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Image Sensing Pipeline (Simplified)
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Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as typical
digital post-processing steps.

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed in a fraction of
a second, e.g., 1

125 , 1
60 , 1

30 ), and then passed to a set of sense amplifiers . The two main kinds
of sensor used in digital still and video cameras today are charge-coupled device (CCD) and
complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass it to
an analog-to-digital converter (ADC).10 Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated to control exposure duration, and locally am-
plified before being read out using a multiplexing scheme. Traditionally, CCD sensors
outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video
is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.
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Sensor
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❖ CCD (Charge-Coupled Device) 

๏ Photons accumulated in each active well. 

๏ Then charge transferred from well to well (“bucket brigade”) until deposited at sense 
amplifiers 

❖ CMOS (Complementary Metal Oxide Semiconductors) 

๏ photons directly affect conductivity of a photodetector 

๏ Each photodetector can be selectively gated and amplified 

๏ Read out using multiplexing scheme 

❖ Most digital cameras now use CMOS.
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Shutter Speed
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❖ Measured in fractions of a second (e.g., 1/125, 1/60, 1/30,…) 

❖ Controls the amount of light integrated by the sensor 

❖ Faster shutter speeds prevent ‘camera shake’ and reduce motion 
blur but will be noisier unless scene is well illuminated. 

❖ Need to use a tripod for slower shutter speeds!
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Sampling Pitch & Fill Factor 
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❖ Sampling pitch is the physical spacing between adjacent sensor cells. 

❖ For a fixed chip size, smaller pitch means higher resolution (good!) but less light per 
pixel (bad!)

Fill factor ! Detector aperture width
Sampling pitch
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Chip Size
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❖ Chip widths can vary from around ~1/4” to ~1.1” 

❖ Generally this is less than the 35mm width of a standard film frame. 

❖ Our understanding of focal lengths (e.g., a standard 50mm lens) is based on using 
35mm film 

❖ To adapt this to a digital camera we must scale by the ratio of the sensor widths.
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Focal Lengths
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❖ Focal length can be measured either in pixels or in mm.
2.1 Geometric primitives and transformations 53
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordi-
nates, p and x, as well as the relationship between the focal length f , image width W , and
the field of view ✓.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the y axis has also been flipped to get a coordinate system
compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing
computer vision algorithms and discussing their results. This is because the focal length
depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W )⇥ [0, H), the focal length
f and camera center (cx, cy) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f , the sensor width W ,
and the field of view ✓, which obey the formula
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For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [�1, 1) along
the longer image dimension and [�a�1, a�1

) along the shorter axis, where a � 1 is the
image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be
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The issue of how to express focal lengths is one that often causes confusion in implementing
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For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [�1, 1) along
the longer image dimension and [�a�1, a�1

) along the shorter axis, where a � 1 is the
image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be

❖ Example: What focal length would give me the equivalent of a 50mm lens for the 
FLIR BlackFly S BFS-PGE-122S6C-C? 

❖ Sensor width: 1.1” = 27.94mm
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Analog Gain
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❖ May be controlled through automatic gain control logic 

❖ Can also be adjusted through ISO setting 

❖ Higher gain allows faster shutters speeds (less motion blur) and/or smaller apertures 
(greater depth of field). 

❖ But at the expense of higher sensor noise!
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Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as typical
digital post-processing steps.
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In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass it to
an analog-to-digital converter (ADC).10 Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated to control exposure duration, and locally am-
plified before being read out using a multiplexing scheme. Traditionally, CCD sensors
outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video
is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.
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Sensor Noise
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❖ May include  

๏ fixed pattern noise 

๏ dark current noise 

๏ shot noise 

๏ amplifier noise 

๏ quantization noise 

❖ Increases with sensor gain 

❖ Can be estimated (Assignment 1) by 

๏ Measuring variability when irradiance is constant 

๏ Differencing two images taken in rapid succession
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❖ The Sensor 

❖ Sampling & Aliasing 

❖ Colour Coding
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Sampling & Aliasing
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❖ The optical signal is continuous, containing arbitrarily high spatial frequencies. 

❖ The sensor is spatially sampling this signal at discrete locations determined by the 
sampling pitch. 

❖ If the image is not low-pass filtered, aliasing will result:  high frequency content will 
be inextricably mixed with low frequency content in the digital image. 

❖ Example:  sampling rate fs = 2
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f = 3/4 f = 5/4

=

Figure 2.24 Aliasing of a one-dimensional signal: The blue sine wave at f = 3/4 and the
red sine wave at f = 5/4 have the same digital samples, when sampled at f = 2. Even after
convolution with a 100% fill factor box filter, the two signals, while no longer of the same
magnitude, are still aliased in the sense that the sampled red signal looks like an inverted
lower magnitude version of the blue signal. (The image on the right is scaled up for better
visibility. The actual sine magnitudes are 30% and �18% of their original values.)

from its instantaneous samples must be at least twice the highest frequency,15

fs � 2fmax. (2.102)

The maximum frequency in a signal is known as the Nyquist frequency and the inverse of the
minimum sampling frequency rs = 1/fs is known as the Nyquist rate.

However, you may ask, since an imaging chip actually averages the light field over a
finite area, are the results on point sampling still applicable? Averaging over the sensor area
does tend to attenuate some of the higher frequencies. However, even if the fill factor is
100%, as in the right image of Figure 2.24, frequencies above the Nyquist limit (half the
sampling frequency) still produce an aliased signal, although with a smaller magnitude than
the corresponding band-limited signals.

A more convincing argument as to why aliasing is bad can be seen by downsampling
a signal using a poor quality filter such as a box (square) filter. Figure 2.25 shows a high-
frequency chirp image (so called because the frequencies increase over time), along with the
results of sampling it with a 25% fill-factor area sensor, a 100% fill-factor sensor, and a high-
quality 9-tap filter. Additional examples of downsampling (decimation) filters can be found
in Section 3.5.2 and Figure 3.30.

The best way to predict the amount of aliasing that an imaging system (or even an image
processing algorithm) will produce is to estimate the point spread function (PSF), which
represents the response of a particular pixel sensor to an ideal point light source. The PSF
is a combination (convolution) of the blur induced by the optical system (lens) and the finite
integration area of a chip sensor.16

15 The actual theorem states that fs must be at least twice the signal bandwidth but, since we are not dealing with
modulated signals such as radio waves during image capture, the maximum frequency suffices.

16 Imaging chips usually interpose an optical anti-aliasing filter just before the imaging chip to reduce or control
the amount of aliasing.

−sin 2π (5 / 4)x( )

sin 2π (3 / 4)x( )
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Nyquist Limit
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❖ Shannon’s sampling theorem:  sampling rate must be at least twice the maximum 
frequency in the signal.
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The maximum frequency in a signal is known as the Nyquist frequency and the inverse of the
minimum sampling frequency rs = 1/fs is known as the Nyquist rate.

However, you may ask, since an imaging chip actually averages the light field over a
finite area, are the results on point sampling still applicable? Averaging over the sensor area
does tend to attenuate some of the higher frequencies. However, even if the fill factor is
100%, as in the right image of Figure 2.24, frequencies above the Nyquist limit (half the
sampling frequency) still produce an aliased signal, although with a smaller magnitude than
the corresponding band-limited signals.

A more convincing argument as to why aliasing is bad can be seen by downsampling
a signal using a poor quality filter such as a box (square) filter. Figure 2.25 shows a high-
frequency chirp image (so called because the frequencies increase over time), along with the
results of sampling it with a 25% fill-factor area sensor, a 100% fill-factor sensor, and a high-
quality 9-tap filter. Additional examples of downsampling (decimation) filters can be found
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The best way to predict the amount of aliasing that an imaging system (or even an image
processing algorithm) will produce is to estimate the point spread function (PSF), which
represents the response of a particular pixel sensor to an ideal point light source. The PSF
is a combination (convolution) of the blur induced by the optical system (lens) and the finite
integration area of a chip sensor.16

15 The actual theorem states that fs must be at least twice the signal bandwidth but, since we are not dealing with
modulated signals such as radio waves during image capture, the maximum frequency suffices.

16 Imaging chips usually interpose an optical anti-aliasing filter just before the imaging chip to reduce or control
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−sin 2π (5 / 4)x( )

sin 2π (3 / 4)x( )

fs ≥ 2 fmax

Claude Shannon (1916 - 2001)Harry Nyquist (1889 - 1976)
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Effect of the Fill Factor
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❖ Each pixel is actually the result of integrating light over a small square, the size of 
which is determined by the sampling pitch and fill factor. 

❖ This serves to attenuate high frequencies. 

❖ However, the Fourier transform of this ‘boxcar’ filter falls only as 1/f, and thus high 
frequencies, while attenuated, are still present and cause aliasing.

Original Image Boxcar with 25% fill factor Boxcar with 100% fill factor High-quality lowpass filter
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(a) (b) (c) (d)

Figure 2.25 Aliasing of a two-dimensional signal: (a) original full-resolution image; (b)
downsampled 4⇥ with a 25% fill factor box filter; (c) downsampled 4⇥ with a 100% fill
factor box filter; (d) downsampled 4⇥ with a high-quality 9-tap filter. Notice how the higher
frequencies are aliased into visible frequencies with the lower quality filters, while the 9-tap
filter completely removes these higher frequencies.

If we know the blur function of the lens and the fill factor (sensor area shape and spacing)
for the imaging chip (plus, optionally, the response of the anti-aliasing filter), we can convolve
these (as described in Section 3.2) to obtain the PSF. Figure 2.26a shows the one-dimensional
cross-section of a PSF for a lens whose blur function is assumed to be a disc of a radius
equal to the pixel spacing s plus a sensing chip whose horizontal fill factor is 80%. Taking
the Fourier transform of this PSF (Section 3.4), we obtain the modulation transfer function
(MTF), from which we can estimate the amount of aliasing as the area of the Fourier magni-
tude outside the f  fs Nyquist frequency.17 If we de-focus the lens so that the blur function
has a radius of 2s (Figure 2.26c), we see that the amount of aliasing decreases significantly,
but so does the amount of image detail (frequencies closer to f = fs).

Under laboratory conditions, the PSF can be estimated (to pixel precision) by looking at a
point light source such as a pin hole in a black piece of cardboard lit from behind. However,
this PSF (the actual image of the pin hole) is only accurate to a pixel resolution and, while
it can model larger blur (such as blur caused by defocus), it cannot model the sub-pixel
shape of the PSF and predict the amount of aliasing. An alternative technique, described in
Section 10.1.4, is to look at a calibration pattern (e.g., one consisting of slanted step edges
(Reichenbach, Park, and Narayanswamy 1991; Williams and Burns 2001; Joshi, Szeliski, and
Kriegman 2008)) whose ideal appearance can be re-synthesized to sub-pixel precision.

In addition to occurring during image acquisition, aliasing can also be introduced in var-
ious image processing operations, such as resampling, upsampling, and downsampling. Sec-
tions 3.4 and 3.5.2 discuss these issues and show how careful selection of filters can reduce

17 The complex Fourier transform of the PSF is actually called the optical transfer function (OTF) (Williams
1999). Its magnitude is called the modulation transfer function (MTF) and its phase is called the phase transfer
function (PTF).

Subsampled by a factor of 4
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Point Spread Function (PSF)
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❖ The pre-filtering of the optical signal is determined by: 

๏ The optical system (diffraction, focal blur) 

๏ The integration area (sampling pitch and fill factor) 

๏ Integrated optical anti-aliasing filters 

❖ If together these filters adequately attenuate frequencies above the Nyquist limit, 
visible aliasing will be minimal.
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End of Lecture 
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❖ The Sensor 

❖ Sampling & Aliasing 

❖ Colour Coding
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Colour Sampling
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❖ Natural scenes reflect light rays over a wide continuum of wavelengths. 

❖ Yet most colour cameras have only 3 discrete types of sensor elements tuned to 3 
different colours (wavelengths):  red, green and blue. 

❖ Similarly, most colour displays have 3 distinct types of light-emitting elements, also 
emitting at red, green and blue wavelengths. 

❖ Why is this?  Why should this be sufficient?

2.3 The digital camera 81

(a) (b)

Figure 2.27 Primary and secondary colors: (a) additive colors red, green, and blue can be
mixed to produce cyan, magenta, yellow, and white; (b) subtractive colors cyan, magenta,
and yellow can be mixed to produce red, green, blue, and black.

more fanciful names, such as alizarin crimson, cerulean blue, and chartreuse.) The subtractive
colors are called subtractive because pigments in the paint absorb certain wavelengths in the
color spectrum.

Later on, you may have learned about the additive primary colors (red, green, and blue)
and how they can be added (with a slide projector or on a computer monitor) to produce cyan,
magenta, yellow, white, and all the other colors we typically see on our TV sets and monitors
(Figure 2.27a).

Through what process is it possible for two different colors, such as red and green, to
interact to produce a third color like yellow? Are the wavelengths somehow mixed up to
produce a new wavelength?

You probably know that the correct answer has nothing to do with physically mixing
wavelengths. Instead, the existence of three primaries is a result of the tri-stimulus (or tri-
chromatic) nature of the human visual system, since we have three different kinds of cone,
each of which responds selectively to a different portion of the color spectrum (Glassner 1995;
Wyszecki and Stiles 2000; Fairchild 2005; Reinhard, Ward, Pattanaik et al. 2005; Livingstone
2008).18 Note that for machine vision applications, such as remote sensing and terrain clas-
sification, it is preferable to use many more wavelengths. Similarly, surveillance applications
can often benefit from sensing in the near-infrared (NIR) range.

CIE RGB and XYZ

To test and quantify the tri-chromatic theory of perception, we can attempt to reproduce all
monochromatic (single wavelength) colors as a mixture of three suitably chosen primaries.

18 See also Mark Fairchild’s Web page, http://www.cis.rit.edu/fairchild/WhyIsColor/books links.html.
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Trichromacy
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❖ The human retina has (at most) 3 distinct photoreceptive cone types, each tuned to a 
specific band of wavelengths. 

❖ This means that human colour vision is 3-dimensional 

❖ Any 3 colour vectors that span this 3D space are sufficient to generate the entire space 
of colours that we experience.

Human cone mosaic Wavelength (nm)
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CIE RGB Representation
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❖ Colour representation standard formed in 1931 

❖ Based on human behavioural colour matching to monochromatic test colours. 

❖ Subjects adjusted the relative amplitudes of 3 monochromatic primaries: 

๏ Red (700.0nm) 

๏ Green (546.1nm) 

๏ Blue (435.8nm) 

❖ Note that reproducing pure spectra in the blue-green range requires a negative amount of red 
light!

82 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

-0.1

0.0

0.1

0.2

0.3

0.4

360 400 440 480 520 560 600 640 680 720 760

r
g
b

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

360 400 440 480 520 560 600 640 680 720 760

x

y

z

(a) (b)

Figure 2.28 Standard CIE color matching functions: (a) r̄(�), ḡ(�), b̄(�) color spectra
obtained from matching pure colors to the R=700.0nm, G=546.1nm, and B=435.8nm pri-
maries; (b) x̄(�), ȳ(�), z̄(�) color matching functions, which are linear combinations of the
(r̄(�), ḡ(�), b̄(�)) spectra.

(Pure wavelength light can be obtained using either a prism or specially manufactured color
filters.) In the 1930s, the Commission Internationale d’Eclairage (CIE) standardized the RGB
representation by performing such color matching experiments using the primary colors of
red (700.0nm wavelength), green (546.1nm), and blue (435.8nm).

Figure 2.28 shows the results of performing these experiments with a standard observer,
i.e., averaging perceptual results over a large number of subjects. You will notice that for
certain pure spectra in the blue–green range, a negative amount of red light has to be added,
i.e., a certain amount of red has to be added to the color being matched in order to get a color
match. These results also provided a simple explanation for the existence of metamers, which
are colors with different spectra that are perceptually indistinguishable. Note that two fabrics
or paint colors that are metamers under one light may no longer be so under different lighting.

Because of the problem associated with mixing negative light, the CIE also developed a
new color space called XYZ, which contains all of the pure spectral colors within its positive
octant. (It also maps the Y axis to the luminance, i.e., perceived relative brightness, and maps
pure white to a diagonal (equal-valued) vector.) The transformation from RGB to XYZ is
given by
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While the official definition of the CIE XYZ standard has the matrix normalized so that the
Y value corresponding to pure red is 1, a more commonly used form is to omit the leading
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CIE XYZ Representation
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❖ To avoid this negative light problem, the CIE created a new XYZ standard based on a 
linear transformation of the RGB standard. 

❖ In the XYZ representation, the Y channel corresponds to (achromatic) luminance. 

❖ Note that, unlike the CIE RGB space, the XYZ dimensions are ‘imaginary’ primary 
colours having no physical reality.
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maries; (b) x̄(�), ȳ(�), z̄(�) color matching functions, which are linear combinations of the
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(Pure wavelength light can be obtained using either a prism or specially manufactured color
filters.) In the 1930s, the Commission Internationale d’Eclairage (CIE) standardized the RGB
representation by performing such color matching experiments using the primary colors of
red (700.0nm wavelength), green (546.1nm), and blue (435.8nm).

Figure 2.28 shows the results of performing these experiments with a standard observer,
i.e., averaging perceptual results over a large number of subjects. You will notice that for
certain pure spectra in the blue–green range, a negative amount of red light has to be added,
i.e., a certain amount of red has to be added to the color being matched in order to get a color
match. These results also provided a simple explanation for the existence of metamers, which
are colors with different spectra that are perceptually indistinguishable. Note that two fabrics
or paint colors that are metamers under one light may no longer be so under different lighting.

Because of the problem associated with mixing negative light, the CIE also developed a
new color space called XYZ, which contains all of the pure spectral colors within its positive
octant. (It also maps the Y axis to the luminance, i.e., perceived relative brightness, and maps
pure white to a diagonal (equal-valued) vector.) The transformation from RGB to XYZ is
given by
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While the official definition of the CIE XYZ standard has the matrix normalized so that the
Y value corresponding to pure red is 1, a more commonly used form is to omit the leading
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certain pure spectra in the blue–green range, a negative amount of red light has to be added,
i.e., a certain amount of red has to be added to the color being matched in order to get a color
match. These results also provided a simple explanation for the existence of metamers, which
are colors with different spectra that are perceptually indistinguishable. Note that two fabrics
or paint colors that are metamers under one light may no longer be so under different lighting.

Because of the problem associated with mixing negative light, the CIE also developed a
new color space called XYZ, which contains all of the pure spectral colors within its positive
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While the official definition of the CIE XYZ standard has the matrix normalized so that the
Y value corresponding to pure red is 1, a more commonly used form is to omit the leading

In MATLAB: 
• rgb2xyz(rgb) 
• xyz2rgb(xyz)
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Chromaticity Coordinates
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Figure 2.29 CIE chromaticity diagram, showing colors and their corresponding (x, y) val-
ues. Pure spectral colors are arranged around the outside of the curve.

fraction, so that the second row adds up to one, i.e., the RGB triplet (1, 1, 1) maps to a Y value
of 1. Linearly blending the (r̄(�), ḡ(�), b̄(�)) curves in Figure 2.28a according to (2.103), we
obtain the resulting (x̄(�), ȳ(�), z̄(�)) curves shown in Figure 2.28b. Notice how all three
spectra (color matching functions) now have only positive values and how the ȳ(�) curve
matches that of the luminance perceived by humans.

If we divide the XYZ values by the sum of X+Y+Z, we obtain the chromaticity coordi-
nates

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
, (2.104)

which sum up to 1. The chromaticity coordinates discard the absolute intensity of a given
color sample and just represent its pure color. If we sweep the monochromatic color � pa-
rameter in Figure 2.28b from � = 380nm to � = 800nm, we obtain the familiar chromaticity
diagram shown in Figure 2.29. This figure shows the (x, y) value for every color value per-
ceivable by most humans. (Of course, the CMYK reproduction process in this book does not
actually span the whole gamut of perceivable colors.) The outer curved rim represents where
all of the pure monochromatic color values map in (x, y) space, while the lower straight line,
which connects the two endpoints, is known as the purple line.

A convenient representation for color values, when we want to tease apart luminance
and chromaticity, is therefore Yxy (luminance plus the two most distinctive chrominance
components).

L*a*b* color space

While the XYZ color space has many convenient properties, including the ability to separate
luminance from chrominance, it does not actually predict how well humans perceive differ-
ences in color or luminance.
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which connects the two endpoints, is known as the purple line.

A convenient representation for color values, when we want to tease apart luminance
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While the XYZ color space has many convenient properties, including the ability to separate
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L*a*b* Space
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❖ Human luminance/colour sensitivity is roughly logarithmic 

๏ We can perceive relative differences of about 1%. 

❖ Since XYZ space is linear with the amplitude of the stimulus, it does not 
predict human perception of colour and luminance differences. 

❖ L*a*b space is a nonlinear remapping of XYZ space that renders 
differences in luminance and chrominance more perceptually uniform.

In MATLAB: 
• rgb2lab(rgb) 
• lab2rgb(lab)  
• xyz2lab(xyz) 
• lab2xyz(lab)

where Yn = 100,  δ = 6 / 29.
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Because the response of the human visual system is roughly logarithmic (we can perceive
relative luminance differences of about 1%), the CIE defined a non-linear re-mapping of the
XYZ space called L*a*b* (also sometimes called CIELAB), where differences in luminance
or chrominance are more perceptually uniform.19

The L* component of lightness is defined as

L⇤
= 116f

✓
Y

Yn

◆
, (2.105)

where Yn is the luminance value for nominal white (Fairchild 2005) and

f(t) =

(
t1/3 t > �3

t/(3�2
) + 2�/3 else,

(2.106)

is a finite-slope approximation to the cube root with � = 6/29. The resulting 0 . . . 100 scale
roughly measures equal amounts of lightness perceptibility.

In a similar fashion, the a* and b* components are defined as

a⇤ = 500


f
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X

Xn

◆
� f
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Y

Yn

◆�
and b⇤ = 200


f

✓
Y

Yn

◆
� f

✓
Z

Zn

◆�
, (2.107)

where again, (Xn, Yn, Zn) is the measured white point. Figure 2.32i–k show the L*a*b*
representation for a sample color image.

Color cameras

While the preceding discussion tells us how we can uniquely describe the perceived tri-
stimulus description of any color (spectral distribution), it does not tell us how RGB still
and video cameras actually work. Do they just measure the amount of light at the nominal
wavelengths of red (700.0nm), green (546.1nm), and blue (435.8nm)? Do color monitors just
emit exactly these wavelengths and, if so, how can they emit negative red light to reproduce
colors in the cyan range?

In fact, the design of RGB video cameras has historically been based around the availabil-
ity of colored phosphors that go into television sets. When standard-definition color television
was invented (NTSC), a mapping was defined between the RGB values that would drive the
three color guns in the cathode ray tube (CRT) and the XYZ values that unambiguously de-
fine perceived color (this standard was called ITU-R BT.601). With the advent of HDTV and
newer monitors, a new standard called ITU-R BT.709 was created, which specifies the XYZ

19 Another perceptually motivated color space called L*u*v* was developed and standardized simultaneously
(Fairchild 2005).
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Colour Cameras
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❖ Spectral sensitivities vary from camera to camera. 

❖ It’s the job of the camera firmware to convert these proprietary sensor responses to 
standard colour values. 

❖ For some professional and scientific cameras, the manufacturer provides the spectral 
responses.

Point Grey Research Flea2 Technical Reference Appendix A: Spectral Response Curves 
 

Revised 10-Jun-11 
Copyright (c) 2008, 2009, 2010, 2011 Point Grey 
Research Inc. 
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Spectral response curves for Point Grey Flea2  
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Colour Filter Arrays

!26

❖ Colour camera sensors consist of a mosaic of sensing elements covered by different 
coloured filters. 

❖ The most common design is the Bayer pattern, consisting of 

๏ 25% red 

๏ 50% green 

๏ 25% blue 

❖ The greater density of green elements reflects the fact that  

๏ perceived luminance depends primarily on the green channel 

๏ visual acuity is far greater for luminance than colour 

❖ Interpolation of missing colour values at each pixel known as demosaicing.
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Figure 2.30 Bayer RGB pattern: (a) color filter array layout; (b) interpolated pixel values,
with unknown (guessed) values shown as lower case.

The most commonly used pattern in color cameras today is the Bayer pattern (Bayer
1976), which places green filters over half of the sensors (in a checkerboard pattern), and red
and blue filters over the remaining ones (Figure 2.30). The reason that there are twice as many
green filters as red and blue is because the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail in luminance
than in chrominance (a fact that is exploited in color image compression—see Section 2.3.3).
The process of interpolating the missing color values so that we have valid RGB values for
all the pixels is known as demosaicing and is covered in detail in Section 10.3.1.

Similarly, color LCD monitors typically use alternating stripes of red, green, and blue
filters placed in front of each liquid crystal active area to simulate the experience of a full color
display. As before, because the visual system has higher resolution (acuity) in luminance than
chrominance, it is possible to digitally pre-filter RGB (and monochrome) images to enhance
the perception of crispness (Betrisey, Blinn, Dresevic et al. 2000; Platt 2000).

Color balance

Before encoding the sensed RGB values, most cameras perform some kind of color balancing
operation in an attempt to move the white point of a given image closer to pure white (equal
RGB values). If the color system and the illumination are the same (the BT.709 system uses
the daylight illuminant D65 as its reference white), the change may be minimal. However,
if the illuminant is strongly colored, such as incandescent indoor lighting (which generally
results in a yellow or orange hue), the compensation can be quite significant.

A simple way to perform color correction is to multiply each of the RGB values by a
different factor (i.e., to apply a diagonal matrix transform to the RGB color space). More
complicated transforms, which are sometimes the result of mapping to XYZ space and back,

74 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as typical
digital post-processing steps.

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed in a fraction of
a second, e.g., 1

125 , 1
60 , 1

30 ), and then passed to a set of sense amplifiers . The two main kinds
of sensor used in digital still and video cameras today are charge-coupled device (CCD) and
complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass it to
an analog-to-digital converter (ADC).10 Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated to control exposure duration, and locally am-
plified before being read out using a multiplexing scheme. Traditionally, CCD sensors
outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video
is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.
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White Balance
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❖ The colour of the irradiance received from a surface depends upon both the colour of the 
surface material and the colour of the illuminant. 

❖ Standard colour systems assume a specific illuminant (e.g., daylight) 

❖ If the illuminant deviates from this standard, the resulting photo (out of context) may look 
oddly coloured. 

❖ White balance is an attempt to reduce this effect by moving the white point of the image 
closer to pure white (equal RGB values). 

❖ Can achieve this by scaling the R, G and B values by different amounts (Assignment 1). 74 Computer Vision: Algorithms and Applications (September 3, 2010 draft)
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an analog-to-digital converter (ADC).10 Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
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outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
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White Balance Example

!28



EECS 4422/5323 Computer Vision J. Elder

White Balance Results
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Original White Balanced
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Gamma
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❖ Cameras typically compress the intensity (luminance) of pixel values through an 
inverse ‘gamma function’: 

❖ This roughly cancels the gamma function applied to RGB values by display 
systems prior to rendering: 

❖ However the nonlinear relationship between encoded RGB values and physical 
intensities complicates physics-based computer vision algorithms, which often 
assume access to linear luminance values.
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Figure 2.31 Gamma compression: (a) The relationship between the input signal luminance
Y and the transmitted signal Y 0 is given by Y 0

= Y 1/� . (b) At the receiver, the signal Y 0 is
exponentiated by the factor �, Ŷ = Y 0� . Noise introduced during transmission is squashed in
the dark regions, which corresponds to the more noise-sensitive region of the visual system.

actually perform a color twist, i.e., they use a general 3 ⇥ 3 color transform matrix.21 Exer-
cise 2.9 has you explore some of these issues.

Gamma

In the early days of black and white television, the phosphors in the CRT used to display
the TV signal responded non-linearly to their input voltage. The relationship between the
voltage and the resulting brightness was characterized by a number called gamma (�), since
the formula was roughly

B = V � , (2.110)

with a � of about 2.2. To compensate for this effect, the electronics in the TV camera would
pre-map the sensed luminance Y through an inverse gamma,

Y 0
= Y

1
� , (2.111)

with a typical value of 1
�

= 0.45.
The mapping of the signal through this non-linearity before transmission had a beneficial

side effect: noise added during transmission (remember, these were analog days!) would be
reduced (after applying the gamma at the receiver) in the darker regions of the signal where
it was more visible (Figure 2.31).22 (Remember that our visual system is roughly sensitive to
relative differences in luminance.)

21 Those of you old enough to remember the early days of color television will naturally think of the hue adjustment
knob on the television set, which could produce truly bizarre results.

22 A related technique called companding was the basis of the Dolby noise reduction systems used with audio
tapes.

where γ ! 2.2.
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tapes.

Input intensity
O

ut
pu

t i
nt

en
si

ty



EECS 4422/5323 Computer Vision J. Elder

Compression
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❖ All compression algorithms start by separating luma and chroma channels so that 
luma can be encoded with higher fidelity. 

❖ Block transform stage then breaks image into disjoint blocks (e.g., 8 x 8 pixels) and 
codes each using a discrete cosine transform (DCT), which approximates an efficient 
coding (principal components) strategy. 

❖ Resulting DCT coefficients then coded using a variation of Huffman coding. 

❖ Video coding uses predictive (difference) encoding between frames, compensating for 
estimated motion in the image.

DCT Basis Functions
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Outline
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❖ The Sensor 

❖ Sampling & Aliasing 

❖ Colour Coding


