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Figure 2.14 A simplified model of photometric image formation. Light is emitted by one
or more light sources and is then reflected from an object’s surface. A portion of this light is
directed towards the camera. This simplified model ignores multiple reflections, which often
occur in real-world scenes.

wavelengths L(�). The intensity of a light source falls off with the square of the distance
between the source and the object being lit, because the same light is being spread over a
larger (spherical) area. A light source may also have a directional falloff (dependence), but
we ignore this in our simplified model.

Area light sources are more complicated. A simple area light source such as a fluorescent
ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light
equally in all directions (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).
When the distribution is strongly directional, a four-dimensional lightfield can be used instead
(Ashdown 1993).

A more complex light distribution that approximates, say, the incident illumination on an
object sitting in an outdoor courtyard, can often be represented using an environment map
(Greene 1986) (originally called a reflection map (Blinn and Newell 1976)). This representa-
tion maps incident light directions v̂ to color values (or wavelengths, �),

L(v̂;�), (2.80)

and is equivalent to assuming that all light sources are at infinity. Environment maps can be
represented as a collection of cubical faces (Greene 1986), as a single longitude–latitude map
(Blinn and Newell 1976), or as the image of a reflecting sphere (Watt 1995). A convenient
way to get a rough model of a real-world environment map is to take an image of a reflective
mirrored sphere and to unwrap this image onto the desired environment map (Debevec 1998).
Watt (1995) gives a nice discussion of environment mapping, including the formulas needed
to map directions to pixels for the three most commonly used representations.
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Figure 2.1 A few components of the image formation process: (a) perspective projection;
(b) light scattering when hitting a surface; (c) lens optics; (d) Bayer color filter array.
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More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,

where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,

x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)

where x̄ = (x, y, 1) is the augmented vector. Homogeneous points whose last element is w̃ =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates l̃ = (a, b, c).
The corresponding line equation is

x̄ · l̃ = ax + by + c = 0. (2.3)

We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding



EECS 4422/5323 Computer Vision J. Elder

2D Points

!5

2D point (e.g., a pixel coordinate in an image): 

or

(x, y)

32 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,
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where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,
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x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,

where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,

x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)

where x̄ = (x, y, 1) is the augmented vector. Homogeneous points whose last element is w̃ =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates l̃ = (a, b, c).
The corresponding line equation is

x̄ · l̃ = ax + by + c = 0. (2.3)

We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding
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P 2 =R3 − (0,0,0) is called the projective space.
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x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)

where x̄ = (x, y, 1) is the augmented vector. Homogeneous points whose last element is w̃ =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates l̃ = (a, b, c).
The corresponding line equation is

x̄ · l̃ = ax + by + c = 0. (2.3)

We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding

P 2 =R3 − (0,0,0) is called the projective space.



EECS 4422/5323 Computer Vision J. Elder

2D Points

!5

2D point (e.g., a pixel coordinate in an image): 

or

Vectors that differ only by a scale considered equivalent:

In homogeneous coordinates:

(x, y)

32 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,
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where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,
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where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,

x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)

where x̄ = (x, y, 1) is the augmented vector. Homogeneous points whose last element is w̃ =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates l̃ = (a, b, c).
The corresponding line equation is

x̄ · l̃ = ax + by + c = 0. (2.3)

We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding

s !x = !x  ∀s∈R

P 2 =R3 − (0,0,0) is called the projective space.



EECS 4422/5323 Computer Vision J. Elder

Augmented Vectors

!6

A homogenous vector can be converted back to an inhomogeneous vector by dividing by 
the last element:

32 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,

where vectors that differ only by scale are considered to be equivalent. P2
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is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,

x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)

where x̄ = (x, y, 1) is the augmented vector. Homogeneous points whose last element is w̃ =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates l̃ = (a, b, c).
The corresponding line equation is

x̄ · l̃ = ax + by + c = 0. (2.3)

We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.

Then: 
n̂ is the unit normal perpendicular to the line
| d |  is the distance of the line from the origin
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where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,
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We can normalize the line equation vector so that l = (n̂x, n̂y, d) = (n̂, d) with kn̂k = 1. In
this case, n̂ is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity l̃ = (0, 0, 1),
which includes all (ideal) points at infinity.)

We can also express n̂ as a function of rotation angle ✓, n̂ = (n̂x, n̂y) = (cos ✓, sin ✓)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding
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More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (x, y) 2 R2, or alternatively,

x =

"
x

y

#
. (2.1)

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)
2D points can also be represented using homogeneous coordinates, x̃ = (x̃, ỹ, w̃) 2 P2,

where vectors that differ only by scale are considered to be equivalent. P2
= R3 � (0, 0, 0)

is called the 2D projective space.
A homogeneous vector x̃ can be converted back into an inhomogeneous vector x by

dividing through by the last element w̃, i.e.,

x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄, (2.2)
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.

Then: 
n̂ is the unit normal perpendicular to the line
| d |  is the distance of the line from the origin
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
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it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.

2.1 Geometric primitives and transformations 33

y

x
d
θ

n
l

^
z

x
d

n

m

y

^

(a) (b)

Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
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2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
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3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
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where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
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When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as
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in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.

2.1 Geometric primitives and transformations 33

y

x
d
θ

n
l

^
z

x
d

n

m

y

^

(a) (b)

Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.
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ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
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x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.

Straightforward extension from 2D:

Inhomogeneous:

Homogeneous:

Augmented:
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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Figure 2.3 3D line equation, r = (1� �)p + �q.

3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
n̂ and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (✓, d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

x̃ = l̃1 ⇥ l̃2, (2.4)

where ⇥ is the cross product operator. Similarly, the line joining two points can be written as

l̃ = x̃1 ⇥ x̃2. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

x̃T Qx̃ = 0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates x = (x, y, z) 2 R3 or homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) 2 P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector x̄ = (x, y, z, 1) with
x̃ = w̃x̄.
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)
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3D planes. 3D planes can also be represented as homogeneous coordinates m̃ = (a, b, c, d)

with a corresponding plane equation

x̄ · m̃ = ax + by + cz + d = 0. (2.7)

We can also normalize the plane equation as m = (n̂x, n̂y, n̂z, d) = (n̂, d) with kn̂k = 1.
In this case, n̂ is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity m̃ = (0, 0, 0, 1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express n̂ as a function of two angles (✓,�),

n̂ = (cos ✓ cos �, sin ✓ cos �, sin �), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as
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where d̂  is the direction of the line.
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since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r = (1� �)p + �q, (2.9)

as shown in Figure 2.3. If we restrict 0  �  1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

r̃ = µp̃ + �q̃. (2.10)

A special case of this is when the second point is at infinity, i.e., q̃ = (d̂x, d̂y, d̂z, 0) = (d̂, 0).
Here, we see that d̂ is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r = p + �d̂. (2.11)

where d̂  is the direction of the line.

Then:
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Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Translation. 2D translations can be written as x0
= x + t or
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=
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where I is the (2⇥ 2) identity matrix or
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
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Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
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=
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= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

Note:  Whenever an augmented vector appears on both sides, it can be replaced by a 
full homogenous vector.
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x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Translation. 2D translations can be written as x0
= x + t or

x0
=
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where I is the (2⇥ 2) identity matrix or
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1
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =
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cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as
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=
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Translation. 2D translations can be written as x0
= x + t or

x0
=
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I t
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where I is the (2⇥ 2) identity matrix or

x̄0
=
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1
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=
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R t
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x̄ (2.16)

where

R =

"
cos ✓ � sin ✓
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(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=
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sR t
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x̄ =
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a �b tx
b a ty
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x̄, (2.18)

where we no longer require that a2
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Translation. 2D translations can be written as x0
= x + t or

x0
=
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I t
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x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=
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1
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=
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x̄ =

"
a �b tx
b a ty
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where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
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Translation. 2D translations can be written as x0
= x + t or

x0
=
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I t
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x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty
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x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

Preserves Euclidean distances



EECS 4422/5323 Computer Vision J. Elder

Similarity Transformation

!15

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines. Preserves angles
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
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=
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is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=
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x̄ =
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where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

Preserves parallelism
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homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
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a subset of the more complex group below it.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.



EECS 4422/5323 Computer Vision J. Elder

Projective Transformation (Homography)

!17

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
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where I is the (2⇥ 2) identity matrix or
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1
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where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
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=
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where
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is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as
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x̄ =

"
a �b tx
b a ty
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where we no longer require that a2
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= 1. The similarity transform preserves angles
between lines.
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Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,
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formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
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The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0
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line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

2.1 Geometric primitives and transformations 37

Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃
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l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim

!H  is homogenous:  
Two !H  matrices that differ only by a scale factor are equivalent.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

2.1 Geometric primitives and transformations 37

Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=
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a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
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H̃x̃ = (H̃
T
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0
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T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
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l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim

!H  is homogenous:  
Two !H  matrices that differ only by a scale factor are equivalent.
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
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T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
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l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim



EECS 4422/5323 Computer Vision J. Elder

Projective Transformation (Homography)

!17

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

Preserves straight lines

2.1 Geometric primitives and transformations 37

Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0
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l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim

!H  is homogenous:  
Two !H  matrices that differ only by a scale factor are equivalent.

2.1 Geometric primitives and transformations 37

Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T
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0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃
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l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.
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Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T

1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

x0 = sxx + tx

y0 = syy + ty,

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

x0 = a0 + a1x + a2y + a6x
2

+ a7xy

y0 = a3 + a4x + a5y + a7x
2

+ a6xy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ak, which are often the quantities being estimated.

Nested set of groups 
❖ Closed under composition 
❖ Each transformation has an inverse that is a member of the same group
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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We now know how to transform points. 
How do we transform lines?
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i.e., the action of a projective transformation on a co-vector such as a 
2D line can be represented by the transposed inverse of the matrix.
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Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

3⇥4
3 orientation

rigid (Euclidean)
h

R t
i

3⇥4
6 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

3⇥4
7 angles ⇢

⇢
S
S

affine
h

A
i

3⇥4
12 parallelism ⇥⇥ ⇥⇥

projective
h

H̃
i

4⇥4
15 straight lines `̀

  

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 3 ⇥ 4 matrices are extended with a fourth [0T

1] row to
form a full 4 ⇥ 4 matrix for homogeneous coordinate transformations. The mnemonic icons
are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Bilinear interpolant. This eight-parameter transform (Wolberg 1990),

x0 = a0 + a1x + a2y + a6xy

y0 = a3 + a4x + a5y + a7xy,

can be used to interpolate the deformation due to the motion of the four corner points of
a square. (In fact, it can interpolate the motion of any four non-collinear points.) While
the deformation is linear in the motion parameters, it does not generally preserve straight
lines (only lines parallel to the square axes). However, it is often quite useful, e.g., in the
interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for
2D transformations and is summarized in Table 2.2. As in 2D, these transformations form a
nested set of groups. Hartley and Zisserman (2004, Section 2.4) give a more detailed descrip-
tion of this hierarchy.

Translation. 3D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.23)40 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where I is the (3⇥ 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as x0

= Rx + t or

x0
=

h
R t

i
x̄ (2.24)

where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).



EECS 4422/5323 Computer Vision J. Elder

Euclidean Transformation (3D Rotation + Translation)

!22

Preserves Euclidean distances

40 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where I is the (3⇥ 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as x0

= Rx + t or

x0
=

h
R t

i
x̄ (2.24)

where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).

40 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where I is the (3⇥ 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as x0

= Rx + t or

x0
=

h
R t

i
x̄ (2.24)

where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).

40 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where I is the (3⇥ 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as x0

= Rx + t or

x0
=

h
R t

i
x̄ (2.24)

where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.Preserves angles
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where I is the (3⇥ 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as x0

= Rx + t or

x0
=

h
R t

i
x̄ (2.24)

where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).
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where I is the (3⇥ 3) identity matrix and 0 is the zero vector.
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where R is a 3 ⇥ 3 orthonormal rotation matrix with RRT
= I and |R| = 1. Note that

sometimes it is more convenient to describe a rigid motion using

x0
= R(x� c) = Rx�Rc, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more

detail below.

Scaled rotation. The 3D similarity transform can be expressed as x0
= sRx + t where s

is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄. (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as x0
= Ax̄, where A is an arbitrary 3 ⇥ 4 matrix,

i.e.,

x0
=

2

64
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

3

75 x̄. (2.27)

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).
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Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).
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Affine. The affine transformation is written as x0
= Ax̄, where A is an arbitrary 2 ⇥ 3

matrix, i.e.,

x0
=

"
a00 a01 a02

a10 a11 a12

#
x̄. (2.19)

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.20)

where H̃ is an arbitrary 3 ⇥ 3 matrix. Note that H̃ is homogeneous, i.e., it is only defined
up to a scale, and that two H̃ matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate x̃0 must be normalized in order to obtain an inhomogeneous result
x, i.e.,

x0 =
h00x + h01y + h02

h20x + h21y + h22
and y0 =

h10x + h11y + h12

h20x + h21y + h22
. (2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 ⇥ 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tion l̃ · x̃ = 0. If we transform x0

= H̃x, we obtain

l̃
0
· x̃0

= l̃
0T

H̃x̃ = (H̃
T

l̃
0
)
T x̃ = l̃ · x̃ = 0, (2.22)

i.e., l̃
0
= H̃

�T

l̃. Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H̃ , since projective transformation matrices are homogeneous. Jim
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Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

x̃0
= H̃x̃, (2.28)

where H̃ is an arbitrary 4 ⇥ 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate x̃0 must be normalized in order to obtain an inhomogeneous result x. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).
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Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

3⇥4
3 orientation

rigid (Euclidean)
h

R t
i

3⇥4
6 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

3⇥4
7 angles ⇢

⇢
S
S

affine
h

A
i

3⇥4
12 parallelism ⇥⇥ ⇥⇥

projective
h

H̃
i

4⇥4
15 straight lines `̀

  

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 3 ⇥ 4 matrices are extended with a fourth [0T

1] row to
form a full 4 ⇥ 4 matrix for homogeneous coordinate transformations. The mnemonic icons
are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Bilinear interpolant. This eight-parameter transform (Wolberg 1990),

x0 = a0 + a1x + a2y + a6xy

y0 = a3 + a4x + a5y + a7xy,

can be used to interpolate the deformation due to the motion of the four corner points of
a square. (In fact, it can interpolate the motion of any four non-collinear points.) While
the deformation is linear in the motion parameters, it does not generally preserve straight
lines (only lines parallel to the square axes). However, it is often quite useful, e.g., in the
interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for
2D transformations and is summarized in Table 2.2. As in 2D, these transformations form a
nested set of groups. Hartley and Zisserman (2004, Section 2.4) give a more detailed descrip-
tion of this hierarchy.

Translation. 3D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.23)
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v║ v××
u┴
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θ

Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.
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A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Axis of rotationAmount of rotation

Let u be the result of rotating vector v about axis n̂ by the angle θ .
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Axis of rotationAmount of rotation

Let u be the result of rotating vector v about axis n̂ by the angle θ .

First, project the vector v onto the axis n̂ :
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Axis of rotationAmount of rotation

Let u be the result of rotating vector v about axis n̂ by the angle θ .

First, project the vector v onto the axis n̂ :
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Axis of rotationAmount of rotation

Let u be the result of rotating vector v about axis n̂ by the angle θ .

First, project the vector v onto the axis n̂ :
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Next, compute the perpendicular residual:
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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Let u be the result of rotating vector v about axis n̂ by the angle θ .

First, project the vector v onto the axis n̂ :
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Next, compute the perpendicular residual:
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90
� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]

2
⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
2
⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =

2

64
1 �!z !y

!z 1 �!x

�!y !x 1

3

75 , (2.35)
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
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vk = v � v? = v + v⇥⇥ = (I + [n̂]
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We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
2
⇥)v.
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which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360
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✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
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v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]
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We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
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⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =
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Note that rotating this vector by another 90
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Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90
� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]

2
⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
2
⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =

2

64
1 �!z !y

!z 1 �!x

�!y !x 1

3

75 , (2.35)
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Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2
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0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90
� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]

2
⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
2
⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =

2
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2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]
2
⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]
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⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
2
⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to
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Note that rotating this vector by another 90
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Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,
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We can now compute the in-plane component of the rotated vector u as
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⇥, (2.34)
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The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be
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Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,
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2
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and hence
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We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]
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⇥)v.
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2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =
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We can rotate this vector by 90
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Note that rotating this vector by another 90
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The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-
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� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360
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We can rotate this vector by 90
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,
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We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360
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✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
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Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90
� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)
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Note that rotating this vector by another 90
� is equivalent to taking the cross product again,
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as
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⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =
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We can rotate this vector by 90
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v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90
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and hence
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2
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We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]

2
⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90
� can be

represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360

� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =
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Figure 2.6 Unit quaternions live on the unit sphere kqk = 1. This figure shows a smooth
trajectory through the three quaternions q0, q1, and q2. The antipodal point to q2, namely
�q2, represents the same rotation as q2.

where n̂ and ✓ are the rotation axis and angle. Using the trigonometric identities sin ✓ =

2 sin
✓

2 cos
✓

2 and (1� cos ✓) = 2 sin
2 ✓

2 , Rodriguez’s formula can be converted to

R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥

= I + 2w[v]⇥ + 2[v]
2
⇥. (2.40)

This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(q) as a function of (x, y, z, w), recall that

[v]⇥ =

2
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�y x 0
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75 and [v]
2
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75 .

We thus obtain

R(q) =

2

664

1� 2(y2
+ z2

) 2(xy � zw) 2(xz + yw)

2(xy + zw) 1� 2(x2
+ z2

) 2(yz � xw)

2(xz � yw) 2(yz + xw) 1� 2(x2
+ y2

)

3

775 . (2.41)

The diagonal terms can be made more symmetrical by replacing 1 � 2(y2
+ z2

) with (x2
+

w2 � y2 � z2
), etc.

The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions q0 = (v0, w0) and q1 = (v1, w1),
the quaternion multiply operator is defined as

q2 = q0q1 = (v0 ⇥ v1 + w0v1 + w1v0, w0w1 � v0 · v1), (2.42)

2.1 Geometric primitives and transformations 43

which gives a nice linearized relationship between the rotation parameters ! and R. We can
also write R(!)v ⇡ v + ! ⇥ v, which is handy when we want to compute the derivative of
Rv with respect to !,

@Rv

@!T
= �[v]⇥ =

2

64
0 z �y

�z 0 x

y �x 0

3

75 . (2.36)

Another way to derive a rotation through a finite angle is called the exponential twist
(Murray, Li, and Sastry 1994). A rotation by an angle ✓ is equivalent to k rotations through
✓/k. In the limit as k !1, we obtain

R(n̂, ✓) = lim
k!1

(I +
1

k
[✓n̂]⇥)

k
= exp [!]⇥. (2.37)

If we expand the matrix exponential as a Taylor series (using the identity [n̂]
k+2
⇥ = �[n̂]

k
⇥,

k > 0, and again assuming ✓ is in radians),

exp [!]⇥ = I + ✓[n̂]⇥ +
✓2

2
[n̂]

2
⇥ +

✓3
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which yields the familiar Rodriguez’s formula.

Unit quaternions

The unit quaternion representation is closely related to the angle/axis representation. A unit
quaternion is a unit length 4-vector whose components can be written as q = (qx, qy, qz, qw)

or q = (x, y, z, w) for short. Unit quaternions live on the unit sphere kqk = 1 and antipodal
(opposite sign) quaternions, q and �q, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” qo = (0, 0, 0, 1). For
these and other reasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).

Quaternions can be derived from the axis/angle representation through the formula

q = (v, w) = (sin
✓

2
n̂, cos

✓

2
), (2.39)
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which gives a nice linearized relationship between the rotation parameters ! and R. We can
also write R(!)v ⇡ v + ! ⇥ v, which is handy when we want to compute the derivative of
Rv with respect to !,
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3

75 . (2.36)

Another way to derive a rotation through a finite angle is called the exponential twist
(Murray, Li, and Sastry 1994). A rotation by an angle ✓ is equivalent to k rotations through
✓/k. In the limit as k !1, we obtain
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which yields the familiar Rodriguez’s formula.
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The unit quaternion representation is closely related to the angle/axis representation. A unit
quaternion is a unit length 4-vector whose components can be written as q = (qx, qy, qz, qw)

or q = (x, y, z, w) for short. Unit quaternions live on the unit sphere kqk = 1 and antipodal
(opposite sign) quaternions, q and �q, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” qo = (0, 0, 0, 1). For
these and other reasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).
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or q = (x, y, z, w) for short. Unit quaternions live on the unit sphere kqk = 1 and antipodal
(opposite sign) quaternions, q and �q, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” qo = (0, 0, 0, 1). For
these and other reasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).
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Figure 2.6 Unit quaternions live on the unit sphere kqk = 1. This figure shows a smooth
trajectory through the three quaternions q0, q1, and q2. The antipodal point to q2, namely
�q2, represents the same rotation as q2.

where n̂ and ✓ are the rotation axis and angle. Using the trigonometric identities sin ✓ =

2 sin
✓

2 cos
✓

2 and (1� cos ✓) = 2 sin
2 ✓

2 , Rodriguez’s formula can be converted to

R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥

= I + 2w[v]⇥ + 2[v]
2
⇥. (2.40)

This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(q) as a function of (x, y, z, w), recall that

[v]⇥ =

2

64
0 �z y

z 0 �x

�y x 0
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⇥ =
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We thus obtain

R(q) =

2
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1� 2(y2
+ z2

) 2(xy � zw) 2(xz + yw)

2(xy + zw) 1� 2(x2
+ z2

) 2(yz � xw)

2(xz � yw) 2(yz + xw) 1� 2(x2
+ y2

)

3

775 . (2.41)

The diagonal terms can be made more symmetrical by replacing 1 � 2(y2
+ z2

) with (x2
+

w2 � y2 � z2
), etc.

The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions q0 = (v0, w0) and q1 = (v1, w1),
the quaternion multiply operator is defined as

q2 = q0q1 = (v0 ⇥ v1 + w0v1 + w1v0, w0w1 � v0 · v1), (2.42)

Rodriguez’ formula now becomes (see textbook):
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The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions q0 = (v0, w0) and q1 = (v1, w1),
the quaternion multiply operator is defined as

q2 = q0q1 = (v0 ⇥ v1 + w0v1 + w1v0, w0w1 � v0 · v1), (2.42)
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The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions q0 = (v0, w0) and q1 = (v1, w1),
the quaternion multiply operator is defined as

q2 = q0q1 = (v0 ⇥ v1 + w0v1 + w1v0, w0w1 � v0 · v1), (2.42)
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which gives a nice linearized relationship between the rotation parameters ! and R. We can
also write R(!)v ⇡ v + ! ⇥ v, which is handy when we want to compute the derivative of
Rv with respect to !,
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Another way to derive a rotation through a finite angle is called the exponential twist
(Murray, Li, and Sastry 1994). A rotation by an angle ✓ is equivalent to k rotations through
✓/k. In the limit as k !1, we obtain

R(n̂, ✓) = lim
k!1

(I +
1

k
[✓n̂]⇥)

k
= exp [!]⇥. (2.37)

If we expand the matrix exponential as a Taylor series (using the identity [n̂]
k+2
⇥ = �[n̂]

k
⇥,

k > 0, and again assuming ✓ is in radians),

exp [!]⇥ = I + ✓[n̂]⇥ +
✓2

2
[n̂]

2
⇥ +

✓3

3!
[n̂]

3
⇥ + · · ·

= I + (✓ � ✓3

3!
+ · · ·)[n̂]⇥ + (

✓2

2
� ✓3

4!
+ · · ·)[n̂]

2
⇥

= I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]
2
⇥, (2.38)

which yields the familiar Rodriguez’s formula.

Unit quaternions

The unit quaternion representation is closely related to the angle/axis representation. A unit
quaternion is a unit length 4-vector whose components can be written as q = (qx, qy, qz, qw)

or q = (x, y, z, w) for short. Unit quaternions live on the unit sphere kqk = 1 and antipodal
(opposite sign) quaternions, q and �q, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” qo = (0, 0, 0, 1). For
these and other reasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).

Quaternions can be derived from the axis/angle representation through the formula

q = (v, w) = (sin
✓

2
n̂, cos

✓

2
), (2.39)

Composition (multiplication):
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This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(q) as a function of (x, y, z, w), recall that
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The diagonal terms can be made more symmetrical by replacing 1 � 2(y2
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) with (x2
+

w2 � y2 � z2
), etc.

The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions q0 = (v0, w0) and q1 = (v1, w1),
the quaternion multiply operator is defined as

q2 = q0q1 = (v0 ⇥ v1 + w0v1 + w1v0, w0w1 � v0 · v1), (2.42)2.1 Geometric primitives and transformations 45

with the property that R(q2) = R(q0)R(q1). Note that quaternion multiplication is not
commutative, just as 3D rotations and matrix multiplications are not.

Taking the inverse of a quaternion is easy: Just flip the sign of v or w (but not both!).
(You can verify this has the desired effect of transposing the R matrix in (2.41).) Thus, we
can also define quaternion division as

q2 = q0/q1 = q0q
�1
1 = (v0 ⇥ v1 + w0v1 � w1v0, �w0w1 � v0 · v1). (2.43)

This is useful when the incremental rotation between two rotations is desired.
In particular, if we want to determine a rotation that is partway between two given rota-

tions, we can compute the incremental rotation, take a fraction of the angle, and compute the
new rotation. This procedure is called spherical linear interpolation or slerp for short (Shoe-
make 1985) and is given in Algorithm 2.1. Note that Shoemake presents two formulas other
than the one given here. The first exponentiates qr by alpha before multiplying the original
quaternion,

q2 = q↵

r
q0, (2.44)

while the second treats the quaternions as 4-vectors on a sphere and uses

q2 =
sin(1� ↵)✓

sin ✓
q0 +

sin ↵✓

sin ✓
q1, (2.45)

where ✓ = cos
�1

(q0 · q1) and the dot product is directly between the quaternion 4-vectors.
All of these formulas give comparable results, although care should be taken when q0 and q1

are close together, which is why I prefer to use an arctangent to establish the rotation angle.

Which rotation representation is better?

The choice of representation for 3D rotations depends partly on the application.
The axis/angle representation is minimal, and hence does not require any additional con-

straints on the parameters (no need to re-normalize after each update). If the angle is ex-
pressed in degrees, it is easier to understand the pose (say, 90

� twist around x-axis), and also
easier to express exact rotations. When the angle is in radians, the derivatives of R with
respect to ! can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving
camera, since there are no discontinuities in the representation. It is also easier to interpolate
between rotations and to chain rigid transformations (Murray, Li, and Sastry 1994; Bregler
and Malik 1998).

My usual preference is to use quaternions, but to update their estimates using an incre-
mental rotation, as described in Section 6.2.2.

Inverse: flip the sign of v or w (but not both). 
i.e., if q = (v, w), then q-1 = (-v, w) = (v, -w).
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procedure slerp(q0, q1, ↵):

1. qr = q1/q0 = (vr, wr)

2. if wr < 0 then qr  �qr

3. ✓r = 2 tan
�1

(kvrk/wr)

4. n̂r = N (vr) = vr/kvrk

5. ✓↵ = ↵ ✓r

6. q↵ = (sin
✓↵

2 n̂r, cos
✓↵

2 )

7. return q2 = q↵q0

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generates a set of interpolated position for animation.) An incremental quaternion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and x to denote
2D points.) This can be written as

x = [I2⇥2|0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

x̃ =

2

64
1 0 0 0

0 1 0 0

0 0 0 1

3

75 p̃, (2.47)
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Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generates a set of interpolated position for animation.) An incremental quaternion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and x to denote
2D points.) This can be written as

x = [I2⇥2|0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

x̃ =
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3

75 p̃, (2.47)

where p is the 3D point and x is the projected 2D image point
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❖ Reasonable approximation to perspective projection when % depth 
variation within field of view is small.

❖ This is often the case for telephoto lenses (long viewing distances, 
small field of view)

❖ Given camera-aligned world coordinate frame, simply drop the z 
component!

❖ In inhomogeneous (Euclidean) coordinates:
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procedure slerp(q0, q1, ↵):

1. qr = q1/q0 = (vr, wr)

2. if wr < 0 then qr  �qr

3. ✓r = 2 tan
�1

(kvrk/wr)

4. n̂r = N (vr) = vr/kvrk

5. ✓↵ = ↵ ✓r

6. q↵ = (sin
✓↵

2 n̂r, cos
✓↵

2 )

7. return q2 = q↵q0

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generates a set of interpolated position for animation.) An incremental quaternion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and x to denote
2D points.) This can be written as

x = [I2⇥2|0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

x̃ =

2

64
1 0 0 0

0 1 0 0

0 0 0 1

3

75 p̃, (2.47)

where p is the 3D point and x is the projected 2D image point

❖ In practice, we also need to scale the x and y coordinates from metres to pixels:
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5. ✓↵ = ↵ ✓r
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7. return q2 = q↵q0

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generates a set of interpolated position for animation.) An incremental quaternion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and x to denote
2D points.) This can be written as

x = [I2⇥2|0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

x̃ =

2
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0 1 0 0
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3

75 p̃, (2.47)

where p is the 3D point and x is the projected 2D image point

❖ In practice, we also need to scale the x and y coordinates from metres to pixels:
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i.e., we drop the z component but keep the w component. Orthography is an approximate
model for long focal length (telephoto) lenses and objects whose depth is shallow relative
to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric
lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need to be
scaled to fit onto an image sensor (physically measured in millimeters, but ultimately mea-
sured in pixels). For this reason, scaled orthography is actually more commonly used,

x = [sI2⇥2|0] p. (2.48)

This model is equivalent to first projecting the world points onto a local fronto-parallel image
plane and then scaling this image using regular perspective projection. The scaling can be the
same for all parts of the scene (Figure 2.7b) or it can be different for objects that are being
modeled independently (Figure 2.7c). More importantly, the scaling can vary from frame to
frame when estimating structure from motion, which can better model the scale change that
occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away
from the camera, since it greatly simplifies certain computations. For example, pose (camera
orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,
structure and motion can simultaneously be estimated using factorization (singular value de-
composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).

A closely related projection model is para-perspective (Aloimonos 1990; Poelman and
Kanade 1997). In this model, object points are again first projected onto a local reference
parallel to the image plane. However, rather than being projected orthogonally to this plane,
they are projected parallel to the line of sight to the object center (Figure 2.7d). This is
followed by the usual projection onto the final image plane, which again amounts to a scaling.
The combination of these two projections is therefore affine and can be written as

x̃ =

2

64
a00 a01 a02 a03

a10 a11 a12 a13

0 0 0 1

3

75 p̃. (2.49)

Note how parallel lines in 3D remain parallel after projection in Figure 2.7b–d. Para-perspective
provides a more accurate projection model than scaled orthography, without incurring the
added complexity of per-pixel perspective division, which invalidates traditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D
perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them
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❖ Points projected onto image plane by dividing them by their z component.
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by their z component. Using inhomogeneous coordinates, this can be written as

x̄ = Pz(p) =

2

64
x/z

y/z

1

3

75 . (2.50)

In homogeneous coordinates, the projection has a simple linear form,

x̃ =

2

64
1 0 0 0

0 1 0 0

0 0 1 0

3

75 p̃, (2.51)

i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (x, y, z) 2 [�1,�1] ⇥
[�1, 1]⇥ [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997). The (initial) perspective projection
is then represented using a 4⇥ 4 matrix

x̃ =

2

6664

1 0 0 0

0 1 0 0

0 0 �zfar/zrange znearzfar/zrange

0 0 1 0

3

7775
p̃, (2.52)

where znear and zfar are the near and far z clipping planes and zrange = zfar � znear. Note
that the first two rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (x, y, z) 2 [�1,�1]

2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set znear = 1, zfar ! 1, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d

directly back to a 3D location using the inverse of a 4⇥ 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4⇥ 4 matrix, as in (2.64).
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by their z component. Using inhomogeneous coordinates, this can be written as

x̄ = Pz(p) =

2
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1

3
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In homogeneous coordinates, the projection has a simple linear form,

x̃ =

2
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1 0 0 0

0 1 0 0

0 0 1 0

3

75 p̃, (2.51)

i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (x, y, z) 2 [�1,�1] ⇥
[�1, 1]⇥ [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997). The (initial) perspective projection
is then represented using a 4⇥ 4 matrix

x̃ =

2

6664

1 0 0 0

0 1 0 0

0 0 �zfar/zrange znearzfar/zrange

0 0 1 0

3

7775
p̃, (2.52)

where znear and zfar are the near and far z clipping planes and zrange = zfar � znear. Note
that the first two rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (x, y, z) 2 [�1,�1]

2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set znear = 1, zfar ! 1, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d

directly back to a 3D location using the inverse of a 4⇥ 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4⇥ 4 matrix, as in (2.64).

❖ In homogeneous coordinates:
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In homogeneous coordinates, the projection has a simple linear form,
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i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (x, y, z) 2 [�1,�1] ⇥
[�1, 1]⇥ [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997). The (initial) perspective projection
is then represented using a 4⇥ 4 matrix
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where znear and zfar are the near and far z clipping planes and zrange = zfar � znear. Note
that the first two rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (x, y, z) 2 [�1,�1]

2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set znear = 1, zfar ! 1, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d

directly back to a 3D location using the inverse of a 4⇥ 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4⇥ 4 matrix, as in (2.64).

❖ In homogeneous coordinates:
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i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (x, y, z) 2 [�1,�1] ⇥
[�1, 1]⇥ [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
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where znear and zfar are the near and far z clipping planes and zrange = zfar � znear. Note
that the first two rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (x, y, z) 2 [�1,�1]

2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set znear = 1, zfar ! 1, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d

directly back to a 3D location using the inverse of a 4⇥ 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4⇥ 4 matrix, as in (2.64).
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

3D world point

__
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

2D image projection
3D world point

__
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

2D image projection

Projection matrix

3D world point

__
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(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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Extrinsic (rotation + translation) matrix

Projection matrix

3D world point
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The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
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matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
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where pw are known 3D world coordinates and
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is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
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where pw are known 3D world coordinates and
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is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

__
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The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).
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eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
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pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

__

fx and fy:  encode focal length and pixel spacing,  
which may be slightly different in x and y dimensions.
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

__

fx and fy:  encode focal length and pixel spacing,  
which may be slightly different in x and y dimensions.

cx and cy:  encode principal point (intersection of optic axis with sensor plane) - usually 
very close to centre of image
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

__

fx and fy:  encode focal length and pixel spacing,  
which may be slightly different in x and y dimensions.

cx and cy:  encode principal point (intersection of optic axis with sensor plane) - usually 
very close to centre of image

s:  encodes possible skew between sensor axes (usually close to 0).
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The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
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factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

__

fx and fy:  encode focal length and pixel spacing,  
which may be slightly different in x and y dimensions.

cx and cy:  encode principal point (intersection of optic axis with sensor plane) - usually 
very close to centre of image

s:  encodes possible skew between sensor axes (usually close to 0).
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factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is
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which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
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perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is
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where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordi-
nates, p and x, as well as the relationship between the focal length f , image width W , and
the field of view ✓.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the y axis has also been flipped to get a coordinate system
compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing
computer vision algorithms and discussing their results. This is because the focal length
depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W )⇥ [0, H), the focal length
f and camera center (cx, cy) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f , the sensor width W ,
and the field of view ✓, which obey the formula
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For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [�1, 1) along
the longer image dimension and [�a�1, a�1

) along the shorter axis, where a � 1 is the
image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be
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❖ Example: Consider the FLIR BlackFly S BFS-PGE-122S6C-C paired with a 10mm lens: 

❖ Resolution: 4096 x 3000 pixels 

❖ Sensor width: 1.1” = 27.94mm
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❖ Geometric primitives 

❖ 2D transformations 

❖ 3D transformations 

❖ 3D rotations 

❖ 3D to 2D projections 

❖ Lens Distortions
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are known). The inverse distance ⌘z is now mostly decoupled from the estimates of s and
can be estimated from the amount of foreshortening as the object rotates. Furthermore, as
the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to
replace a perspective imaging model with an orthographic one, since the same equation can
be used, with ⌘z ! 0 (as opposed to f and tz both going to infinity). This allows us to form
a natural link between orthographic reconstruction techniques such as factorization and their
projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where
straight lines in the world result in straight lines in the image. (This follows as a natural
consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as
a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed
discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into
account, it becomes impossible to create highly accurate photorealistic reconstructions. For
example, image mosaics constructed without taking radial distortion into account will often
exhibit blurring due to the mis-registration of corresponding features before pixel blending
(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most
lenses, a simple quartic model of distortion can produce good results. Let (xc, yc) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and
shifting by the optical center (cx, cy), i.e.,

xc =
rx · p + tx
rz · p + tz

yc =
ry · p + ty
rz · p + tz

. (2.77)

The radial distortion model says that coordinates in the observed images are displaced away
(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a–b).3 The simplest radial distortion models use
low-order polynomials, e.g.,

x̂c = xc(1 + 1r
2
c

+ 2r
4
c
)

ŷc = yc(1 + 1r
2
c

+ 2r
4
c
), (2.78)

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non-square pixels.
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3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
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non-square pixels.
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ŷc = yc(1 + 1r
2
c

+ 2r
4
c
), (2.78)

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non-square pixels.



EECS 4422/5323 Computer Vision J. Elder

Outline

!42

❖ Geometric primitives 

❖ 2D transformations 

❖ 3D transformations 

❖ 3D rotations 

❖ 3D to 2D projections 

❖ Lens Distortions


