The University of Adelaide, School of Computer Science 29 October 2018

Computer Architecture

A Quantitative Approach, Sixth Edition

‘ Chapter 3
Instruction-Level Parallelism

and Its Exploitation — Dynamic
Scheduling

Dynamic Scheduling

= Rearrange order of instructions to reduce stalls
while maintaining data flow

BulNpPayog olueus

= Advantages:

= Compiler doesn'’t need to have knowledge of
microarchitecture

» Handles cases where dependencies are unknown at
compile time

= Disadvantage:
= Substantial increase in hardware complexity
= Complicates exceptions

Dynamic Scheduling

= Dynamic scheduling implies:
= Out-of-order execution
= Out-of-order completion

NPayos olWeuA

Bui

= Example 1:
fdiv.d 0,f2,f4
fadd.d f10,f0,f8
fsub.d f12,18,f14

= fsub.d is not dependent, issue before fadd.d

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science

Dynamic Scheduling

= Example 2:
fdiv.d f0,f2,f4
fmul.d f6,f0,f8
fadd.d 0,f10,f14

= fadd.d is not dependent, but the antidependence
makes it impossible to issue earlier without register
renaming

BuliNpayos olweuA

Register Renaming

= Example 3:

fdiv.d f0,f2,f4

= name dependence with f6

fadd.d 6,f0,f8 .

fsd 16,0(x1) antidependence
fsub.d f8,f10,f14 Output dependence
fmul.d f6,f10,f8

BuINPayos olweuA

Register Renaming

= Example 3:

fdiv.d f0,f2,f4
fadd.d S,f0,f8
fsd S,0(x1)
fsub.d T,f10,f14
fmul.d 6,f10,T

fdiv.d f0,f2,f4
fadd.d f6,f0,f8
fsd f6,0(x1)
fsub.d f8,f10,f14
fmul.d 6,f10,f8

= Now only RAW hazards remain, which can be strictly
ordered

BuliNpayos olweuA

Chapter 2 — Instructions: Language of the Computer

29 October 2018

The University of Adelaide, School of Computer Science

Register Renaming

= Tomasulo’s Approach
= Tracks when operands are available

BuliNpayos olueuA;

29 October 2018

= Introduces register renaming in hardware
= Minimizes WAW and WAR hazards

= Register renaming is provided by reservation
stations (RS)

= Contains:

= The instruction
= Buffered operand values (when available)

= Reservation station number of instruction providing the
operand values

Reqgister Renaming

= RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

BUINPayYos dIWRuA

» Pending instructions designate the RS to which they will
send their output

= Result values broadcast on a result bus, called the common data
bus (CDB)

= Only the last output updates the register file
= As instructions are issued, the register specifiers are

renamed with the reservation station
= May be more reservation stations than registers
» Load and store buffers

= Contain data and addresses, act like reservation stations

Tomasulo’s Algorithm

From inssruction

NPayos olWeuA

iratruction
7P regestens |
queus =

Bui

l i

opMEEns

V Fioating-port Operand

[operatorn ek

4 Loo buters

Operation bus ‘

‘ L

2 = Rey_-rv.mrH:b. H
1 statans T
Data Address ¢ ' L]
Memory unt [F7 mutigiiees
Common data bus (CO8)

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 29 October 2018

Tomasulo’s Algorithm

= Three Steps:
= Issue
= Get next instruction from FIFO queue

= If available RS, issue the instruction to the RS with operand values if
available

= If operand values not available, stall the instruction
= Execute

= When operand becomes available, store it in any reservation
stations waiting for it
When all operands are ready, issue the instruction

Loads and store maintained in program order through effective
address calculation

No instruction allowed to initiate execution until all branches that
proceed it in program order have completed

= Write result

BuliNpayos olweuA

= Write result on CDB into reservation stations and store buffers
= (Stores must wait until address and value are received)

Tomasulo’s Algorithm

Op: Operation to perform in the unit (e.g., + or -)
Vj, Vk: Value of Source operands
= Store buffers has V field, result to be stored
Qj, Qk: Reservation stations producing source registers
(value to be written)
= Note: Qj,Qk=0 - ready
= Store buffers only have Qj for RS producing result
A Used to hold info for the load store (initially immediate,
then effective address)
Busy: Indicates reservation station or FU is busy
Register result status—

Qi indicates which functional unit will write each register, 0
means no write to this register

BUINPayYos dIWRuA

Isua Execute Wrte cesult

W 5

UIINP3YIS OIWRUA

bi

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science 29 October 2018

Tomasulo’s Algorithm

= Example loop:

BuliNpayos olweuA

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd 4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 != x2

Tomasulo’s Algorithm

nviruction et

Imatruction from messon [Lmcute wete remul

BUINPayYos dIWRuA

Hardware-Based Speculation

= Execute instructions along predicted execution
paths but only commit the results if prediction
was correct

= Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

= Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

uonejnoads paseg-arempreH

= |.e. updating state or taking an execution

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science 29 October 2018

Reorder Buffer

= Reorder buffer — holds the result of instruction
between completion and commit

Four fields:

= Instruction type: branch/store/register
= Destination field: register number

= Value field: output value

= Ready field: completed execution?

uone|noads paseg-arempieH

= Modify reservation stations:

= Operand source is now reorder buffer instead of
functional unit

Reorder Buffer

Issue:

= Allocate RS and ROB, read available operands

= Execute:

= Begin execution when operand values are available
Write result:

= Write result and ROB tag on CDB

= Commit:

= When ROB reaches head of ROB, update register

= When a mispredicted branch reaches head of ROB,
discard all entries

uone|noads paseg-arempreH

Reorder Buffer

= Register values and memory values are not
written until an instruction commits

= On misprediction:
= Speculated entries in ROB are cleared

uonejnoads paseg-arempreH

= Exceptions:
= Not recognized until it is ready to commit

Chapter 2 — Instructions: Language of the Computer 6

The University of Adelaide, School of Computer Science 29 October 2018

a5

Reorder Buffer g
I S %

| om——— w

— [g

A5
)
Reorder Buffer g
Recrdes bufer 1
Exitry L Ininaction Same Dwntiration Vialus g
Yo o . Q.
Yin o
[}
2
o
Reservation matoms S
Mame By Op v " @ Ok Det A
Lowdl o
Lemd o
Add) o
FP rogiiter st
Faddd L n ” n - L] L] ” L no
o :

Multiple Issue and Static Scheduling

= To achieve CPI < 1, need to complete multiple
instructions per clock

= Solutions:
= Statically scheduled superscalar processors
= VLIW (very long instruction word) processors
» Dynamically scheduled superscalar processors

Buiinpayas anels pue anss| a|dnin

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science

Multiple Issue

by the compier

Common lssue Hazard Distingukshing
name strcture detection Scheduling characterstic Examples
Supcrcalsr Dynamic Hardwore Stic In-omber cxecution Mastly in the cmbedded
(staic) space: MIPS and ARM,
including the Cories-ASH
Supcrscalar Dynamic Hardware Dynamic Some out-of-order None at the present
{dhyramic i execution, bui no
speculasion
Supcrcalasr Dynamic Hardwae Dynamic with Out-of-onder execution Intel Cove B, i, 7: AMD
{speculative) spoculaion with speculation Phencm; IBM Power 7
VLIWALIW Static Primarily Smtic Al harssds determined Mot cramples are in skgnal
softwase and indicated by compier provessing, such as the T1
(ofien implicidy |
ERC Primarly Primacly Mosly stasc Al horards determined. Jtsmium
static wiftwar and indicated explicaly

Bulnpayas anels pue anss| ajdnjn

VLIW Processors

= Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

= Package multiple operations into one instruction

= Must be enough parallelism in code to fill the
available slots

Bulinpayos onels pue anss| ajdnniA

Memory
reference 1

Memory

VLIW Processors

FP operation 1

FP operation 2

Integer
opemtionbranch

reference 2

» Disadvantages:
= Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility

Buiinpayas anels pue anss| a|dnin

Chapter 2 — Instructions: Language of the Computer

29 October 2018

The University of Adelaide, School of Computer Science 29 October 2018

Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:
= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock
= Design logic to handle any possible dependencies
between the instructions

uone|naads pue ‘anss| a|dnin ‘Bulnpayds dlwreuiq

= Issue logic is the bottleneck in dynamically
scheduled superscalars

uopenaads pue ‘anss| a|dpni ‘Bulnpayas alweuiq

Multiple Issue

= Examine all the dependencies amoung the
instructions in the bundle

If dependencies exist in bundle, encode them in
reservation stations

Also need multiple completion/commit

To simplify RS allocation:

= Limit the number of instructions of a given class that
can be issued in a “bundle”, i.e. on FP, one integer,
one load, one store

[
uone|naads pue ‘anss| a|dnn ‘Bulinpayds dlwreuiq

Chapter 2 — Instructions: Language of the Computer 9

The University of Adelaide, School of Computer Science

Example

Loop: Id x2,0(x1)
addi x2,x2,1
sd x2,0(x1)
addi x1,x1,8
bne x2,x3,Loop

/Ix2=array element
/lincrement x2
/Istore result
/lincrement pointer
/Ibranch if not last

uone|naads pue ‘anss| a|dnin ‘Bulnpayds dlwreuiq

Example (No Speculation)
sues at Executes at Memory access at Write CDE at

Reration dock cycle clock cycle dock cycle chock cycle
umber umber number Aumber Aumber Comment
| 1 1 2 3 4 First bisic
1 1 5 L] ‘Wit for 1d
1 2 Wait for add i
1 1 3 4 Execute dwectly
1 3 Wait for 2dd
2 i £ 9 0 Wait for bine
2 4 11 12 Wait for 1d
2 5 9 13
2 5 L) 9
2 L] 13
L} 7 4 15 16
L] 7 17 1%
L] L) 15 19
3 L 4 15
L} 9 il

uopenaads pue ‘anss| a|dpni ‘Bulnpayas alweuiq

Example (Mutiple Issue with Speculation)
Read Write
lsues Executes access CDBat Commits
Ieration atoock atcdock atcodk dock ot clock
number Instructions number number number number numbar Commaent
1 4 x2,0(x1 1 i 4 5 Farst bvsusc.
i IR i ; . Waittor 19
1 2 i ‘Walt for 2dd 1
1 2 L) '] £ Commit m order
1 3 7 L] ‘Wait for add |
2 4 5 3 7 ° No crecute delay
2 4 L 9 0 ‘Wait for 10
2 5 6 0 ‘Wait for 2dd |
2 5 (] " Commit m order
2 L3 W 1" ‘Wait for add |
3 7] 9 1 12 Farbiest possible
L] 7 1 I L] ‘Wit for 10
L]] 9 L] ‘Wait for add
i B 9 W0 4 L -uulnnri:

uone|naads pue ‘anss| a|dnn ‘Bulinpayds dlwreuiq

Chapter 2 — Instructions: Language of the Computer

29 October 2018

10

The University of Adelaide, School of Computer Science

Branch-Target Buffer

= Need high instruction bandwidth

= Branch-Target buffers
= Next PC prediction buffer, indexed by current PC
+

L
¥ ..E

uoe|noads pue AIaAlaa UonINASU 104 SaNbIUYISL APY

Branch Folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

= “Branch folding”

uone|noads pue AlaAla@ uoponasu oy senbiuyoal APy

Fallacies and Pitfalls

= Itis easy to predict the performance/energy
efficiency of two different versions of the same
ISA if we hold the technology constant

Sifepid pue saioe|es

o] [oy e

il Il!lWl

S P ——

il

1t}

Chapter 2 — Instructions: Language of the Computer

29 October 2018

11

The University of Adelaide, School of Computer Science 29 October 2018

m
. . P
Fallacies and Pitfalls g
@
= Processors with lower CPIs / faster clock rates |2
will also be faster 5
2
Implementation Chock SPECCInt 2006 SPECCFP 2006
Processor techrology rate Pawer base baelne
Intel Pentium 4 670 90 mm ALK Gk 15w 1ns 122
bmed hanism 2 00 1,66 GiHe 14w s 173
.q»pn-\ TOW ome
T rrr= TR T Y

apprin. B W ome
core

= Pentium 4 had higher clock, lower CPI
= Itanium had same CPI, lower clock

Fallacies and Pitfalls

= Sometimes bigger and dumber is better
= Pentium 4 and Itanium were advanced designs, but
could not achieve their peak instruction throughput
because of relatively small caches as compared to i7

Sl[efiid pue saioe|fes

= And sometimes smarter is better than bigger and
dumber

» TAGE branch predictor outperforms gshare with less
stored predictions

= Believing that there = E
are large amounts ' E
of ILP available, if -

only we had the R
right techniques j E

si[efiid pue saioe|e

Chapter 2 — Instructions: Language of the Computer 12

