
EECS 4422/5323 Computer Vision J. Elder

3.1 Image Processing: Filtering

!1

EECS 4422/5323 Computer Vision J. Elder

Image Processing vs Computer Vision

!2

❖ What is the difference between image processing and computer vision?

❖ Image processing maps an image to a different version of the image.

❖ Computer vision maps one or more images to inferences about the visual scene.

❖ Image processing operations often required as pre-processing for computer vision
algorithms.

EECS 4422/5323 Computer Vision J. Elder

Outline

!3

❖ Point Operators

❖ Linear Filters

❖ Nonlinear Filters

EECS 4422/5323 Computer Vision J. Elder

Outline

!4

❖ Point Operators

❖ Linear Filters

❖ Nonlinear Filters

EECS 4422/5323 Computer Vision J. Elder

Point Operators

!5

❖ Image processing point operators transform each pixel independently of other pixels.

❖ or

3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

col idx row idx

output image
point operator

input image
3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

EECS 4422/5323 Computer Vision J. Elder

Examples

!6

❖ Contrast/brightness adjustment:

3.1 Point operators 103

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133

47 65 96 115 119 123 135 137

47 63 91 107 113 122 138 134

50 59 80 97 110 123 133 134

49 53 68 83 97 113 128 133

50 50 58 70 84 102 116 126

50 50 52 58 69 86 101 120 1

3

5

7

9 11

13

15

S1S2S3S4S5S6S7S8S9S
10S
11S
12S
13S
14S
15S
16

0

20

40

60

80

100

120

140

160

range

domain

domain

(a) (b) (c) (d)

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates tonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b–c).1 The

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

Bias (brightness)Gain (contrast)

❖ Inverse gamma - undo compressive gamma mapping applied in sensor so that pixel
intensities are (approximately) proportional to the light irradiance at the sensor:

 (note that textbook Eqn. 3.7 has this backwards)

g(x) = xγ

EECS 4422/5323 Computer Vision J. Elder

Histogram Equalization

!7

❖ The colours in most images are not uniformly distributed across the gamut.
❖ Redistribution of these colours to be uniform is called histogram equalization.

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B

G

R

Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B

G

R

Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

Input Intensity

O
ut

pu
t I

nt
en

si
ty

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B

G

R

Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B

G

R

Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

Input Image

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B

G

R

Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B

G

R

Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

Output Image

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B
G

R
Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B
G

R
Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B

G

R

Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B

G

R

Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

Input Intensity

Fr
eq

ue
nc

y

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

B

G

R

Y

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

B

G

R

Y

(a) (b) (c)

0

50

100

150

200

250

0 50 100 150 200 250

B

G

R

Y

(d) (e) (f)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

IX

i=0

h(i) = c(I � 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile c(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

Input Intensity

Fr
eq

ue
nc

y

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Sept 24, 2018

!8

EECS 4422/5323 Computer Vision J. Elder

Outline

!9

❖ Point Operators

❖ Linear Filters

❖ Nonlinear Filters

EECS 4422/5323 Computer Vision J. Elder

Linear Filters

!10

❖ Many image processing operations involve linear combinations of the pixels within a
finite neighbourhood of a pixel.

❖ Typically, the same set of weights is applied at each pixel.

❖ The pattern of weights is called a linear filter.

❖ When applied at all locations in the image, this can be expressed as a correlation:

❖ or alternatively as a convolution

3.2 Linear filtering 111

tions, including the construction of SIFT feature descriptors (Section 4.1.3) and vocabulary
trees (Section 14.3.2).

3.1.5 Application: Tonal adjustment

One of the most widely used applications of point-wise image processing operators is the
manipulation of contrast or tone in photographs, to make them look either more attractive or
more interpretable. You can get a good sense of the range of operations possible by opening
up any photo manipulation tool and trying out a variety of contrast, brightness, and color
manipulation options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to
become familiar with basic image processing operators. More sophisticated techniques for
tonal adjustment (Reinhard, Ward, Pattanaik et al. 2005; Bae, Paris, and Durand 2006) are
described in the section on high dynamic range tone mapping (Section 10.2.1).

3.2 Linear filtering
Locally adaptive histogram equalization is an example of a neighborhood operator or local
operator, which uses a collection of pixel values in the vicinity of a given pixel to deter-
mine its final output value (Figure 3.10). In addition to performing local tone adjustment,
neighborhood operators can be used to filter images in order to add soft blur, sharpen de-
tails, accentuate edges, or remove noise (Figure 3.11b–d). In this section, we look at linear
filtering operators, which involve weighted combinations of pixels in small neighborhoods.
In Section 3.3, we look at non-linear operators such as morphological filters and distance
transforms.

The most commonly used type of neighborhood operator is a linear filter, in which an
output pixel’s value is determined as a weighted sum of input pixel values (Figure 3.10),

g(i, j) =

X

k,l

f(i + k, j + l)h(k, l). (3.12)

The entries in the weight kernel or mask h(k, l) are often called the filter coefficients. The
above correlation operator can be more compactly notated as

g = f ⌦ h. (3.13)

A common variant on this formula is

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l) =

X

k,l

f(k, l)h(i� k, j � l), (3.14)

Linear filter

3.2 Linear filtering 111

tions, including the construction of SIFT feature descriptors (Section 4.1.3) and vocabulary
trees (Section 14.3.2).

3.1.5 Application: Tonal adjustment

One of the most widely used applications of point-wise image processing operators is the
manipulation of contrast or tone in photographs, to make them look either more attractive or
more interpretable. You can get a good sense of the range of operations possible by opening
up any photo manipulation tool and trying out a variety of contrast, brightness, and color
manipulation options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to
become familiar with basic image processing operators. More sophisticated techniques for
tonal adjustment (Reinhard, Ward, Pattanaik et al. 2005; Bae, Paris, and Durand 2006) are
described in the section on high dynamic range tone mapping (Section 10.2.1).

3.2 Linear filtering
Locally adaptive histogram equalization is an example of a neighborhood operator or local
operator, which uses a collection of pixel values in the vicinity of a given pixel to deter-
mine its final output value (Figure 3.10). In addition to performing local tone adjustment,
neighborhood operators can be used to filter images in order to add soft blur, sharpen de-
tails, accentuate edges, or remove noise (Figure 3.11b–d). In this section, we look at linear
filtering operators, which involve weighted combinations of pixels in small neighborhoods.
In Section 3.3, we look at non-linear operators such as morphological filters and distance
transforms.

The most commonly used type of neighborhood operator is a linear filter, in which an
output pixel’s value is determined as a weighted sum of input pixel values (Figure 3.10),

g(i, j) =

X

k,l

f(i + k, j + l)h(k, l). (3.12)

The entries in the weight kernel or mask h(k, l) are often called the filter coefficients. The
above correlation operator can be more compactly notated as

g = f ⌦ h. (3.13)

A common variant on this formula is

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l) =

X

k,l

f(k, l)h(i� k, j � l), (3.14)

or

3.2 Linear filtering 111

tions, including the construction of SIFT feature descriptors (Section 4.1.3) and vocabulary
trees (Section 14.3.2).

3.1.5 Application: Tonal adjustment

One of the most widely used applications of point-wise image processing operators is the
manipulation of contrast or tone in photographs, to make them look either more attractive or
more interpretable. You can get a good sense of the range of operations possible by opening
up any photo manipulation tool and trying out a variety of contrast, brightness, and color
manipulation options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to
become familiar with basic image processing operators. More sophisticated techniques for
tonal adjustment (Reinhard, Ward, Pattanaik et al. 2005; Bae, Paris, and Durand 2006) are
described in the section on high dynamic range tone mapping (Section 10.2.1).

3.2 Linear filtering
Locally adaptive histogram equalization is an example of a neighborhood operator or local
operator, which uses a collection of pixel values in the vicinity of a given pixel to deter-
mine its final output value (Figure 3.10). In addition to performing local tone adjustment,
neighborhood operators can be used to filter images in order to add soft blur, sharpen de-
tails, accentuate edges, or remove noise (Figure 3.11b–d). In this section, we look at linear
filtering operators, which involve weighted combinations of pixels in small neighborhoods.
In Section 3.3, we look at non-linear operators such as morphological filters and distance
transforms.

The most commonly used type of neighborhood operator is a linear filter, in which an
output pixel’s value is determined as a weighted sum of input pixel values (Figure 3.10),

g(i, j) =

X

k,l

f(i + k, j + l)h(k, l). (3.12)

The entries in the weight kernel or mask h(k, l) are often called the filter coefficients. The
above correlation operator can be more compactly notated as

g = f ⌦ h. (3.13)

A common variant on this formula is

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l) =

X

k,l

f(k, l)h(i� k, j � l), (3.14)

or

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

Impulse response function:

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

MATLAB function
xcorr

MATLAB functions
conv, conv2, convn

EECS 4422/5323 Computer Vision J. Elder

Linear Shift Invariant Operators

!11

❖ Both correlation and convolution are linear shift invariant operators, which obey

๏ Superposition

๏ Shift invariance

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

114 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

72 88 62 52 37 ⇤ 1/4 1/2 1/4 , 1
4

2

666664

2 1 . . .

1 2 1 . .

. 1 2 1 .

. . 1 2 1

. . . 1 2

3

777775

2

666664

72

88

62

52

37

3

777775

Figure 3.12 One-dimensional signal convolution as a sparse matrix-vector multiply, g =

Hf .

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l; i, j), (3.18)

where h(k, l; i, j) is the convolution kernel at pixel (i, j). For example, such a spatially
varying kernel can be used to model blur in an image due to variable depth-dependent defocus.

Correlation and convolution can both be written as a matrix-vector multiply, if we first
convert the two-dimensional images f(i, j) and g(i, j) into raster-ordered vectors f and g,

g = Hf , (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.12 shows how a
one-dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.12 suffers from
boundary effects, i.e., the results of filtering the image in this form will lead to a darkening of
the corner pixels. This is because the original image is effectively being padded with 0 values
wherever the convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been
developed (Figure 3.13):

• zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout
images);

• constant (border color): set all pixels outside the source image to a specified border
value;

• clamp (replicate or clamp to edge): repeat edge pixels indefinitely;

• (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration;

114 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

72 88 62 52 37 ⇤ 1/4 1/2 1/4 , 1
4

2

666664

2 1 . . .

1 2 1 . .

. 1 2 1 .

. . 1 2 1

. . . 1 2

3

777775

2

666664

72

88

62

52

37

3

777775

Figure 3.12 One-dimensional signal convolution as a sparse matrix-vector multiply, g =

Hf .

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l; i, j), (3.18)

where h(k, l; i, j) is the convolution kernel at pixel (i, j). For example, such a spatially
varying kernel can be used to model blur in an image due to variable depth-dependent defocus.

Correlation and convolution can both be written as a matrix-vector multiply, if we first
convert the two-dimensional images f(i, j) and g(i, j) into raster-ordered vectors f and g,

g = Hf , (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.12 shows how a
one-dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.12 suffers from
boundary effects, i.e., the results of filtering the image in this form will lead to a darkening of
the corner pixels. This is because the original image is effectively being padded with 0 values
wherever the convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been
developed (Figure 3.13):

• zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout
images);

• constant (border color): set all pixels outside the source image to a specified border
value;

• clamp (replicate or clamp to edge): repeat edge pixels indefinitely;

• (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration;

114 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

72 88 62 52 37 ⇤ 1/4 1/2 1/4 , 1
4

2

666664

2 1 . . .

1 2 1 . .

. 1 2 1 .

. . 1 2 1

. . . 1 2

3

777775

2

666664

72

88

62

52

37

3

777775

Figure 3.12 One-dimensional signal convolution as a sparse matrix-vector multiply, g =

Hf .

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l; i, j), (3.18)

where h(k, l; i, j) is the convolution kernel at pixel (i, j). For example, such a spatially
varying kernel can be used to model blur in an image due to variable depth-dependent defocus.

Correlation and convolution can both be written as a matrix-vector multiply, if we first
convert the two-dimensional images f(i, j) and g(i, j) into raster-ordered vectors f and g,

g = Hf , (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.12 shows how a
one-dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.12 suffers from
boundary effects, i.e., the results of filtering the image in this form will lead to a darkening of
the corner pixels. This is because the original image is effectively being padded with 0 values
wherever the convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been
developed (Figure 3.13):

• zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout
images);

• constant (border color): set all pixels outside the source image to a specified border
value;

• clamp (replicate or clamp to edge): repeat edge pixels indefinitely;

• (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration;

114 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

72 88 62 52 37 ⇤ 1/4 1/2 1/4 , 1
4

2

666664

2 1 . . .

1 2 1 . .

. 1 2 1 .

. . 1 2 1

. . . 1 2

3

777775

2

666664

72

88

62

52

37

3

777775

Figure 3.12 One-dimensional signal convolution as a sparse matrix-vector multiply, g =

Hf .

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

g(i, j) =

X

k,l

f(i� k, j � l)h(k, l; i, j), (3.18)

where h(k, l; i, j) is the convolution kernel at pixel (i, j). For example, such a spatially
varying kernel can be used to model blur in an image due to variable depth-dependent defocus.

Correlation and convolution can both be written as a matrix-vector multiply, if we first
convert the two-dimensional images f(i, j) and g(i, j) into raster-ordered vectors f and g,

g = Hf , (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.12 shows how a
one-dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.12 suffers from
boundary effects, i.e., the results of filtering the image in this form will lead to a darkening of
the corner pixels. This is because the original image is effectively being padded with 0 values
wherever the convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been
developed (Figure 3.13):

• zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout
images);

• constant (border color): set all pixels outside the source image to a specified border
value;

• clamp (replicate or clamp to edge): repeat edge pixels indefinitely;

• (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration;

EECS 4422/5323 Computer Vision J. Elder

Handling Borders

!12

❖ What do we do near the border of the image, where the kernel (filter) ‘falls off’ the
edge?

Image f kernel h

EECS 4422/5323 Computer Vision J. Elder

Handling Borders

!13

❖ Padding options

๏ Zero-padding - ignore kernel weights that fall outside image

๏ Clamp - extend boundary values of image

๏ Cyclic - toroidally wrap around

๏ Mirror - reflect pixels across image edge

❖ Alternatively, we can crop the image and return only the ‘valid’ portion

๏ e.g., MATLAB conv2(...,shape) returns a subsection of the two-dimensional convolution, as
specified by the shape parameter:

✦ ‘full' Returns the full two-dimensional convolution (default).

✦ ‘same' Returns the central part of the convolution of the same size as A.

✦ ‘valid' Returns only those parts of the convolution for which the kernel lies entirely within the image.

EECS 4422/5323 Computer Vision J. Elder

Separable Filters

!14

❖ Given a general 2D kernel of size (m, n) pixels, application at each pixel of the image
involves m*n multiplies.

❖ For an M*N image, the total number of multiplies for the convolution is M*N*m*n.

❖ However, certain special 2D kernels can be decomposed into 2 1D kernels, reducing
the number of multiples at a pixel to m + n.

❖ Example: 2D axis-aligned Gaussian kernel

h(x, y) = 1
2πσ xσ y

exp − 1
2

x2

σ x
2 +

y2

σ y
2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ =

1
2πσ x

exp − x2

2σ x
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
1
2πσ x

exp − y2

2σ y
2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

MATLAB function
conv2(h1, h2, A)

EECS 4422/5323 Computer Vision J. Elder

Example Separable Filters

!15

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1
K2

1 1 · · · 1

1 1 · · · 1

...
... 1

...
1 1 · · · 1

1
16

1 2 1

2 4 2

1 2 1

1
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
8

�1 0 1

�2 0 2

�1 0 1

1
4

1 �2 1

�2 4 �2

1 �2 1

1
K

1 1 · · · 1
1
4 1 2 1

1
16 1 4 6 4 1

1
2 �1 0 1

1
2 1 �2 1

(a) box, K = 5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Smoothing Edge detection

EECS 4422/5323 Computer Vision J. Elder

Gaussian Derivatives

!16

❖ Local difference filters like the Sobel filter estimate local intensity gradients.

❖ But the restriction to a 3x3 neighbourhood of the image makes the results noisy.

❖ A more general and smooth family of filters are the Gaussian derivatives, which can
be derived by taking partial spatial derivatives of the 2D Gaussian function

❖ Example: Laplacian of Gaussian (LoG):

118 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

unsharp masking. Since blurring the image reduces high frequencies, adding some of the
difference between the original and the blurred image makes it sharper,

gsharp = f + �(f � hblur ⇤ f). (3.22)

In fact, before the advent of digital photography, this was the standard way to sharpen images
in the darkroom: create a blurred (“positive”) negative from the original negative by mis-
focusing, then overlay the two negatives before printing the final image, which corresponds
to

gunsharp = f(1� �hblur ⇤ f). (3.23)

This is no longer a linear filter but it still works well.
Linear filtering can also be used as a pre-processing stage to edge extraction (Section 4.2)

and interest point detection (Section 4.1) algorithms. Figure 3.14d shows a simple 3⇥ 3 edge
extractor called the Sobel operator, which is a separable combination of a horizontal central
difference (so called because the horizontal derivative is centered on the pixel) and a vertical
tent filter (to smooth the results). As you can see in the image below the kernel, this filter
effectively emphasizes horizontal edges.

The simple corner detector (Figure 3.14e) looks for simultaneous horizontal and vertical
second derivatives. As you can see however, it responds not only to the corners of the square,
but also along diagonal edges. Better corner detectors, or at least interest point detectors that
are more rotationally invariant, are described in Section 4.1.

3.2.3 Band-pass and steerable filters

The Sobel and corner operators are simple examples of band-pass and oriented filters. More
sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian
filter,

G(x, y;�) =
1

2⇡�2
e�

x
2+y

2

2�2 , (3.24)

and then taking the first or second derivatives (Marr 1982; Witkin 1983; Freeman and Adelson
1991). Such filters are known collectively as band-pass filters, since they filter out both low
and high frequencies.

The (undirected) second derivative of a two-dimensional image,

r2f =
@2f

@x2
+

@2y

@y2
, (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its
Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

r2G(x, y;�) =

✓
x2

+ y2

�4
� 2

�2

◆
G(x, y;�), (3.26)

118 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

unsharp masking. Since blurring the image reduces high frequencies, adding some of the
difference between the original and the blurred image makes it sharper,

gsharp = f + �(f � hblur ⇤ f). (3.22)

In fact, before the advent of digital photography, this was the standard way to sharpen images
in the darkroom: create a blurred (“positive”) negative from the original negative by mis-
focusing, then overlay the two negatives before printing the final image, which corresponds
to

gunsharp = f(1� �hblur ⇤ f). (3.23)

This is no longer a linear filter but it still works well.
Linear filtering can also be used as a pre-processing stage to edge extraction (Section 4.2)

and interest point detection (Section 4.1) algorithms. Figure 3.14d shows a simple 3⇥ 3 edge
extractor called the Sobel operator, which is a separable combination of a horizontal central
difference (so called because the horizontal derivative is centered on the pixel) and a vertical
tent filter (to smooth the results). As you can see in the image below the kernel, this filter
effectively emphasizes horizontal edges.

The simple corner detector (Figure 3.14e) looks for simultaneous horizontal and vertical
second derivatives. As you can see however, it responds not only to the corners of the square,
but also along diagonal edges. Better corner detectors, or at least interest point detectors that
are more rotationally invariant, are described in Section 4.1.

3.2.3 Band-pass and steerable filters

The Sobel and corner operators are simple examples of band-pass and oriented filters. More
sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian
filter,

G(x, y;�) =
1

2⇡�2
e�

x
2+y

2

2�2 , (3.24)

and then taking the first or second derivatives (Marr 1982; Witkin 1983; Freeman and Adelson
1991). Such filters are known collectively as band-pass filters, since they filter out both low
and high frequencies.

The (undirected) second derivative of a two-dimensional image,

r2f =
@2f

@x2
+

@2y

@y2
, (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its
Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

r2G(x, y;�) =

✓
x2

+ y2

�4
� 2

�2

◆
G(x, y;�), (3.26)

118 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

unsharp masking. Since blurring the image reduces high frequencies, adding some of the
difference between the original and the blurred image makes it sharper,

gsharp = f + �(f � hblur ⇤ f). (3.22)

In fact, before the advent of digital photography, this was the standard way to sharpen images
in the darkroom: create a blurred (“positive”) negative from the original negative by mis-
focusing, then overlay the two negatives before printing the final image, which corresponds
to

gunsharp = f(1� �hblur ⇤ f). (3.23)

This is no longer a linear filter but it still works well.
Linear filtering can also be used as a pre-processing stage to edge extraction (Section 4.2)

and interest point detection (Section 4.1) algorithms. Figure 3.14d shows a simple 3⇥ 3 edge
extractor called the Sobel operator, which is a separable combination of a horizontal central
difference (so called because the horizontal derivative is centered on the pixel) and a vertical
tent filter (to smooth the results). As you can see in the image below the kernel, this filter
effectively emphasizes horizontal edges.

The simple corner detector (Figure 3.14e) looks for simultaneous horizontal and vertical
second derivatives. As you can see however, it responds not only to the corners of the square,
but also along diagonal edges. Better corner detectors, or at least interest point detectors that
are more rotationally invariant, are described in Section 4.1.

3.2.3 Band-pass and steerable filters

The Sobel and corner operators are simple examples of band-pass and oriented filters. More
sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian
filter,

G(x, y;�) =
1

2⇡�2
e�

x
2+y

2

2�2 , (3.24)

and then taking the first or second derivatives (Marr 1982; Witkin 1983; Freeman and Adelson
1991). Such filters are known collectively as band-pass filters, since they filter out both low
and high frequencies.

The (undirected) second derivative of a two-dimensional image,

r2f =
@2f

@x2
+

@2y

@y2
, (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its
Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

r2G(x, y;�) =

✓
x2

+ y2

�4
� 2

�2

◆
G(x, y;�), (3.26)

MATLAB function
mvnpdf

EECS 4422/5323 Computer Vision J. Elder

Steerable Filters

!17

❖ To detect contours in the image, we typically use oriented Gaussian derivative filters,
formed by taking directional derivatives of the Gaussian function:

❖ Note that

❖ In other words, the Gaussian derivative filter in direction u is a weighted sum of the
Gaussian derivatives in x and y directions.

3.2 Linear filtering 119

(a) (b) (c)

Figure 3.15 Second-order steerable filter (Freeman 1992) c� 1992 IEEE: (a) original image
of Einstein; (b) orientation map computed from the second-order oriented energy; (c) original
image with oriented structures enhanced.

which has certain nice scale-space properties (Witkin 1983; Witkin, Terzopoulos, and Kass
1986). The five-point Laplacian is just a compact approximation to this more sophisticated
filter.

Likewise, the Sobel operator is a simple approximation to a directional or oriented filter,
which can obtained by smoothing with a Gaussian (or some other filter) and then taking a
directional derivative rû =

@

@û , which is obtained by taking the dot product between the
gradient fieldr and a unit direction û = (cos ✓, sin ✓),

û ·r(G ⇤ f) = rû(G ⇤ f) = (rûG) ⇤ f. (3.27)

The smoothed directional derivative filter,

Gû = uGx + vGy = u
@G

@x
+ v

@G

@y
, (3.28)

where û = (u, v), is an example of a steerable filter, since the value of an image convolved
with Gû can be computed by first convolving with the pair of filters (Gx, Gy) and then
steering the filter (potentially locally) by multiplying this gradient field with a unit vector û

(Freeman and Adelson 1991). The advantage of this approach is that a whole family of filters
can be evaluated with very little cost.

How about steering a directional second derivative filterrû ·rûGû, which is the result
of taking a (smoothed) directional derivative and then taking the directional derivative again?
For example, Gxx is the second directional derivative in the x direction.

At first glance, it would appear that the steering trick will not work, since for every di-
rection û, we need to compute a different first directional derivative. Somewhat surprisingly,
Freeman and Adelson (1991) showed that, for directional Gaussian derivatives, it is possible

3.2 Linear filtering 119

(a) (b) (c)

Figure 3.15 Second-order steerable filter (Freeman 1992) c� 1992 IEEE: (a) original image
of Einstein; (b) orientation map computed from the second-order oriented energy; (c) original
image with oriented structures enhanced.

which has certain nice scale-space properties (Witkin 1983; Witkin, Terzopoulos, and Kass
1986). The five-point Laplacian is just a compact approximation to this more sophisticated
filter.

Likewise, the Sobel operator is a simple approximation to a directional or oriented filter,
which can obtained by smoothing with a Gaussian (or some other filter) and then taking a
directional derivative rû =

@

@û , which is obtained by taking the dot product between the
gradient fieldr and a unit direction û = (cos ✓, sin ✓),

û ·r(G ⇤ f) = rû(G ⇤ f) = (rûG) ⇤ f. (3.27)

The smoothed directional derivative filter,

Gû = uGx + vGy = u
@G

@x
+ v

@G

@y
, (3.28)

where û = (u, v), is an example of a steerable filter, since the value of an image convolved
with Gû can be computed by first convolving with the pair of filters (Gx, Gy) and then
steering the filter (potentially locally) by multiplying this gradient field with a unit vector û

(Freeman and Adelson 1991). The advantage of this approach is that a whole family of filters
can be evaluated with very little cost.

How about steering a directional second derivative filterrû ·rûGû, which is the result
of taking a (smoothed) directional derivative and then taking the directional derivative again?
For example, Gxx is the second directional derivative in the x direction.

At first glance, it would appear that the steering trick will not work, since for every di-
rection û, we need to compute a different first directional derivative. Somewhat surprisingly,
Freeman and Adelson (1991) showed that, for directional Gaussian derivatives, it is possible

= cosθ ∂G
∂x

+ sinθ ∂G
∂y

∂G
∂x

∂G
∂y

Gû

f
∂G
∂x

∗ f
∂G
∂y

∗ f Gû ∗ f

û

where û = (u,v) = (cosθ ,sinθ)

EECS 4422/5323 Computer Vision J. Elder

What filters are steerable?

!18

❖ It turns out that Gaussian derivatives of all orders are steerable with a finite number of
basis functions.

❖ For example, a Gaussian 2nd derivative requires 3 basis functions:

❖ Moreover, the basis functions are separable (or superpositions of separable functions).

120 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d)

Figure 3.16 Fourth-order steerable filter (Freeman and Adelson 1991) c� 1991 IEEE: (a)
test image containing bars (lines) and step edges at different orientations; (b) average oriented
energy; (c) dominant orientation; (d) oriented energy as a function of angle (polar plot).

to steer any order of derivative with a relatively small number of basis functions. For example,
only three basis functions are required for the second-order directional derivative,

Gûû = u2Gxx + 2uvGxy + v2Gyy. (3.29)

Furthermore, each of the basis filters, while not itself necessarily separable, can be computed
using a linear combination of a small number of separable filters (Freeman and Adelson
1991).

This remarkable result makes it possible to construct directional derivative filters of in-
creasingly greater directional selectivity, i.e., filters that only respond to edges that have
strong local consistency in orientation (Figure 3.15). Furthermore, higher order steerable
filters can respond to potentially more than a single edge orientation at a given location, and
they can respond to both bar edges (thin lines) and the classic step edges (Figure 3.16). In
order to do this, however, full Hilbert transform pairs need to be used for second-order and
higher filters, as described in (Freeman and Adelson 1991).

Steerable filters are often used to construct both feature descriptors (Section 4.1.3) and
edge detectors (Section 4.2). While the filters developed by Freeman and Adelson (1991)
are best suited for detecting linear (edge-like) structures, more recent work by Koethe (2003)
shows how a combined 2⇥ 2 boundary tensor can be used to encode both edge and junction
(“corner”) features. Exercise 3.12 has you implement such steerable filters and apply them to
finding both edge and corner features.

Summed area table (integral image)

If an image is going to be repeatedly convolved with different box filters (and especially filters
of different sizes at different locations), you can precompute the summed area table (Crow

EECS 4422/5323 Computer Vision J. Elder

Application: Edge Detection

!19

Elder & Zucker 1998

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Sept 26, 2018

!20

EECS 4422/5323 Computer Vision J. Elder

Integral Images

!21

❖ If a diversity of box filters are to be employed, it can be very efficient to derive these
from the integral image s(i, j), which is the 2D analog of a 1D cumulative sum:

❖ This is efficiently computed using a raster-scan algorithm:

❖ Now, for example, a rectangular box average of arbitrary size and shape can be
computed using just 4 additions/subtractions on the integral image:

3.2 Linear filtering 121

3 2 7 2 3 3 5 12 14 17 3 5 12 14 17

1 5 1 3 4 4 11 19 24 31 4 11 19 24 31

5 1 3 5 1 9 17 28 38 46 9 17 28 38 46

4 3 2 1 6 13 24 37 48 62 13 24 37 48 62

2 4 1 4 8 15 30 44 59 81 15 30 44 59 81

 (a) S = 24 (b) s = 28 (c) S = 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.

1984), which is just the running sum of all the pixel values from the origin,

s(i, j) =

iX

k=0

jX

l=0

f(k, l). (3.30)

This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i, j) = s(i� 1, j) + s(i, j � 1)� s(i� 1, j � 1) + f(i, j). (3.31)

The image s(i, j) is also often called an integral image (see Figure 3.17) and can actually be
computed using only two additions per pixel if separate row sums are used (Viola and Jones
2004). To find the summed area (integral) inside a rectangle [i0, i1] ⇥ [j0, j1], we simply
combine four samples from the summed area table,

S(i0 . . . i1, j0 . . . j1) =

i1X

i=i0

j1X

j=j0

s(i1, j1)� s(i1, j0 � 1)� s(i0 � 1, j1) + s(i0 � 1, j0 � 1).

(3.32)
A potential disadvantage of summed area tables is that they require log M + log N extra bits
in the accumulation image compared to the original image, where M and N are the image
width and height. Extensions of summed area tables can also be used to approximate other
convolution kernels (Wolberg (1990, Section 6.5.2) contains a review).

In computer vision, summed area tables have been used in face detection (Viola and
Jones 2004) to compute simple multi-scale low-level features. Such features, which consist of
adjacent rectangles of positive and negative values, are also known as boxlets (Simard, Bottou,

3.2 Linear filtering 121

3 2 7 2 3 3 5 12 14 17 3 5 12 14 17

1 5 1 3 4 4 11 19 24 31 4 11 19 24 31

5 1 3 5 1 9 17 28 38 46 9 17 28 38 46

4 3 2 1 6 13 24 37 48 62 13 24 37 48 62

2 4 1 4 8 15 30 44 59 81 15 30 44 59 81

 (a) S = 24 (b) s = 28 (c) S = 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.

1984), which is just the running sum of all the pixel values from the origin,

s(i, j) =

iX

k=0

jX

l=0

f(k, l). (3.30)

This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i, j) = s(i� 1, j) + s(i, j � 1)� s(i� 1, j � 1) + f(i, j). (3.31)

The image s(i, j) is also often called an integral image (see Figure 3.17) and can actually be
computed using only two additions per pixel if separate row sums are used (Viola and Jones
2004). To find the summed area (integral) inside a rectangle [i0, i1] ⇥ [j0, j1], we simply
combine four samples from the summed area table,

S(i0 . . . i1, j0 . . . j1) =

i1X

i=i0

j1X

j=j0

s(i1, j1)� s(i1, j0 � 1)� s(i0 � 1, j1) + s(i0 � 1, j0 � 1).

(3.32)
A potential disadvantage of summed area tables is that they require log M + log N extra bits
in the accumulation image compared to the original image, where M and N are the image
width and height. Extensions of summed area tables can also be used to approximate other
convolution kernels (Wolberg (1990, Section 6.5.2) contains a review).

In computer vision, summed area tables have been used in face detection (Viola and
Jones 2004) to compute simple multi-scale low-level features. Such features, which consist of
adjacent rectangles of positive and negative values, are also known as boxlets (Simard, Bottou,

3.2 Linear filtering 121

3 2 7 2 3 3 5 12 14 17 3 5 12 14 17

1 5 1 3 4 4 11 19 24 31 4 11 19 24 31

5 1 3 5 1 9 17 28 38 46 9 17 28 38 46

4 3 2 1 6 13 24 37 48 62 13 24 37 48 62

2 4 1 4 8 15 30 44 59 81 15 30 44 59 81

 (a) S = 24 (b) s = 28 (c) S = 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.

1984), which is just the running sum of all the pixel values from the origin,

s(i, j) =

iX

k=0

jX

l=0

f(k, l). (3.30)

This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i, j) = s(i� 1, j) + s(i, j � 1)� s(i� 1, j � 1) + f(i, j). (3.31)

The image s(i, j) is also often called an integral image (see Figure 3.17) and can actually be
computed using only two additions per pixel if separate row sums are used (Viola and Jones
2004). To find the summed area (integral) inside a rectangle [i0, i1] ⇥ [j0, j1], we simply
combine four samples from the summed area table,

S(i0 . . . i1, j0 . . . j1) =

i1X

i=i0

j1X

j=j0

s(i1, j1)� s(i1, j0 � 1)� s(i0 � 1, j1) + s(i0 � 1, j0 � 1).

(3.32)
A potential disadvantage of summed area tables is that they require log M + log N extra bits
in the accumulation image compared to the original image, where M and N are the image
width and height. Extensions of summed area tables can also be used to approximate other
convolution kernels (Wolberg (1990, Section 6.5.2) contains a review).

In computer vision, summed area tables have been used in face detection (Viola and
Jones 2004) to compute simple multi-scale low-level features. Such features, which consist of
adjacent rectangles of positive and negative values, are also known as boxlets (Simard, Bottou,

Image f Integral image s Integral image s

3.2 Linear filtering 121

3 2 7 2 3 3 5 12 14 17 3 5 12 14 17

1 5 1 3 4 4 11 19 24 31 4 11 19 24 31

5 1 3 5 1 9 17 28 38 46 9 17 28 38 46

4 3 2 1 6 13 24 37 48 62 13 24 37 48 62

2 4 1 4 8 15 30 44 59 81 15 30 44 59 81

 (a) S = 24 (b) s = 28 (c) S = 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.

1984), which is just the running sum of all the pixel values from the origin,

s(i, j) =

iX

k=0

jX

l=0

f(k, l). (3.30)

This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i, j) = s(i� 1, j) + s(i, j � 1)� s(i� 1, j � 1) + f(i, j). (3.31)

The image s(i, j) is also often called an integral image (see Figure 3.17) and can actually be
computed using only two additions per pixel if separate row sums are used (Viola and Jones
2004). To find the summed area (integral) inside a rectangle [i0, i1] ⇥ [j0, j1], we simply
combine four samples from the summed area table,

S(i0 . . . i1, j0 . . . j1) =

i1X

i=i0

j1X

j=j0

s(i1, j1)� s(i1, j0 � 1)� s(i0 � 1, j1) + s(i0 � 1, j0 � 1).

(3.32)
A potential disadvantage of summed area tables is that they require log M + log N extra bits
in the accumulation image compared to the original image, where M and N are the image
width and height. Extensions of summed area tables can also be used to approximate other
convolution kernels (Wolberg (1990, Section 6.5.2) contains a review).

In computer vision, summed area tables have been used in face detection (Viola and
Jones 2004) to compute simple multi-scale low-level features. Such features, which consist of
adjacent rectangles of positive and negative values, are also known as boxlets (Simard, Bottou,

EECS 4422/5323 Computer Vision J. Elder

Application: Face Detection

!22
Viola & Jones 2001

EECS 4422/5323 Computer Vision J. Elder

Recursive Filters

!23

❖ The efficient raster-scan computation used to compute the integral image is an
example of a recursive filter.

❖ Also known as infinite-impulse response (IIR) filters

❖ Unfortunately Gaussian derivatives do not have a recursive implementation.

❖ However, there are efficient recursive approximations
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. I. JANUARY 1990 83

operations per input element, it is easy to see how well our ap-
proach can be used in schemes where N can be very large.

Detecting edges at multiple resolutions is a typical application
where large filters are required. It is our belief that the use of the
general recursive filtering structure we presented is very useful in
such a context. It is only necessary to change one parameter 01 to
deal with large operators without changing time execution. Of
course, the important problem of sorting out the relevant changes
at each resolution and combining them into a representation that
can be used effectively by later processes is not addressed here.
Many papers have been devoted to this probem [3], [6], [2] [8].
Burt [5] has defined a multiresolution technique of regularly spaced
resolution levels and considered some applications on motion, tex-
ture, and edge detection analysis. Crowey [8] proposed a represen-
tation based on the difference of low-pass transform of an image.
It is constructed by detecting peaks and ridges in each bandpass
images and in the entire 3-D space defined by the dfference of the
low-pass transform. This representation has been applied effi-
ciently to the task of comparing the structure of two shapes to de-
termine the correspondence of their components Witkin [3] pro-
posed to convolve the original image with a Gaussian filter over a
continuum of scales and to use the map describing the displacement
of the zero crossings over the scales as an effective description of
the original image.

The low level vision algorithms described here can also be com-
puted in the spectral domain through the use of the fast Fourier
transform and the convolution theorem. An interesting point, then,
is to compare the spectral domain approach to the one proposed
here. As the filters used are separable, the comparison can be made
only in the one-dimensional case since the one-dimensional filter
is convolved twice, once oriented horizontally and once vertically.
Using the FFT approach, the 2-D convolution would be performed
by Fourier transforming the input image, multiplying the result by
the Fourier transform of the 2-D filter considered and back trans-
forming the product to obtain the result required. Since the pro-
posed filters can be Fourier transformed analytically, only two
FFT’s are required. Dealing with an input image of size M * N
pixels leads to a total number of real multiplications of roughly 2
* M * N * log, (M * N) taking into account that the input image
is real and performing the 2-D FFT on the M * N basis. It should
be noted however that to avoid wrap-around errors due to the fact
that the image and 2-D filter are not periodic, we have to extend
the image so that the 2-D FFT is calculated on a basis K * L such
thatK>=M+m-landL>=N+n-l(m*nisthesize
of the 2-D filter) and K and L power of 2. The number of operations
required and given below therefore somewhat underestimates the
computational effort required and must be corrected. Assuming that
the 2-D FFT are performed on the 2 * M * 2 * N basis results then
in a real number of real multiplications of roughly 4 * M * N * log,
(4 * M * N). This has to be compared to 16 * M * N and 13 * M
* N for the recursive implementation of the 2-D smoothing and
directional derivative in x or y filter and 12 * M * N for the 2-D
Laplacian. Thus, it is clear that it is still best to use the recursive
filtering to carry out the smoothing or the derivative step. It should
be pointed out that the above comparisons assume that the image
can be stored in memory. This is usually not practical for a large
image. The Fourier transformation of a large image on disk is time
consuming because a transposition step is required. Also, a large
disk area is required to store the image and the intermediates re-
sults. Recursive filtering of order two overcomes both of these
problems because only three image lines need to be read to calcu-
late each output image row. This is an important practical advan-
tage which should be considered.

VI. EXPERIMENTAL RESULTS
The algorithms presented have been tested on different types of

images. Various real world images, typical indoor scenes and noisy
images, were selected and the presented algorithms provided very
good results for all types.

Fig. 1. Shapes of the recursive smoothing operator (solid line) and the
Gaussian filter (dashed line).

Fig. 2. Shapes of the recursive derivative operator (solid line) and the first
derivative of the Gaussian filter (dashed line).

For comparison purposes, Fig. 1 gives the shape of the smooth-
ing filter S(n) (solid line) and compares it to the Gaussian smooth-
ing filter (dashed line) while Fig. 2 deals with the derivative filter
D(n) (solid line) and the first derivative of a Gaussian (dashed
line). For the sake of the comparison, the operators have been
scaled to have the same maximum amplitude. Choosing the param-
eters (Y and u in such a way that both smoothing filters have the
same total energy leads to the following condition:

5
a~a=iE

In order to have smooth curves, we used the following values in
the figures (a = 10 and 01 = 0.14). Note that the shapes of S(n)
and D(n) shown by the figures are the discrete impulses responses
using the actual recursive filters. To obtain S(n) and D(n), we
used (15)-(17) and (28)-(30), respectively, with the following in-
putsignalx(n) =Oforn = 1, ff* , lOlexceptx(55) = 1.

For people more familiarized with the Gaussian filtering, an ap-
propriate value for the parameter Q can be found through the use
of (62). It gives the relation between the parameter IJ and (Y. Typ-
ical values for the parameter QI are between 0.5 and 1.5 when we
deal with images not very noisy.

Figs. 3 and 4 provide first a demonstration for the need of small
o (i.e., large size operator) when dealing with very noisy data and
show the capabilities of the derivative operator in such cases. Fig.
3 upper left shows a simple step edge, to which a Gaussian noise
of zero mean have been added. The signal-to-noise ratio (SNR),
defined as the ratio of the edge contrast to the standard deviation
of the added noise, has been set to 5. In upper right to lower right,
are the outputs of the three step edges recursively convolved with
our derivative operator using (Y = 1, 01 = 0.5, and (;Y = 0.25,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. I. JANUARY 1990 83

operations per input element, it is easy to see how well our ap-
proach can be used in schemes where N can be very large.

Detecting edges at multiple resolutions is a typical application
where large filters are required. It is our belief that the use of the
general recursive filtering structure we presented is very useful in
such a context. It is only necessary to change one parameter 01 to
deal with large operators without changing time execution. Of
course, the important problem of sorting out the relevant changes
at each resolution and combining them into a representation that
can be used effectively by later processes is not addressed here.
Many papers have been devoted to this probem [3], [6], [2] [8].
Burt [5] has defined a multiresolution technique of regularly spaced
resolution levels and considered some applications on motion, tex-
ture, and edge detection analysis. Crowey [8] proposed a represen-
tation based on the difference of low-pass transform of an image.
It is constructed by detecting peaks and ridges in each bandpass
images and in the entire 3-D space defined by the dfference of the
low-pass transform. This representation has been applied effi-
ciently to the task of comparing the structure of two shapes to de-
termine the correspondence of their components Witkin [3] pro-
posed to convolve the original image with a Gaussian filter over a
continuum of scales and to use the map describing the displacement
of the zero crossings over the scales as an effective description of
the original image.

The low level vision algorithms described here can also be com-
puted in the spectral domain through the use of the fast Fourier
transform and the convolution theorem. An interesting point, then,
is to compare the spectral domain approach to the one proposed
here. As the filters used are separable, the comparison can be made
only in the one-dimensional case since the one-dimensional filter
is convolved twice, once oriented horizontally and once vertically.
Using the FFT approach, the 2-D convolution would be performed
by Fourier transforming the input image, multiplying the result by
the Fourier transform of the 2-D filter considered and back trans-
forming the product to obtain the result required. Since the pro-
posed filters can be Fourier transformed analytically, only two
FFT’s are required. Dealing with an input image of size M * N
pixels leads to a total number of real multiplications of roughly 2
* M * N * log, (M * N) taking into account that the input image
is real and performing the 2-D FFT on the M * N basis. It should
be noted however that to avoid wrap-around errors due to the fact
that the image and 2-D filter are not periodic, we have to extend
the image so that the 2-D FFT is calculated on a basis K * L such
thatK>=M+m-landL>=N+n-l(m*nisthesize
of the 2-D filter) and K and L power of 2. The number of operations
required and given below therefore somewhat underestimates the
computational effort required and must be corrected. Assuming that
the 2-D FFT are performed on the 2 * M * 2 * N basis results then
in a real number of real multiplications of roughly 4 * M * N * log,
(4 * M * N). This has to be compared to 16 * M * N and 13 * M
* N for the recursive implementation of the 2-D smoothing and
directional derivative in x or y filter and 12 * M * N for the 2-D
Laplacian. Thus, it is clear that it is still best to use the recursive
filtering to carry out the smoothing or the derivative step. It should
be pointed out that the above comparisons assume that the image
can be stored in memory. This is usually not practical for a large
image. The Fourier transformation of a large image on disk is time
consuming because a transposition step is required. Also, a large
disk area is required to store the image and the intermediates re-
sults. Recursive filtering of order two overcomes both of these
problems because only three image lines need to be read to calcu-
late each output image row. This is an important practical advan-
tage which should be considered.

VI. EXPERIMENTAL RESULTS
The algorithms presented have been tested on different types of

images. Various real world images, typical indoor scenes and noisy
images, were selected and the presented algorithms provided very
good results for all types.

Fig. 1. Shapes of the recursive smoothing operator (solid line) and the
Gaussian filter (dashed line).

Fig. 2. Shapes of the recursive derivative operator (solid line) and the first
derivative of the Gaussian filter (dashed line).

For comparison purposes, Fig. 1 gives the shape of the smooth-
ing filter S(n) (solid line) and compares it to the Gaussian smooth-
ing filter (dashed line) while Fig. 2 deals with the derivative filter
D(n) (solid line) and the first derivative of a Gaussian (dashed
line). For the sake of the comparison, the operators have been
scaled to have the same maximum amplitude. Choosing the param-
eters (Y and u in such a way that both smoothing filters have the
same total energy leads to the following condition:

5
a~a=iE

In order to have smooth curves, we used the following values in
the figures (a = 10 and 01 = 0.14). Note that the shapes of S(n)
and D(n) shown by the figures are the discrete impulses responses
using the actual recursive filters. To obtain S(n) and D(n), we
used (15)-(17) and (28)-(30), respectively, with the following in-
putsignalx(n) =Oforn = 1, ff* , lOlexceptx(55) = 1.

For people more familiarized with the Gaussian filtering, an ap-
propriate value for the parameter Q can be found through the use
of (62). It gives the relation between the parameter IJ and (Y. Typ-
ical values for the parameter QI are between 0.5 and 1.5 when we
deal with images not very noisy.

Figs. 3 and 4 provide first a demonstration for the need of small
o (i.e., large size operator) when dealing with very noisy data and
show the capabilities of the derivative operator in such cases. Fig.
3 upper left shows a simple step edge, to which a Gaussian noise
of zero mean have been added. The signal-to-noise ratio (SNR),
defined as the ratio of the edge contrast to the standard deviation
of the added noise, has been set to 5. In upper right to lower right,
are the outputs of the three step edges recursively convolved with
our derivative operator using (Y = 1, 01 = 0.5, and (;Y = 0.25,

Gaussian

Recursive approximation

Recursive approximation

Gaussian 1st derivative

EECS 4422/5323 Computer Vision J. Elder

Optimal Linear Filters

!24

❖ For some problems and under some conditions, it can be proven that linear filtering
yields an optimal solution.

๏ Example: estimation of the mean irradiance from a surface in the scene.

๏ Notes:

 This is a box filter, which can be implemented using integral images.

Let f (x, y) = g(x, y)+ n(x, y) be a noisy image patch,
where g(x, y) is the true irradiance from the patch
and n(x, y) is random noise added by the sensor.

If n(x, y) is additive Gaussian, independent and identically distributed (IID), then

f = 1
n

f (x, y)
x ,y
∑ is an optimal (unbiased and efficient) estimator of g = 1

n
g(x, y)

x ,y
∑ ,

where n is the number of pixels in the patch.

f minimizes the mean squared deviation: f = argmin
f̂

1
n

f̂ − f (x, y)()2

x ,y
∑

EECS 4422/5323 Computer Vision J. Elder

Outline

!25

❖ Point Operators

❖ Linear Filters

❖ Nonlinear Filters

EECS 4422/5323 Computer Vision J. Elder

Nonlinear Filters

!26

❖ For many problems/conditions, linear filtering is provably sub-optimal.

๏ Example: shot noise.

๏ Can we do better than this?

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) α-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

Image + shot noise After linear filtering with a Gaussian lowpass filter

EECS 4422/5323 Computer Vision J. Elder

Median Filters

!27

❖ A median filter simply replaces the pixel value with the median value in its
neighbourhood.

❖ It is a good choice for shot (heavy-tailed) noise, as the median value is not affected by
extreme noise values

❖ Can be computed in linear time.

❖ Reduces blurring of edges

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) α-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) α-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

Image + shot noise Gaussian lowpass filter Median filter

MATLAB function
medfilt2

EECS 4422/5323 Computer Vision J. Elder

Median Filters

!28

❖ While averaging minimizes the squared deviation, median filtering minimizes the
absolute (L1) error:

f = argmin
f̂

1
n

f̂ − f (x, y)
x ,y
∑

EECS 4422/5323 Computer Vision J. Elder

Bilateral Filters

!29

❖ Gaussian linear filters provide a nice way of grading the weights of neighbouring
pixels so that closer pixels have more influence than more distant pixels.

❖ Median filters provide a nice way of reducing the influence of outlier values.

❖ Can we somehow combine these two things?

https://youtu.be/gwGQ_w9lgHw

EECS 4422/5323 Computer Vision J. Elder

Bilateral Filters

!30

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 125

While we could try to use the ↵-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage ↵, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values

g(i, j) =

P
k,l

f(k, l)w(i, j, k, l)
P

k,l
w(i, j, k, l)

. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.19c),

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
, (3.35)

and a data-dependent range kernel (Figure 3.19d),

r(i, j, k, l) = exp

✓
�kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.36)

When multiplied together, these yield the data-dependent bilateral weight function

w(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

� kf(i, j)� f(k, l)k2

2�2
r

◆
. (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color
bands signals a change in material and hence the need to downweight a pixel’s influence.5

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) α-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) α-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

EECS 4422/5323 Computer Vision J. Elder

Bilateral Filters - Example

!31

input spatial kernel f influence g in the intensity weight f g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, Itp Its is
used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.
In particular, we can extend the 0-order anisotropic diffusion to

a larger spatial support:

It 1
s Its λ ∑

p Ω
f p s g Itp Its Itp Its (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].
In the case where the conductance g is uniform (isotropic filter-

ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.
We now come to the robust statistical interpretation of bilateral

filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W-estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s Ω

∑
p Ω

ρ Is Ip (9)

or for each pixel s:
∑
p Ω

ψ Is Ip 0 (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ x g x x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.
Eqs. 9 and 10 are not strictly equivalent because of local min-

ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.
It was noted by Tomasi et al. [1998] that bilateral filtering usu-

ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.
Now that we have shown that 0-order anisotropic diffusion and

bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f p s g Itp Its Itp Its flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1 k

Input image f

input spatial kernel f influence g in the intensity weight f g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, Itp Its is
used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.
In particular, we can extend the 0-order anisotropic diffusion to

a larger spatial support:

It 1
s Its λ ∑

p Ω
f p s g Itp Its Itp Its (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].
In the case where the conductance g is uniform (isotropic filter-

ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.
We now come to the robust statistical interpretation of bilateral

filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W-estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s Ω

∑
p Ω

ρ Is Ip (9)

or for each pixel s:
∑
p Ω

ψ Is Ip 0 (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ x g x x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.
Eqs. 9 and 10 are not strictly equivalent because of local min-

ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.
It was noted by Tomasi et al. [1998] that bilateral filtering usu-

ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.
Now that we have shown that 0-order anisotropic diffusion and

bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f p s g Itp Its Itp Its flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1 k

Range kernel r

input spatial kernel f influence g in the intensity weight f g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, Itp Its is
used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.
In particular, we can extend the 0-order anisotropic diffusion to

a larger spatial support:

It 1
s Its λ ∑

p Ω
f p s g Itp Its Itp Its (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].
In the case where the conductance g is uniform (isotropic filter-

ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.
We now come to the robust statistical interpretation of bilateral

filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W-estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s Ω

∑
p Ω

ρ Is Ip (9)

or for each pixel s:
∑
p Ω

ψ Is Ip 0 (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ x g x x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.
Eqs. 9 and 10 are not strictly equivalent because of local min-

ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.
It was noted by Tomasi et al. [1998] that bilateral filtering usu-

ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.
Now that we have shown that 0-order anisotropic diffusion and

bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f p s g Itp Its Itp Its flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1 k

Domain kernel d

input spatial kernel f influence g in the intensity weight f g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, Itp Its is
used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.
In particular, we can extend the 0-order anisotropic diffusion to

a larger spatial support:

It 1
s Its λ ∑

p Ω
f p s g Itp Its Itp Its (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].
In the case where the conductance g is uniform (isotropic filter-

ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.
We now come to the robust statistical interpretation of bilateral

filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W-estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s Ω

∑
p Ω

ρ Is Ip (9)

or for each pixel s:
∑
p Ω

ψ Is Ip 0 (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ x g x x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.
Eqs. 9 and 10 are not strictly equivalent because of local min-

ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.
It was noted by Tomasi et al. [1998] that bilateral filtering usu-

ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.
Now that we have shown that 0-order anisotropic diffusion and

bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f p s g Itp Its Itp Its flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1 k

Bilateral weight function winput spatial kernel f influence g in the intensity weight f g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, Itp Its is
used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.
In particular, we can extend the 0-order anisotropic diffusion to

a larger spatial support:

It 1
s Its λ ∑

p Ω
f p s g Itp Its Itp Its (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].
In the case where the conductance g is uniform (isotropic filter-

ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.
We now come to the robust statistical interpretation of bilateral

filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W-estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s Ω

∑
p Ω

ρ Is Ip (9)

or for each pixel s:
∑
p Ω

ψ Is Ip 0 (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ x g x x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.
Eqs. 9 and 10 are not strictly equivalent because of local min-

ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.
It was noted by Tomasi et al. [1998] that bilateral filtering usu-

ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.
Now that we have shown that 0-order anisotropic diffusion and

bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f p s g Itp Its Itp Its flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1 k

Output image g

Example pixel

Tomasi & Manduci, 1998

EECS 4422/5323 Computer Vision J. Elder

❖ Iterative application of bilateral filtering leads to a smoothing process equivalent to a
popular edge-preserving smoothing technique due to Perona & Malik called
anistropic diffusion.

❖ e.g., for a 4-neighbourhood:

❖ and so

Anisotropic Diffusion

!32

3.3 More neighborhood operators 127

We can thus re-write (3.34) as

f (t+1)
(i, j) =

f (t)
(i, j) + ⌘

P
k,l

f (t)
(k, l)r(i, j, k, l)

1 + ⌘
P

k,l
r(i, j, k, l)

(3.40)

= f (t)
(i, j) +

⌘

1 + ⌘R

X

k,l

r(i, j, k, l)[f (t)
(k, l)� f (t)

(i, j)],

where R =
P

(k,l) r(i, j, k, l), (k, l) are the N4 neighbors of (i, j), and we have made the
iterative nature of the filtering explicit.

As Barash (2002) notes, (3.40) is the same as the discrete anisotropic diffusion equation
first proposed by Perona and Malik (1990b).6 Since its original introduction, anisotropic dif-
fusion has been extended and applied to a wide range of problems (Nielsen, Florack, and De-
riche 1997; Black, Sapiro, Marimont et al. 1998; Weickert, ter Haar Romeny, and Viergever
1998; Weickert 1998). It has also been shown to be closely related to other adaptive smooth-
ing techniques (Saint-Marc, Chen, and Medioni 1991; Barash 2002; Barash and Comaniciu
2004) as well as Bayesian regularization with a non-linear smoothness term that can be de-
rived from image statistics (Scharr, Black, and Haussecker 2003).

In its general form, the range kernel r(i, j, k, l) = r(kf(i, j)�f(k, l)k), which is usually
called the gain or edge-stopping function, or diffusion coefficient, can be any monotonically
increasing function with r0

(x) ! 0 as x ! 1. Black, Sapiro, Marimont et al. (1998) show
how anisotropic diffusion is equivalent to minimizing a robust penalty function on the image
gradients, which we discuss in Sections 3.7.1 and 3.7.2). Scharr, Black, and Haussecker
(2003) show how the edge-stopping function can be derived in a principled manner from
local image statistics. They also extend the diffusion neighborhood from N4 to N8, which
allows them to create a diffusion operator that is both rotationally invariant and incorporates
information about the eigenvalues of the local structure tensor.

Note that, without a bias term towards the original image, anisotropic diffusion and itera-
tive adaptive smoothing converge to a constant image. Unless a small number of iterations is
used (e.g., for speed), it is usually preferable to formulate the smoothing problem as a joint
minimization of a smoothness term and a data fidelity term, as discussed in Sections 3.7.1
and 3.7.2 and by Scharr, Black, and Haussecker (2003), which introduce such a bias in a
principled manner.

3.3.2 Morphology

While non-linear filters are often used to enhance grayscale and color images, they are also
used extensively to process binary images. Such images often occur after a thresholding

6 The 1/(1 + ⌘R) factor is not present in anisotropic diffusion but becomes negligible as ⌘ ! 0.

3.3 More neighborhood operators 127

We can thus re-write (3.34) as

f (t+1)
(i, j) =

f (t)
(i, j) + ⌘

P
k,l

f (t)
(k, l)r(i, j, k, l)

1 + ⌘
P

k,l
r(i, j, k, l)

(3.40)

= f (t)
(i, j) +

⌘

1 + ⌘R

X

k,l

r(i, j, k, l)[f (t)
(k, l)� f (t)

(i, j)],

where R =
P

(k,l) r(i, j, k, l), (k, l) are the N4 neighbors of (i, j), and we have made the
iterative nature of the filtering explicit.

As Barash (2002) notes, (3.40) is the same as the discrete anisotropic diffusion equation
first proposed by Perona and Malik (1990b).6 Since its original introduction, anisotropic dif-
fusion has been extended and applied to a wide range of problems (Nielsen, Florack, and De-
riche 1997; Black, Sapiro, Marimont et al. 1998; Weickert, ter Haar Romeny, and Viergever
1998; Weickert 1998). It has also been shown to be closely related to other adaptive smooth-
ing techniques (Saint-Marc, Chen, and Medioni 1991; Barash 2002; Barash and Comaniciu
2004) as well as Bayesian regularization with a non-linear smoothness term that can be de-
rived from image statistics (Scharr, Black, and Haussecker 2003).

In its general form, the range kernel r(i, j, k, l) = r(kf(i, j)�f(k, l)k), which is usually
called the gain or edge-stopping function, or diffusion coefficient, can be any monotonically
increasing function with r0

(x) ! 0 as x ! 1. Black, Sapiro, Marimont et al. (1998) show
how anisotropic diffusion is equivalent to minimizing a robust penalty function on the image
gradients, which we discuss in Sections 3.7.1 and 3.7.2). Scharr, Black, and Haussecker
(2003) show how the edge-stopping function can be derived in a principled manner from
local image statistics. They also extend the diffusion neighborhood from N4 to N8, which
allows them to create a diffusion operator that is both rotationally invariant and incorporates
information about the eigenvalues of the local structure tensor.

Note that, without a bias term towards the original image, anisotropic diffusion and itera-
tive adaptive smoothing converge to a constant image. Unless a small number of iterations is
used (e.g., for speed), it is usually preferable to formulate the smoothing problem as a joint
minimization of a smoothness term and a data fidelity term, as discussed in Sections 3.7.1
and 3.7.2 and by Scharr, Black, and Haussecker (2003), which introduce such a bias in a
principled manner.

3.3.2 Morphology

While non-linear filters are often used to enhance grayscale and color images, they are also
used extensively to process binary images. Such images often occur after a thresholding

6 The 1/(1 + ⌘R) factor is not present in anisotropic diffusion but becomes negligible as ⌘ ! 0.

126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
(3.38)

=

(
1, |k � i| + |l � j| = 0,

� = e�1/2�
2
d , |k � i| + |l � j| = 1.

(3.39)
η

Perona & Malik, 1990

EECS 4422/5323 Computer Vision J. Elder

Anisotropic Diffusion Example

!33

❖ But note that
lim
t→∞

f (t) (i, j) = constant

t

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Oct 1, 2018

!34

EECS 4422/5323 Computer Vision J. Elder

Morphological Filters

!35

❖ Binary image processing often involves morphological filtering:

๏ Convolve with local filter s called a structuring element

๏ Threshold result:

๏ Example: Boxcar structuring element of size S = 9

s =
1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

3.3 More neighborhood operators 129

• closing: close(f, s) = erode(dilate(f, s), s).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of 1s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l)

be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

d1(k, l) = |k| + |l| (3.43)

and the Euclidean distance
d2(k, l) =

p
k2 + l2. (3.44)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i� k, j � l), (3.45)

i.e., it is the distance to the nearest background pixel whose value is 0.
The D1 city block distance transform can be efficiently computed using a forward and

backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

MATLAB functions
imdilate
imerode
imopen
inclose

c = f ∗s
θ c,t() = 1 if c ≥ t

0 otherwise

⎧
⎨
⎩⎪

EECS 4422/5323 Computer Vision J. Elder

The Distance Transform

!36

3.3 More neighborhood operators 129

• closing: close(f, s) = erode(dilate(f, s), s).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of 1s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l)

be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

d1(k, l) = |k| + |l| (3.43)

and the Euclidean distance
d2(k, l) =

p
k2 + l2. (3.44)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i� k, j � l), (3.45)

i.e., it is the distance to the nearest background pixel whose value is 0.
The D1 city block distance transform can be efficiently computed using a forward and

backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

3.3 More neighborhood operators 129

• closing: close(f, s) = erode(dilate(f, s), s).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of 1s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l)

be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

d1(k, l) = |k| + |l| (3.43)

and the Euclidean distance
d2(k, l) =

p
k2 + l2. (3.44)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i� k, j � l), (3.45)

i.e., it is the distance to the nearest background pixel whose value is 0.
The D1 city block distance transform can be efficiently computed using a forward and

backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

3.3 More neighborhood operators 129

• closing: close(f, s) = erode(dilate(f, s), s).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of 1s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l)

be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

d1(k, l) = |k| + |l| (3.43)

and the Euclidean distance
d2(k, l) =

p
k2 + l2. (3.44)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i� k, j � l), (3.45)

i.e., it is the distance to the nearest background pixel whose value is 0.
The D1 city block distance transform can be efficiently computed using a forward and

backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

3.3 More neighborhood operators 129

• closing: close(f, s) = erode(dilate(f, s), s).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of 1s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l)

be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

d1(k, l) = |k| + |l| (3.43)

and the Euclidean distance
d2(k, l) =

p
k2 + l2. (3.44)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i� k, j � l), (3.45)

i.e., it is the distance to the nearest background pixel whose value is 0.
The D1 city block distance transform can be efficiently computed using a forward and

backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

MATLAB function
bwdist

EECS 4422/5323 Computer Vision J. Elder

Computing the Distance Transform

!37

❖ City block

๏ Forward-backward two-pass raster scan

✦ Initialize:

✦ Forward pass

✦ Backward pass

for j = 2:n
if b(1,j) > 0

b(1,j) = 1 + b(1,j-1)
for i = 2:m

if b(i,1) > 0
b(i,1) = 1 + b(i-1,1)

for j = 2:n
if b(i, j) > 0

b(i, j) = 1 + min(b(i-1, j),b(i, k-1))

130 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

.
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 2 0 0 0 0 1 1 2 0 0 0 0 1 1 1 0 0

0 1 1 1 1 1 0 0 1 2 2 3 1 0 0 1 2 2 3 1 0 0 1 2 2 2 1 0

0 1 1 1 1 1 0 0 1 2 3 0 1 2 2 1 1 0 0 1 2 2 1 1 0

0 1 1 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0

(a) (b) (c) (d)

Figure 3.22 City block distance transform: (a) original binary image; (b) top to bottom
(forward) raster sweep: green values are used to compute the orange value; (c) bottom to top
(backward) raster sweep: green values are merged with old orange value; (d) final distance
transform.

Efficiently computing the Euclidean distance transform is more complicated. Here, just
keeping the minimum scalar distance to the boundary during the two passes is not sufficient.
Instead, a vector-valued distance consisting of both the x and y coordinates of the distance
to the boundary must be kept and compared using the squared distance (hypotenuse) rule. As
well, larger search regions need to be used to obtain reasonable results. Rather than explaining
the algorithm (Danielsson 1980; Borgefors 1986) in more detail, we leave it as an exercise
for the motivated reader (Exercise 3.13).

Figure 3.11g shows a distance transform computed from a binary image. Notice how
the values grow away from the black (ink) regions and form ridges in the white area of the
original image. Because of this linear growth from the starting boundary pixels, the distance
transform is also sometimes known as the grassfire transform, since it describes the time at
which a fire starting inside the black region would consume any given pixel, or a chamfer,
because it resembles similar shapes used in woodworking and industrial design. The ridges
in the distance transform become the skeleton (or medial axis transform (MAT)) of the region
where the transform is computed, and consist of pixels that are of equal distance to two (or
more) boundaries (Tek and Kimia 2003; Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which
computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The
simplest way to create this is to compute the distance transforms for both the original bi-
nary image and its complement and to negate one of them before combining. Because such
distance fields tend to be smooth, it is possible to store them more compactly (with mini-
mal loss in relative accuracy) using a spline defined over a quadtree or octree data structure
(Lavallée and Szeliski 1995; Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al.
2000). Such precomputed signed distance transforms can be extremely useful in efficiently
aligning and merging 2D curves and 3D surfaces (Huttenlocher, Klanderman, and Rucklidge

Input image

130 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

.
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 2 0 0 0 0 1 1 2 0 0 0 0 1 1 1 0 0

0 1 1 1 1 1 0 0 1 2 2 3 1 0 0 1 2 2 3 1 0 0 1 2 2 2 1 0

0 1 1 1 1 1 0 0 1 2 3 0 1 2 2 1 1 0 0 1 2 2 1 1 0

0 1 1 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0

(a) (b) (c) (d)

Figure 3.22 City block distance transform: (a) original binary image; (b) top to bottom
(forward) raster sweep: green values are used to compute the orange value; (c) bottom to top
(backward) raster sweep: green values are merged with old orange value; (d) final distance
transform.

Efficiently computing the Euclidean distance transform is more complicated. Here, just
keeping the minimum scalar distance to the boundary during the two passes is not sufficient.
Instead, a vector-valued distance consisting of both the x and y coordinates of the distance
to the boundary must be kept and compared using the squared distance (hypotenuse) rule. As
well, larger search regions need to be used to obtain reasonable results. Rather than explaining
the algorithm (Danielsson 1980; Borgefors 1986) in more detail, we leave it as an exercise
for the motivated reader (Exercise 3.13).

Figure 3.11g shows a distance transform computed from a binary image. Notice how
the values grow away from the black (ink) regions and form ridges in the white area of the
original image. Because of this linear growth from the starting boundary pixels, the distance
transform is also sometimes known as the grassfire transform, since it describes the time at
which a fire starting inside the black region would consume any given pixel, or a chamfer,
because it resembles similar shapes used in woodworking and industrial design. The ridges
in the distance transform become the skeleton (or medial axis transform (MAT)) of the region
where the transform is computed, and consist of pixels that are of equal distance to two (or
more) boundaries (Tek and Kimia 2003; Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which
computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The
simplest way to create this is to compute the distance transforms for both the original bi-
nary image and its complement and to negate one of them before combining. Because such
distance fields tend to be smooth, it is possible to store them more compactly (with mini-
mal loss in relative accuracy) using a spline defined over a quadtree or octree data structure
(Lavallée and Szeliski 1995; Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al.
2000). Such precomputed signed distance transforms can be extremely useful in efficiently
aligning and merging 2D curves and 3D surfaces (Huttenlocher, Klanderman, and Rucklidge

Forward pass

130 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

.
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 2 0 0 0 0 1 1 2 0 0 0 0 1 1 1 0 0

0 1 1 1 1 1 0 0 1 2 2 3 1 0 0 1 2 2 3 1 0 0 1 2 2 2 1 0

0 1 1 1 1 1 0 0 1 2 3 0 1 2 2 1 1 0 0 1 2 2 1 1 0

0 1 1 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0

(a) (b) (c) (d)

Figure 3.22 City block distance transform: (a) original binary image; (b) top to bottom
(forward) raster sweep: green values are used to compute the orange value; (c) bottom to top
(backward) raster sweep: green values are merged with old orange value; (d) final distance
transform.

Efficiently computing the Euclidean distance transform is more complicated. Here, just
keeping the minimum scalar distance to the boundary during the two passes is not sufficient.
Instead, a vector-valued distance consisting of both the x and y coordinates of the distance
to the boundary must be kept and compared using the squared distance (hypotenuse) rule. As
well, larger search regions need to be used to obtain reasonable results. Rather than explaining
the algorithm (Danielsson 1980; Borgefors 1986) in more detail, we leave it as an exercise
for the motivated reader (Exercise 3.13).

Figure 3.11g shows a distance transform computed from a binary image. Notice how
the values grow away from the black (ink) regions and form ridges in the white area of the
original image. Because of this linear growth from the starting boundary pixels, the distance
transform is also sometimes known as the grassfire transform, since it describes the time at
which a fire starting inside the black region would consume any given pixel, or a chamfer,
because it resembles similar shapes used in woodworking and industrial design. The ridges
in the distance transform become the skeleton (or medial axis transform (MAT)) of the region
where the transform is computed, and consist of pixels that are of equal distance to two (or
more) boundaries (Tek and Kimia 2003; Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which
computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The
simplest way to create this is to compute the distance transforms for both the original bi-
nary image and its complement and to negate one of them before combining. Because such
distance fields tend to be smooth, it is possible to store them more compactly (with mini-
mal loss in relative accuracy) using a spline defined over a quadtree or octree data structure
(Lavallée and Szeliski 1995; Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al.
2000). Such precomputed signed distance transforms can be extremely useful in efficiently
aligning and merging 2D curves and 3D surfaces (Huttenlocher, Klanderman, and Rucklidge

Backward pass

130 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

.
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 2 0 0 0 0 1 1 2 0 0 0 0 1 1 1 0 0

0 1 1 1 1 1 0 0 1 2 2 3 1 0 0 1 2 2 3 1 0 0 1 2 2 2 1 0

0 1 1 1 1 1 0 0 1 2 3 0 1 2 2 1 1 0 0 1 2 2 1 1 0

0 1 1 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0

(a) (b) (c) (d)

Figure 3.22 City block distance transform: (a) original binary image; (b) top to bottom
(forward) raster sweep: green values are used to compute the orange value; (c) bottom to top
(backward) raster sweep: green values are merged with old orange value; (d) final distance
transform.

Efficiently computing the Euclidean distance transform is more complicated. Here, just
keeping the minimum scalar distance to the boundary during the two passes is not sufficient.
Instead, a vector-valued distance consisting of both the x and y coordinates of the distance
to the boundary must be kept and compared using the squared distance (hypotenuse) rule. As
well, larger search regions need to be used to obtain reasonable results. Rather than explaining
the algorithm (Danielsson 1980; Borgefors 1986) in more detail, we leave it as an exercise
for the motivated reader (Exercise 3.13).

Figure 3.11g shows a distance transform computed from a binary image. Notice how
the values grow away from the black (ink) regions and form ridges in the white area of the
original image. Because of this linear growth from the starting boundary pixels, the distance
transform is also sometimes known as the grassfire transform, since it describes the time at
which a fire starting inside the black region would consume any given pixel, or a chamfer,
because it resembles similar shapes used in woodworking and industrial design. The ridges
in the distance transform become the skeleton (or medial axis transform (MAT)) of the region
where the transform is computed, and consist of pixels that are of equal distance to two (or
more) boundaries (Tek and Kimia 2003; Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which
computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The
simplest way to create this is to compute the distance transforms for both the original bi-
nary image and its complement and to negate one of them before combining. Because such
distance fields tend to be smooth, it is possible to store them more compactly (with mini-
mal loss in relative accuracy) using a spline defined over a quadtree or octree data structure
(Lavallée and Szeliski 1995; Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al.
2000). Such precomputed signed distance transforms can be extremely useful in efficiently
aligning and merging 2D curves and 3D surfaces (Huttenlocher, Klanderman, and Rucklidge

Distance transform

b(find(b(:))) = ∞

for j = n-1:-1:1
if b(m,j) > 0

b(m,j) = 1 + min(b(m,j),b(m,j+1))
for i = m-1:-1:1

if b(i,n) > 0
b(i,n) = 1 + min(b(i,n),b(i+1,n))

for j = n-1:-1:1
if b(i, j) > 0

b(i, j) = min(b(i,j),1+b(i+1, j),1+b(i, j+1))

EECS 4422/5323 Computer Vision J. Elder

Outline

!38

❖ Point Operators

❖ Linear Filters

❖ Nonlinear Filters

