2. Image Formation

2.1 Geometric Primitives \& Transformations

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

Outline

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

2D Points

2D point (e.g., a pixel coordinate in an image):
$\boldsymbol{x}=(x, y) \in \mathcal{R}^{2} \quad$ or $\quad \boldsymbol{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$

In homogeneous coordinates:
$\tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^{2}$
$\mathcal{P}^{2}=\mathcal{R}^{3}-(0,0,0)$ is called the projective space.
Vectors that differ only by a scale considered equivalent:
$s \tilde{\boldsymbol{x}}=\tilde{\boldsymbol{x}} \forall s \in \mathcal{R}$

Augmented Vectors

A homogenous vector can be converted back to an inhomogeneous vector by dividing by the last element:

$$
\tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\boldsymbol{x}}
$$

Homogeneous vector

Augmented vector

Why Homogeneous Coordinates?

* Provide a natural representation for points at infinity.
* Allow common geometric transformations (e.g., translation, rotation, scaling, perspective projection) to be effected by matrix multiplication

August Ferdinand Möbius (1790-1868)

2D Lines

2D lines can also be represented using homogeneous coordinates $\tilde{l}=(a, b, c)$.
The corresponding line equation is

$$
\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}}=a x+b y+c=0 .
$$

We can normalize the line equation vector so that $\boldsymbol{l}=\left(\hat{n}_{x}, \hat{\boldsymbol{n}}_{y},-d\right)=(\hat{\boldsymbol{n}},-d)$ with $\|\hat{\boldsymbol{n}}\|=1$.
Then:
$\hat{\boldsymbol{n}}$ is the unit normal to the line, directed toward the line from the origin d is the distance of the line from the origin

$$
\hat{\boldsymbol{n}}=\left(\hat{n}_{x}, \hat{n}_{y}\right)=(\cos \theta, \sin \theta)
$$

J. Elder

Intersections of 2D Lines

When using homogeneous coordinates, we can compute the intersection of two lines as

$$
\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{l}}_{1} \times \tilde{\boldsymbol{l}}_{2}
$$

Similarly, the line joining two points can be written as

$$
\tilde{\boldsymbol{l}}=\tilde{\boldsymbol{x}}_{1} \times \tilde{\boldsymbol{x}}_{2}
$$

3D Points

Straightforward extension from 2D:
Inhomogeneous: $\boldsymbol{x}=(x, y, z) \in \mathcal{R}^{3}$
Homogeneous: $\tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w}) \in \mathcal{P}^{3}$

Augmented: $\overline{\boldsymbol{x}}=(x, y, z, 1)$

$$
\tilde{\boldsymbol{x}}=\tilde{w} \overline{\boldsymbol{x}}
$$

3D Planes

3D planes can also be represented as homogeneous coordinates $\tilde{\boldsymbol{m}}=(a, b, c, d)$ with a corresponding plane equation

$$
\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{m}}=a x+b y+c z+d=0
$$

We can also normalize the plane equation as $\boldsymbol{m}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)=(\hat{\boldsymbol{n}}, d)$ with $\|\hat{\boldsymbol{n}}\|=1$.
$\hat{\boldsymbol{n}}$ is the normal vector perpendicular to the plane
$|d|$ is the distance of the plane from the origin

3D Lines

A 3D line can be represented using two points \boldsymbol{p} and \boldsymbol{q} that lie on the line.
Any point \boldsymbol{r} that also lies on the line can then be represented as
$r=(1-\lambda) p+\lambda q$
If we restrict $0 \leq \lambda \leq 1$, we get the line segment joining \boldsymbol{p} and \boldsymbol{q}.

If we use homogeneous coordinates, we can write the line as

$$
\tilde{\boldsymbol{r}}=\mu \tilde{\boldsymbol{p}}+\lambda \tilde{\boldsymbol{q}} .
$$

A special case of this is when the second point is at infinity, i.e., $\tilde{\boldsymbol{q}}=\left(\hat{d}_{x}, \hat{d}_{y}, \hat{d}_{z}, 0\right)=(\hat{\boldsymbol{d}}, 0)$. where $\hat{\boldsymbol{d}}$ is the direction of the line.

Then:
$\boldsymbol{r}=\boldsymbol{p}+\lambda \hat{\boldsymbol{d}}$

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

2D Translation

2D translations can be written as $\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{t}$ or

$$
x^{\prime}=\left[\begin{array}{ll}
I & t
\end{array}\right] \overline{\boldsymbol{x}}
$$

where \boldsymbol{I} is the (2×2) identity matrix
or
$\overline{\boldsymbol{x}}^{\prime}=\left[\begin{array}{cc}\boldsymbol{I} & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right] \overline{\boldsymbol{x}}$

Note: Whenever an augmented vector appears on both sides, it can be replaced by a full homogenous vector.

Euclidean Transformation (2D Rotation + Translation)
$\boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$ or

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t}
\end{array}\right] \overline{\boldsymbol{x}}
$$

where

$$
\boldsymbol{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is an orthonormal rotation matrix with $\boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}$ and $|\boldsymbol{R}|=1$.

Preserves Euclidean distances

Similarity Transformation

$\boldsymbol{x}^{\prime}=s \boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$
$\boldsymbol{x}^{\prime}=\left[\begin{array}{ll}s \boldsymbol{R} & \boldsymbol{t}\end{array}\right] \overline{\boldsymbol{x}}=\left[\begin{array}{ccc}a & -b & t_{x} \\ b & a & t_{y}\end{array}\right] \overline{\boldsymbol{x}}$

Preserves angles

Affine Transformation

$\boldsymbol{x}^{\prime}=\boldsymbol{A} \overline{\boldsymbol{x}}$, where \boldsymbol{A} is an arbitrary 2×3 matrix
$\boldsymbol{x}^{\prime}=\left[\begin{array}{lll}a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12}\end{array}\right] \overline{\boldsymbol{x}}$

Preserves parallelism

Projective Transformation (Homography)

NB: Should be an augmented vector, I think.
$\tilde{\boldsymbol{x}}^{\prime}=\tilde{\boldsymbol{H}} \tilde{\boldsymbol{x}} \quad$ Both Szeliski and Hartley \& Zisserman write it as homogeneous.
where $\tilde{\boldsymbol{H}}$ is an arbitrary 3×3 matrix.
$\tilde{\boldsymbol{H}}$ is homogenous:
Two $\tilde{\boldsymbol{H}}$ matrices that differ only by a scale factor are equivalent.
$x^{\prime}=\frac{h_{00} x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+h_{22}}$ and $y^{\prime}=\frac{h_{10} x+h_{11} y+h_{12}}{h_{20} x+h_{21} y+h_{22}}$

Preserves straight lines

Summary of 2D Transformations

Nested set of groups

* Closed under composition
* Each transformation has an inverse that is a member of the same group

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	

Co-vectors

We now know how to transform points.
How do we transform lines?
$\tilde{\boldsymbol{l}} \cdot \tilde{\boldsymbol{x}}=0$
$\tilde{\boldsymbol{x}}^{\prime}=\tilde{\boldsymbol{H}} \tilde{\boldsymbol{x}}$
$\tilde{\boldsymbol{l}}^{\prime} \cdot \tilde{\boldsymbol{x}}^{\prime}=\tilde{\boldsymbol{l}}^{T} \tilde{\boldsymbol{H}} \tilde{\boldsymbol{x}}=\left(\tilde{\boldsymbol{H}}^{T} \tilde{\boldsymbol{l}}\right)^{T} \tilde{\boldsymbol{x}}=\tilde{\boldsymbol{l}} \cdot \tilde{\boldsymbol{x}}=0$
Thus
$\tilde{\boldsymbol{l}}^{\prime}=\tilde{\boldsymbol{H}}^{-T} \tilde{\boldsymbol{l}}$.
i.e., the action of a projective transformation on a co-vector such as a 2D line can be represented by the transposed inverse of the matrix.

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

3D Translation

3D translations can be written as $\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{t}$ or

$$
x^{\prime}=\left[\begin{array}{ll}
I & t
\end{array}\right] \bar{x}
$$

where \boldsymbol{I} is the (3×3) identity matrix

Euclidean Transformation (3D Rotation + Translation)

$\boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$
$\boldsymbol{x}^{\prime}=\left[\begin{array}{ll}\boldsymbol{R} & \boldsymbol{t}\end{array}\right] \overline{\boldsymbol{x}}$
where \boldsymbol{R} is a 3×3 orthonormal rotation matrix with $\boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}$ and $|\boldsymbol{R}|=1$

Preserves Euclidean distances

Similarity Transformation

$$
\begin{aligned}
\boldsymbol{x}^{\prime} & =s \boldsymbol{R} \boldsymbol{x}+\boldsymbol{t} \\
\boldsymbol{x}^{\prime} & =\left[\begin{array}{ll}
s \boldsymbol{R} & \boldsymbol{t}
\end{array}\right] \overline{\boldsymbol{x}}
\end{aligned}
$$

Preserves angles

Affine Transformation

$\boldsymbol{x}^{\prime}=\boldsymbol{A} \overline{\boldsymbol{x}}$, where \boldsymbol{A} is an arbitrary 3×4 matrix

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23}
\end{array}\right] \overline{\boldsymbol{x}}
$$

Preserves parallelism

Projective Transformation (Homography)

$\tilde{\boldsymbol{x}}^{\prime}=\tilde{\boldsymbol{H}} \tilde{\boldsymbol{x}}$
where $\tilde{\boldsymbol{H}}$ is an arbitrary 4×4 homogeneous matrix

Preserves straight lines

Summary of 3D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	6	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	7	angles	
affine	$[\boldsymbol{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{4 \times 4}$	15	straight lines	

End of Lecture Sept 10, 2018

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

3D Rotations: Axis/Angle Representation

Let \boldsymbol{u} be the result of rotating vector \boldsymbol{v} about axis $\hat{\boldsymbol{n}}$ by the angle θ.
First, project the vector \boldsymbol{v} onto the axis $\hat{\boldsymbol{n}}$:

$$
\boldsymbol{v}_{\|}=\hat{\boldsymbol{n}}(\hat{\boldsymbol{n}} \cdot \boldsymbol{v})=\left(\hat{\boldsymbol{n}} \hat{\boldsymbol{n}}^{T}\right) \boldsymbol{v}
$$

Next, compute the perpendicular residual:

$$
\boldsymbol{v}_{\perp}=\boldsymbol{v}-\boldsymbol{v}_{\|}=\left(\boldsymbol{I}-\hat{\boldsymbol{n}} \hat{\boldsymbol{n}}^{T}\right) \boldsymbol{v}
$$

3D Rotations: Axis/Angle Representation

We can rotate this vector by 90° using the cross product,

$$
\boldsymbol{v}_{\times}=\hat{\boldsymbol{n}} \times \boldsymbol{v}=[\hat{\boldsymbol{n}}]_{\times} \boldsymbol{v}
$$

where $[\hat{\boldsymbol{n}}]_{\times}$is the matrix form of the cross product operator with the vector $\hat{\boldsymbol{n}}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}\right)$,
$[\hat{\boldsymbol{n}}]_{\times}=\left[\begin{array}{ccc}0 & -\hat{n}_{z} & \hat{n}_{y} \\ \hat{n}_{z} & 0 & -\hat{n}_{x} \\ -\hat{n}_{y} & \hat{n}_{x} & 0\end{array}\right]$

Note that rotating this vector by another 90° is equivalent to taking the cross product again,

$$
\boldsymbol{v}_{\times \times}=\hat{\boldsymbol{n}} \times \boldsymbol{v}_{\times}=[\hat{\boldsymbol{n}}]_{\times}^{2} \boldsymbol{v}=-\boldsymbol{v}_{\perp},
$$

and hence

$$
\boldsymbol{v}_{\|}=\boldsymbol{v}-\boldsymbol{v}_{\perp}=\boldsymbol{v}+\boldsymbol{v}_{\times \times}=\left(\boldsymbol{I}+[\hat{\boldsymbol{n}}]_{\times}^{2}\right) \boldsymbol{v}
$$

3D Rotations: Axis/Angle Representation

We can now compute the in-plane component of the rotated vector \boldsymbol{u} as

$$
\boldsymbol{u}_{\perp}=\cos \theta \boldsymbol{v}_{\perp}+\sin \theta \boldsymbol{v}_{\times}=\left(\sin \theta[\hat{\boldsymbol{n}}]_{\times}-\cos \theta[\hat{\boldsymbol{n}}]_{\times}^{2}\right) \boldsymbol{v}
$$

Putting all these terms together, we obtain the final rotated vector as

$$
\boldsymbol{u}=\boldsymbol{u}_{\perp}+\boldsymbol{v}_{\|}=\left(\boldsymbol{I}+\sin \theta[\hat{\boldsymbol{n}}]_{\times}+(1-\cos \theta)[\hat{\boldsymbol{n}}]_{\times}^{2}\right) \boldsymbol{v}
$$

We can therefore write the rotation matrix corresponding to a rotation by θ around an axis $\hat{\boldsymbol{n}}$ as

$$
\boldsymbol{R}(\hat{\boldsymbol{n}}, \theta)=\boldsymbol{I}+\sin \theta[\hat{\boldsymbol{n}}]_{\times}+(1-\cos \theta)[\hat{\boldsymbol{n}}]_{\times}^{2} \quad \text { (Rodriquez' formula) }
$$

3D Rotations: Axis/Angle Representation

$\boldsymbol{R}(\hat{\boldsymbol{n}}, \theta)=\boldsymbol{I}+\sin \theta[\hat{\boldsymbol{n}}]_{\times}+(1-\cos \theta)[\hat{\boldsymbol{n}}]_{\times}^{2} \quad$ (Rodriquez' formula)
For small rotations:
$\boldsymbol{R}(\boldsymbol{\omega}) \approx \boldsymbol{I}+\sin \theta[\hat{\boldsymbol{n}}]_{\times} \approx \boldsymbol{I}+[\theta \hat{\boldsymbol{n}}]_{\times}=\left[\begin{array}{ccc}1 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 1 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 1\end{array}\right]$

Unit Quaternions

$\boldsymbol{q}=(x, y, z, w)$ with $\|\boldsymbol{q}\|=1$
\boldsymbol{q} and $-\boldsymbol{q}$ represent the same rotation.

Quaternions can be derived from the axis/angle representation through the formula

$$
\boldsymbol{q}=(\boldsymbol{v}, w)=\left(\sin \frac{\theta}{2} \hat{\boldsymbol{n}}, \cos \frac{\theta}{2}\right),
$$

where $\hat{\boldsymbol{n}}$ and θ are the rotation axis and angle.

Rodriguez' formula now becomes (see textbook):

$$
\begin{aligned}
\boldsymbol{R}(\hat{\boldsymbol{n}}, \theta) & =\boldsymbol{I}+\sin \theta[\hat{\boldsymbol{n}}]_{\times}+(1-\cos \theta)[\hat{\boldsymbol{n}}]_{\times}^{2} \\
& =\boldsymbol{I}+2 w[\boldsymbol{v}]_{\times}+2[\boldsymbol{v}]_{\times}^{2}
\end{aligned}
$$

Quaternion Algebra

$\boldsymbol{q}=(\boldsymbol{v}, w)=\left(\sin \frac{\theta}{2} \hat{\boldsymbol{n}}, \cos \frac{\theta}{2}\right)$
Composition (multiplication): $\boldsymbol{q}_{2}=\boldsymbol{q}_{0} \boldsymbol{q}_{1}=\left(\boldsymbol{v}_{0} \times \boldsymbol{v}_{1}+w_{0} \boldsymbol{v}_{1}+w_{1} \boldsymbol{v}_{0}, w_{0} w_{1}-\boldsymbol{v}_{0} \cdot \boldsymbol{v}_{1}\right)$

$$
\boldsymbol{R}\left(\boldsymbol{q}_{2}\right)=\boldsymbol{R}\left(\boldsymbol{q}_{0}\right) \boldsymbol{R}\left(\boldsymbol{q}_{1}\right) .
$$

Inverse: flip the sign of v or w (but not both).
i.e., if $\boldsymbol{q}=(\boldsymbol{v}, w)$, then $\boldsymbol{q}^{-1}=(\boldsymbol{v}, w)=(\boldsymbol{v},-w)$.

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

Orthographic (Parallel) Projection

* Reasonable approximation to perspective projection when \% depth variation within field of view is small.
* This is often the case for telephoto lenses (long viewing distances, small field of view)
* Given camera-aligned world coordinate frame, simply drop the z
 component!
* In inhomogeneous (Euclidean) coordinates:
$\boldsymbol{x}=\left[\boldsymbol{I}_{2 \times 2} \mid \mathbf{0}\right] \boldsymbol{p}$
where \boldsymbol{p} is the 3 D point and \boldsymbol{x} is the projected 2D image point
* In practice, we also need to scale the x and y coordinates from metres to pixels:

$$
\boldsymbol{x}=\left[s \boldsymbol{I}_{2 \times 2} \mid \mathbf{0}\right] \boldsymbol{p} .
$$

Perspective Projection

* Points projected onto image plane by dividing them by their z component.

$$
\overline{\boldsymbol{x}}=\mathcal{P}_{z}(\boldsymbol{p})=\left[\begin{array}{c}
x / z \\
y / z \\
1
\end{array}\right]
$$

* In homogeneous coordinates:

$$
\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\boldsymbol{p}}
$$

Camera Intrinsics

2D image projection

Extrinsic (rotation + translation) matrix

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

f_{x} and $f_{y:}$ encode focal length and pixel spacing, which may be slightly different in x and y dimensions.

c_{x} and c_{y} : encode principal point (intersection of optic axis with sensor plane) - usually very close to centre of image
s : encodes possible skew between sensor axes (usually close to 0).

Focal Lengths

* Focal length can be measured either in pixels or in mm.

$$
\tan \frac{\theta}{2}=\frac{W}{2 f} \quad \text { or } \quad f=\frac{W}{2}\left[\tan \frac{\theta}{2}\right]^{-1}
$$

Sensor plane

* Example: Consider the FLIR BlackFly S BFS-PGE-122S6C-C paired with a 10 mm lens:
* Resolution: 4096×3000 pixels
* Sensor width: $1.1 "=27.94 \mathrm{~mm}$

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

Lens Distortions

* In perspective projection, straight lines project to straight lines.
* This is not true in real cameras, due to lens distortions.
* Wide-angle lenses produce noticeable radial distortion
* Let $\left(x_{c}, y_{c}\right)$ be image coordinates after perspective projection but before scaling by focal length and shifting by the optical centre.
* Then without distortion, we should have

$$
\begin{aligned}
x_{c} & =\frac{\boldsymbol{r}_{x} \cdot \boldsymbol{p}+t_{x}}{\boldsymbol{r}_{z} \cdot \boldsymbol{p}+t_{z}} \\
y_{c} & =\frac{\boldsymbol{r}_{y} \cdot \boldsymbol{p}+t_{y}}{\boldsymbol{r}_{z} \cdot \boldsymbol{p}+t_{z}}
\end{aligned}
$$

where $\boldsymbol{r}_{x}, \boldsymbol{r}_{y}$, and \boldsymbol{r}_{z} are the three rows of \boldsymbol{R}.

Radial Distortion

$x_{c}=\frac{\boldsymbol{r}_{x} \cdot \boldsymbol{p}+t_{x}}{\boldsymbol{r}_{z} \cdot \boldsymbol{p}+t_{z}}$
$y_{c}=\frac{\boldsymbol{r}_{y} \cdot \boldsymbol{p}+t_{y}}{\boldsymbol{r}_{z} \cdot \boldsymbol{p}+t_{z}}$

* In radial distortion, points are displaced radially by an amount that increases with their distance from the image centre
- Barrel distortion: points are displaced away from the image centre

- Pincushion distortion: points are displaced towards the image centre
- Radial distortion can be modelled by a 4th-order perturbation on these
 coordinates:

* Geometric primitives
* 2D transformations
* 3D transformations
* 3D rotations
* 3D to 2D projections
* Lens Distortions

