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2.1 Geometric Primitives & Transformations
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Outline YORKEI

< Geometric primitives
¢ 2D transformations
¢ 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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Outline R
< Geometric primitives

¢ 2D transformations

¢ 3D transformations

“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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2D Points

2D point (e.g., a pixel coordinate in an 1mage):

r=(z,y) €ER* or x=

In homogeneous coordinates:

T = (Z,79, W) € P?

P?=R’-(0,0,0) is called the projective space.

Vectors that differ only by a scale considered equivalent:

sx=X VseR

EECS 4422/5323 Computer Vision 5 J. Elder



YORK |
Augmented Vectors bt U

A homogenous vector can be converted back to an inhomogeneous vector by dividing by
the last element:

= (z,y,w) =w(ry,l) =uwx

\ \

Homogeneous vector Augmented vector

EECS 4422/5323 Computer Vision 6 J. Elder



- YORK L}
Why Homogeneous Coordinates? "k

¢ Provide a natural representation for points at infinity:.

% Allow common geometric transformations (e.g., translation, rotation, scaling,

perspective projection) to be effected by matrix multiplication

August Ferdinand Mobius (1790-1868)

EECS 4422/5323 Computer Vision 7 J. Elder
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2D Lines o

~

2D lines can also be represented using homogeneous coordinates I = (a, b, ¢).

The corresponding line equation 1s

:E-i:aaj—l—by—kc:().

We can normalize the line equation vector so that [ = (ﬁx ,ﬁy ,—d ) (fz,—d ) with Hfz‘ \ =1.

Then:
n is the unit normal to the line, directed toward the line from the origin

d 1s the distance of the line from the origin

YA n
n = (g, Ny) = (cosf,sinb) \

EECS 4422/5323 Computer Vision 8 J. Elder
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Intersections of 2D Lines itaig U

When using homogeneous coordinates, we can compute the intersection of two lines as

T =1l X1

I\JNI
i

=

Similarly, the line joining two points can be written as

[l =x1 X X9 X,

—_

X
1
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3D Points

Straightforward extension from 2D:

Inhomogeneous:

Homogeneous:

Augmented:

EECS 4422/5323 Computer Vision

r=(r,y,2) € R’
T =(Z,79,2,w) € P>
= (x,y,2,1)

T = WI
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YORK]
3D Planes YRS

3D planes can also be represented as homogeneous coordinates m = (a, b, ¢, d)

with a corresponding plane equation

T -m=ar+by+cz+d=20

We can also normalize the plane equation as m = (R, Ny, N,,d) = (7, d) with | 72| = 1.

n 1s the normal vector perpendicular to the plane

d| 1s the distance of the plane from the origin

EECS 4422/5323 Computer Vision 11 J. Elder
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3D Lines YORSAL

A 3D line can be represented using two points p and ¢ that lie on the line.

Any point r that also lies on the line can then be represented as

r=(1-1)p+Aq
If we restrict 0 < \ < 1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as
T = up + A\q.
A special case of this is when the second point is at infinity, i.e., § = (

where cAl 1s the direction of the line.

Then:

r:p+)\ci

EECS 4422/5323 Computer Vision 12 J. Elder
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Outline YORKQI

< Geometric primitives
» 2D transformations
* 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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2D translations can be written as ' = x + t or

— |1 t]|3

where I 1s the (2 X 2) identity matrix

or

I t

ol 1

S|

2D Translation

XOREAL

Note: Whenever an augmented vector appears on both sides, 1t can be replaced by a

full homogenous vector.
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Euclidean Transformation (2D Rotation + Translation)

' = Rax + t or

where

R =

is an orthonormal rotation matrix with RR"'

Preserves Euclidean distances

— [ R };z
cos) —sind ]
sinf cosf

=TI and |[R| = 1.

/

A
Y / 51m11ar1ty
translation Q
Euchdean afﬁne

projective E
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Similarity Transformation

' = sRx +t

w’:[sR t}a?:

Preserves angles
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Affine Transformation

x’ = AZ, where A is an arbitrary 2 x 3 matrix

aoo
aio

ao1
ail

ap2
ai2

Preserves parallelism

EECS 4422/5323 Computer Vision
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Projective Transformation (Homography) R L

NB: Should be an augmented vector, I think.
7 — H7 + Both Szeliski and Hartley & Zisserman write 1t as homogeneous.

where H is an arbitrary 3 X 3 matrix.

H is homogenous:
Two H matrices that differ only by a scale factor are equivalent.
,  hoox + hory + ho2 ,  hiox + hi1y + hao

Tr = and =
hoox + ho1y + haso / hoox + ho1y + hao

Preserves straight lines

Euchdea

Y A / s1m11ar1ty proj ectlve
translation
e 4
n afﬁne

X
EECS 4422/5323 Computer Vision 18 J. Elder



Summary of 2D Transformations

Nested set of groups

/7
*

% Closed under composition
. . . .
¢ Each transformation has an inverse that 1s a member of the same group

Transformation Matrix # DoF Preserves Icon
translation [ 1 ‘ t } 2 orientation
2% 3
rigid (Euclidean) [ R ‘ t ] 3 lengths Q
23
similarity [ sR ‘ t ] 4 angles Q
2x3
affine [ A } 6 parallelism E
23
projective [ H ] 8 straight lines G
3xX3

EECS 4422/5323 Computer Vision
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YORK [
Co-vectors YORSAL

We now know how to transform points.
How do we transform lines?

% =0

Sl

1.e., the action of a projective transformation on a co-vector such as a
2D line can be represented by the transposed inverse of the matrix.

EECS 4422/5323 Computer Vision 20 J. Elder
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Outline YORKQI

< Geometric primitives
¢ 2D transformations
* 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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3D Translation it U

3D translations can be written as ' = x + t or
x = { I t } T

where I is the (3 x 3) identity matrix

EECS 4422/5323 Computer Vision 22 J. Elder
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Euclidean Transformation (3D Rotation + Translation)

' = Rx +t
a:’:[R t}i

where R is a 3 x 3 orthonormal rotation matrix with RR' = I and |R| = 1

Preserves Euclidean distances

EECS 4422/5323 Computer Vision 23 J. Elder
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Similarity Transformation YORKL

' =sRx +t

JZ’Z[SR t}a‘:

Preserves angles

EECS 4422/5323 Computer Vision 24 J. Elder



- - YORK I
Affine Transformation bt U

x’ = AZ, where A is an arbitrary 3 X 4 matrix

apo AdApi1 Aap2 4aops
L = aip ai11 Q12 ais

S|

asp dA21 G292 a3

Preserves parallelism

EECS 4422/5323 Computer Vision 25 J. Elder



Projective Transformation (Homography) R L

~/ S
r = Hx

where H 1s an arbitrary 4 X 4 homogeneous matrix

Preserves straight lines

EECS 4422/5323 Computer Vision 26 J. Elder



Summary of 3D Transformations

XOREAL

Transformation Matrix # DoF Preserves Icon
translation [ 1 ‘ t } 3 orientation
3 x4
rigid (Euclidean) [ R ‘ t } 6 lengths Q
3 x4
similarity [ sR ‘ t } 7 angles Q
3x4
affine { A ] 12 parallelism E
3Xx4
projective [ H ] 15 straight lines E‘
4x4

EECS 4422/5323 Computer Vision
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End of Lecture
Sept 10, 2018
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Outline YORKQI

< Geometric primitives
¢ 2D transformations
¢ 3D transformations
* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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3D Rotations: Axis/Angle Representation e L

Amount of rotation AXxis of rotation

Let u be the result of rotating vector v about axis n by the angle 6.
First, project the vector v onto the axis n :
v =A(A-v) = (AR v

Next, compute the perpendicular residual:

UJ_ZU—U||:(I—7¢LfLT)U

EECS 4422/5323 Computer Vision 30 J. Elder



3D Rotations: Axis/Angle Representation Mt

We can rotate this vector by 90° using the cross product,

Vy =N X v =[Ny,

where [72] « is the matrix form of the cross product operator with the vector v = (75, iy, N2 ),

0 —h. 7y
['flx]x — ﬁz O _'ﬁ/x
A, A, 0

Note that rotating this vector by another 90° is equivalent to taking the cross product again,
g y q g p g

Vyx =N X Uy = [R5V = —v,

and hence

v =v—v =v+vxx = (I+[A]})v.

EECS 4422/5323 Computer Vision 31 J. Elder



3D Rotations: Axis/Angle Representation Mt

We can now compute the in-plane component of the rotated vector w as

u, = cosfv | +sinfvy = (sin ]y — cos O[] )v.

Putting all these terms together, we obtain the final rotated vector as
u=u, +v|= (I +sind[n|x + (1 —cosh)R]%)v.

We can therefore write the rotation matrix corresponding to a rotation by 6 around an axis 7
as

R(7,0) = I +sinf[n]y + (1 —cosf)[R]2  (Rodriquez’ formula)

EECS 4422/5323 Computer Vision 32 J. Elder



3D Rotations: Axis/Angle Representation Mt

R(7,0) = I + sin 0[]« + (1 — cos0)[A]% (Rodriquez’ formula)

For small rotations:

Rw)=I+sinfn]y ~ I+ [0n]x = | w,

EECS 4422/5323 Computer Vision 33
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Unit Quaternions

q=(z,y,z,w) with [|q]| =1

q and -q represent the same rotation.

Quaternions can be derived from the axis/angle representation through the formula

0 0
q = (v, w) = (sin iﬁ,cos 5),

where 1 and 6 are the rotation axis and angle.

Rodriguez’ formula now becomes (see textbook):

R(n,0) = I +sinf[n]y, + (1 —cosb)[n]?
= I+ 2wlv]y +2[v]3.

EECS 4422/5323 Computer Vision 34 J. Elder



: YORKHI
Quaternion Algebra

.0 6
q = (v, w) = (sin 51, cos 5)

Composition (multiplication): gy = goq; = (vo X V1 + wev1 + W1V, Wow1 — Vg - V1)
R(qy) = R(qy)R(q,)

Inverse: flip the sign of v or w (but not both).
1.e., 1f g = (v, w), then g1 = (-v, w) = (v, -w).

EECS 4422/5323 Computer Vision 35 J. Elder
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< Geometric primitives
¢ 2D transformations
* 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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Orthographic (Parallel) Projection L

Reasonable approximation to perspective projection when % depth

. . . . . . S, -(.1' Yo iR )
variation within field of view 1s small. I o

-
-~

o (x.,2)
This 1s often the case for telephoto lenses (long viewing distances, C |
small field of view)
[N | , :
cabes

Given camera-aligned world coordinate frame, simply drop the z
component!

In inhomogeneous (Euclidean) coordinates:
x = [I2x2|0] p
where p 1s the 3D point and x is the projected 2D 1mage point

In practice, we also need to scale the x and y coordinates from metres to pixels:

€r = [SIQXQIO] P.

EECS 4422/5323 Computer Vision 37 J. Elder



Perspective Projection

XOREAL

¢ Points projected onto image plane by dividing them by their z component.

1 0
=0 1 0
0 1
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Camera Intrinsics g U

\

3D world point

izszK[R\t}ﬁwzpﬁw

/

2D image projection

Intrinsic (calibration) matrix Projection matrix

Extrinsic (rotation + translation) matrix

W-1
] ] Ay,
fr s ¢y Wxxs y
K= 0 f, ¢ M\/M//
0 0 1 O exe) A1 S >
_ _ T X Ze
fx and f,: encode focal length and pixel spacing, H-1|" /
which may be slightly different in x and y dimensions. Yy,

cx and ¢,: encode principal point (intersection of optic axis with sensor plane) - usually
very close to centre of image

s: encodes possible skew between sensor axes (usually close to 0).
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Focal Lengths rREAL

¢ Focal length can be measured either in pixels or in mm.

t Q—K or f—Kt Q_l
an2—2f —2 an2 w2
. / Z

Optical centre M X.Y.2)

Sensor plane

% Example: Consider the FLIR BlackFly S BFS-PGE-122S6C-C paired with a 10mm lens:

¢ Resolution: 4096 x 3000 pixels

* 12.34i6

coles sEMsoR MEGasixers YIS I DN

% Sensor width: 1.1” = 27.94mm
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< Geometric primitives
¢ 2D transformations
* 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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Lens Distortions XoRAL

¢ In perspective projection, straight lines project to straight lines.
¢ This 1s not true in real cameras, due to lens distortions.
% Wide-angle lenses produce noticeable radial distortion

» Let (xc, yc) be 1mage coordinates after perspective projection but before scaling by
focal length and shifting by the optical centre.

«* Then without distortion, we should have

rx'p+ta;
L —

rz'p_|_tz

Ty Pty
Ye —

rz'p‘I'tz

where r,, r,,, and r, are the three rows of R.
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Radial Distortion R

raz°p‘|_ta:
Lo =
rz'p—|_tz
_ Ty Pty
Je rz’p‘l'tz

¢ In radial distortion, points are displaced radially by an amount that
increases with their distance from the image centre

H
it

Barrel distortion: points are displaced away from the 1image centre
Pincushion distortion: points are displaced towards the image centre Cr E’—
Radial distortion can be modelled by a 4th-order perturbation on these o
coordinates:
N 2 4

Te = x(l+ K7 + Kor).)

Jo = Ye(l+mire + rare),

2 _ .2 2
where 17 = z7 + y?
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< Geometric primitives
¢ 2D transformations
¢ 3D transformations
“* 3D rotations

“* 3D to 2D projections

** Lens Distortions
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