
The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism
and Its Exploitation – Dynamic
Scheduling

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Rearrange order of instructions to reduce stalls
while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture
 Handles cases where dependencies are unknown at

compile time

 Disadvantage:
 Substantial increase in hardware complexity
 Complicates exceptions

D
ynam

ic S
che

duling

3Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Dynamic scheduling implies:
 Out-of-order execution
 Out-of-order completion

 Example 1:
fdiv.d f0,f2,f4

fadd.d f10,f0,f8

fsub.d f12,f8,f14

 fsub.d is not dependent, issue before fadd.d

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

 Example 2:
fdiv.d f0,f2,f4

fmul.d f6,f0,f8

fadd.d f0,f10,f14

 fadd.d is not dependent, but the antidependence
makes it impossible to issue earlier without register
renaming

D
ynam

ic S
che

duling

5Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

fdiv.d f0,f2,f4

fadd.d f6,f0,f8

fsd f6,0(x1)

fsub.d f8,f10,f14

fmul.d f6,f10,f8

 name dependence with f6

antidependence

Output dependence

D
ynam

ic S
che

duling

6Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

fdiv.d f0,f2,f4

fadd.d S,f0,f8

fsd S,0(x1)

fsub.d T,f10,f14

fmul.d f6,f10,T

 Now only RAW hazards remain, which can be strictly
ordered

D
ynam

ic S
chedulingfdiv.d f0,f2,f4

fadd.d f6,f0,f8

fsd f6,0(x1)

fsub.d f8,f10,f14

fmul.d f6,f10,f8

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 3

7Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Tomasulo’s Approach
 Tracks when operands are available
 Introduces register renaming in hardware

 Minimizes WAW and WAR hazards

 Register renaming is provided by reservation
stations (RS)
 Contains:

 The instruction
 Buffered operand values (when available)
 Reservation station number of instruction providing the

operand values

D
ynam

ic S
che

duling

8Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

 Pending instructions designate the RS to which they will
send their output
 Result values broadcast on a result bus, called the common data

bus (CDB)

 Only the last output updates the register file
 As instructions are issued, the register specifiers are

renamed with the reservation station
 May be more reservation stations than registers
 Load and store buffers

 Contain data and addresses, act like reservation stations

D
ynam

ic S
che

duling

9Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 4

10Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 Three Steps:
 Issue

 Get next instruction from FIFO queue
 If available RS, issue the instruction to the RS with operand values if

available
 If operand values not available, stall the instruction

 Execute
 When operand becomes available, store it in any reservation

stations waiting for it
 When all operands are ready, issue the instruction
 Loads and store maintained in program order through effective

address calculation
 No instruction allowed to initiate execution until all branches that

proceed it in program order have completed

 Write result
 Write result on CDB into reservation stations and store buffers

 (Stores must wait until address and value are received)

D
ynam

ic S
che

duling

11

Tomasulo’s Algorithm
Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands
 Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)

 Note: Qj,Qk=0 ready
 Store buffers only have Qj for RS producing result

A: Used to hold info for the load store (initially immediate,
then effective address)

Busy: Indicates reservation station or FU is busy

Register result status—

Qi indicates which functional unit will write each register, 0
means no write to this register

Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
che

duling

12Copyright © 2019, Elsevier Inc. All rights Reserved

Example

D
ynam

ic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 5

13Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 Example loop:

Loop: fld f0,0(x1)

fmul.d f4,f0,f2

fsd f4,0(x1)

addi x1,x1,8

bne x1,x2,Loop // branches if x16 != x2

D
ynam

ic S
che

duling

14Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm
D

ynam
ic S

che
duling

15Copyright © 2019, Elsevier Inc. All rights Reserved

Hardware-Based Speculation

 Execute instructions along predicted execution
paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits
 I.e. updating state or taking an execution

H
ardw

are-B
ase

d S
pecula

tion

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 6

16Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Reorder buffer – holds the result of instruction
between completion and commit

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit

H
ardw

are-B
ase

d
 S

peculation

17Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Issue:
 Allocate RS and ROB, read available operands

 Execute:
 Begin execution when operand values are available

 Write result:
 Write result and ROB tag on CDB

 Commit:
 When ROB reaches head of ROB, update register
 When a mispredicted branch reaches head of ROB,

discard all entries

H
ardw

are-B
ase

d
 S

peculation

18Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

H
ardw

are-B
ase

d S
pecula

tion

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 7

19Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

H
ardw

are-B
ase

d
 S

peculation

20Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
H

ardw
are-B

ase
d

 S
peculation

21Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 Dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

23Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

24Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Issue logic is the bottleneck in dynamically
scheduled superscalars

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

26Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Overview of Design

27Copyright © 2019, Elsevier Inc. All rights Reserved

 Examine all the dependencies amoung the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

 To simplify RS allocation:
 Limit the number of instructions of a given class that

can be issued in a “bundle”, i.e. on FP, one integer,
one load, one store

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculation

Multiple Issue

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2019, Elsevier Inc. All rights Reserved

Loop: ld x2,0(x1) //x2=array element

addi x2,x2,1 //increment x2

sd x2,0(x1) //store result

addi x1,x1,8 //increment pointer

bne x2,x3,Loop //branch if not last

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Example

29Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculatio
n

Example (No Speculation)

30Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling

, M
ultiple Issue, and S

peculation

Example (Mutiple Issue with Speculation)

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 11

31Copyright © 2019, Elsevier Inc. All rights Reserved

 Need high instruction bandwidth
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniq

ues for Instruction D
elivery and S

pecu
lation

Branch-Target Buffer

32Copyright © 2019, Elsevier Inc. All rights Reserved

 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer
decoding time required by larger buffer

 “Branch folding”

A
dv. Techniq

ues for Instruction D
elivery and S

pecu
lation

Branch Folding

33

Fallacies and Pitfalls

 It is easy to predict the performance/energy
efficiency of two different versions of the same
ISA if we hold the technology constant

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfalls

The University of Adelaide, School of Computer Science 29 October 2018

Chapter 2 — Instructions: Language of the Computer 12

34

Fallacies and Pitfalls

 Processors with lower CPIs / faster clock rates
will also be faster

 Pentium 4 had higher clock, lower CPI

 Itanium had same CPI, lower clock

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfa
lls

35

Fallacies and Pitfalls

 Sometimes bigger and dumber is better
 Pentium 4 and Itanium were advanced designs, but

could not achieve their peak instruction throughput
because of relatively small caches as compared to i7

 And sometimes smarter is better than bigger and
dumber
 TAGE branch predictor outperforms gshare with less

stored predictions

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfa
lls

36

Fallacies and Pitfalls

 Believing that there
are large amounts
of ILP available, if
only we had the
right techniques

Copyright © 2019, Elsevier Inc. All rights Reserved

F
allacies and P

itfalls

