f0,f2

fsd f4,0(x1)

addi x1,x1,8

bne x1,x2,Loop // branches if x16 != x2

D
ynam

ic S
che

duling

14Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm
D

ynam
ic S

che
duling

15Copyright © 2019, Elsevier Inc. All rights Reserved

Hardware-Based Speculation

 Execute instructions along predicted execution
paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits
 I.e. updating state or taking an execution

H
ardw

are-B
ase

d S
pecula

tion

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 6

16Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Reorder buffer – holds the result of instruction
between completion and commit

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit

H
ardw

are-B
ase

d
 S

peculation

17Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Issue:
 Allocate RS and ROB, read available operands

 Execute:
 Begin execution when operand values are available

 Write result:
 Write result and ROB tag on CDB

 Commit:
 When ROB reaches head of ROB, update register
 When a mispredicted branch reaches head of ROB,

discard all entries

H
ardw

are-B
ase

d
 S

peculation

18Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

H
ardw

are-B
ase

d S
pecula

tion

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 7

19Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

H
ardw

are-B
ase

d
 S

peculation

20Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
H

ardw
are-B

ase
d

 S
peculation

21Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 Dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

23Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

24Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Issue logic is the bottleneck in dynamically
scheduled superscalars

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

26Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Overview of Design

27Copyright © 2019, Elsevier Inc. All rights Reserved

 Examine all the dependencies amoung the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

 To simplify RS allocation:
 Limit the number of instructions of a given class that

can be issued in a “bundle”, i.e. on FP, one integer,
one load, one store

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculation

Multiple Issue

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2019, Elsevier Inc. All rights Reserved

Loop: ld x2,0(x1) //x2=array element

addi x2,x2,1 //increment x2

sd x2,0(x1) //store result

addi x1,x1,8 //increment pointer

bne x2,x3,Loop //branch if not last

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Example

29Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Example (No Speculation)

30Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculation

Example (Mutiple Issue with Speculation)

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 11

31Copyright © 2019, Elsevier Inc. All rights Reserved

 Need high instruction bandwidth
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniq

ues for Instruction D
elivery and S

pecu
lation

Branch-Target Buffer

32Copyright © 2019, Elsevier Inc. All rights Reserved

 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer
decoding time required by larger buffer

 “Branch folding”

A
dv. Techniq

ues for Instruction D
elivery and S

pecu
lation

Branch Folding

33

Fallacies and Pitfalls

 It is easy to predict the performance/energy
efficiency of two different versions of the same
ISA if we hold the technology constant

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfalls

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 12

34

Fallacies and Pitfalls

 Processors with lower CPIs / faster clock rates
will also be faster

 Pentium 4 had higher clock, lower CPI

 Itanium had same CPI, lower clock

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfa
lls

35

Fallacies and Pitfalls

 Sometimes bigger and dumber is better
 Pentium 4 and Itanium were advanced designs, but

could not achieve their peak instruction throughput
because of relatively small caches as compared to i7

 And sometimes smarter is better than bigger and
dumber
 TAGE branch predictor outperforms gshare with less

stored predictions

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfa
lls

36

Fallacies and Pitfalls

 Believing that there
are large amounts
of ILP available, if
only we had the
right techniques

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfalls

