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3.1 Image Processing: Filtering
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Image Processing vs Computer Vision #+
¢ What 1s the difference between image processing and computer vision?
*» Image processing maps an image to a different version of the image.

» Computer vision maps one or more images to inferences about the visual scene.

*» Image processing operations often required as pre-processing for computer vision
algorithms.
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¢ Point Operators
¢ Linear Filters

** Nonlinear Filters

EECS 4422/5323 Computer Vision 3 J. Elder



¢ Point Operators
¢ Linear Filters

** Nonlinear Filters
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output 1image
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Point Operators

¢ Image processing point operators transform each pixel independently of other pixels.

g9(x) = h(f(z))

col 1dx

[
(4,7))

9(i,5) = h(f (5,
/ point ol)era‘tor\

row 1dx
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Examples o

¢ Contrast/brightness adjustment:

Gain’(contrast) Bias (brightness)

¢ Inverse gamma - undo compressive gamma mapping applied in sensor so that pixel
intensities are (approximately) proportional to the light irradiance at the sensor:

g(x)=x’

(note that textbook Eqn. 3.7 has this backwards)
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Histogram Equalization e

¢ The colours in most images are not uniformly distributed across the gamut.

/

¢ Redistribution of these colours to be uniform 1s called histogram equalization.
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End of Lecture
Sept 24, 2018
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¢ Point Operators
¢ Linear Filters

** Nonlinear Filters
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Linear Filters T

¢ Many image processing operations involve linear combinations of the pixels within a
finite neighbourhood of a pixel.

 Typically, the same set of weights 1s applied at each pixel.
¢ The pattern of weights is called a linear filter.

¢ When applied at all locations in the 1image, this can be expressed as a correlation:

g(i,j) = > _ fi+k,j+Dh(k,D)
k,l \ MATLAB function
XCOIT

or

Linear filter

g=/f®h

¢ or alternatively as a convolution

g(i,j) = Z fi—k,j—Dh(k1) = Z flk,Dh(i —k,7 =1 MATLAB functions
k.l k.l conv, conv2, convn

or

g p— f %k h'<\ .
Impulse response function: A * § = h,
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Linear Shift Invariant Operators ~  “#"

¢ Both correlation and convolution are linear shift invariant operators, which obey

Superposition

ho(fo+ fi)=hofo+hofi

Shift invariance

9(i,5) = fli+k,j+1) < (hog)(i,j) = (ho f)li+k,j+1)

Correlation and convolution can both be written as a matrix-vector multiply, if we first
convert the two-dimensional images f (¢, j) and g(¢, j) into raster-ordered vectors f and g,

g=HFf

where the (sparse) H matrix contains the convolution kernels.
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Handling Borders S

¢ What do we do near the border of the image, where the kernel (filter) ‘falls off” the
edge?
s kernel A

Image f
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Handling Borders S

R/

¢ Padding options
Zero-padding - ignore kernel weights that fall outside image

Clamp - extend boundary values of image

Cyclic - toroidally wrap around

Mirror - reflect pixels across image edge

% Alternatively, we can crop the image and return only the ‘valid’ portion

e.g., MATLAB conv2(...,shape) returns a subsection of the two-dimensional convolution, as
specified by the shape parameter:

4 “full' Returns the full two-dimensional convolution (default).
4 ‘same' Returns the central part of the convolution of the same size as A.

4 ‘valid' Returns only those parts of the convolution for which the kernel lies entirely within the image.
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Separable Filters ~ #d

¢ Given a general 2D kernel of size (m, n) pixels, application at each pixel of the image
involves m*n multiplies.

¢ For an M*N 1mage, the total number of multiplies for the convolution is M*N*m*n.

*» However, certain special 2D kernels can be decomposed into 2 1D kernels, reducing
the number of multiples at a pixel to m + n.

 Example: 2D axis-aligned Gaussian kernel
1 1 x> ¥ 1 x’ 1 y’
h(x,y)= exp| —— + = exp| — exp| —
(x.) 270 O, p( 2[03 o ]] [ 27O, p( 207 D(x/zmx p( 20,

MATLAB function
conv2(hl, h2, A)
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Example Separable Filters 0

B ] 11416 | 4|1
R 1 11211 4116|124 | 16 | 4 —1(0 |1 1 |1 =21 1
1 1 1 1
=T Llolalo| Sl6|24|36|24(6] 2| —2]0|2] 1|-2] 4 [-2
|1 121 4016|2416 |4 “1]o0]1 1] -2 1
L1 L 114 6|41
1 1 1 1 1
Ll1]1 1| 121 Li1l4)6]4]1 l-1]0]1 1] —211
B
(a) box, K =5 (b) bilinear (¢) “Gaussian” (d) Sobel (e) corner
\ J
|
Smoothing Edge detection
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Gaussian Derivatives @

¢ Local difference filters like the Sobel filter estimate local intensity gradients.
¢ But the restriction to a 3x3 neighbourhood of the image makes the results noisy.

¢ A more general and smooth family of filters are the Gaussian derivatives, which can
be derived by taking partial spatial derivatives of the 2D Gaussian function

1 _w2+y2
G(CE, y? O-) — 27T0_2 € 202

¥4yt o0 | S
sz(x,y){ - }e

¢ Example: Laplacian of Gaussian (LoG):

92 N 5%y A
- 0x2  Oy?

= V2G(z,y;0) = (

V2 f

MATLAB function
mvnpdf

EECS 4422/5323 Computer Vision 16 J. Elder



Steerable Filters AT

*» To detect contours in the image, we typically use oriented Gaussian derivative filters,
formed by taking directional derivatives of the Gaussian function:

@ -V(Gxf)=Vg(Gxf)=(VaG) = [

+» Note that

Ggy =uGy +vGy, = u@_G — vé)—G = cosOa—G+sin98—G where u# = (u,v) = (cos8,sinH)
Ox Ay ox dy

¢ In other words, the Gaussian derivative filter in direction u is a weighted sum of the

Gaussian derivatives in X and y directions. 3G G
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«»» It turns out that Gaussian derivatives of all orders are steerable with a finite number of

basis functions.

What filters are steerable?

¢ For example, a Gaussian 2nd derivative requires 3 basis functions:

Gaa = UGy + 2uvGyy + v2ny

¢ Moreover, the basis functions are separable (or superpositions of separable functions).

Order

Gm,4

Gm,S

fm,ftIS
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Application: Edge Detection

Local Scale Control

Elder & Zucker 1998
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End of Lecture
Sept 26, 2018
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Integral Images %

¢ If a diversity of box filters are to be employed, it can be very efficient to derive these
from the integral image s(i, j), which 1s the 2D analog of a 1D cumulative sum:

S(ivj) — ZZf(kal)

k=0 =0
¢ This 1s efficiently computed using a raster-scan algorithm:

 Now, for example, a rectangular box average of arbitrary size and shape can be
computed using just 4 additions/subtractions on the integral image:

SITY

S(io.--11,J0---J1) = s(i1,J1) — s(i1, Jo — 1) — s(io — 1,41) + s(io — 1, jo — 1)
Image f Integral 1mage s Integral 1mage s
312171213 3 (5 (1214117 3| S |12114| 17
1151 1)]3]|4 4 (11119]24] 31 4 (11| 19|24 31
S1 11315 (1 9 117 |28 38| 46 9 117]28(38]46
413121 1] 6 13124 37|48 62 131243748 62
2 (4|1 4] 8 1513044 ] 59| 81 1513044 59| 81
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Application: Face Detecton "7

Viola & Jones 2001
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Recursive Filters IHa

¢ The efficient raster-scan computation used to compute the integral image 1s an
example of a recursive filter.

% Also known as infinite-impulse response (IIR) filters
% Unfortunately Gaussian derivatives do not have a recursive implementation.

*» However, there are efficient recursive approximations

Recursive approximation
Gaussian 1st derivative

Recursiv

Gaussian
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Optimal Linear Filters @

% For some problems and under some conditions, it can be proven that linear filtering
yields an optimal solution.

Example: estimation of the mean irradiance from a surface in the scene.

Letf(x,y)=g(x,y)+ n(x,y) be a noisy image patch,
where g(x, y) 1s the true irradiance from the patch

and n(x, y) 1s random noise added by the sensor.

If n(x, y) 1s additive Gaussian, independent and 1dentically distributed (IID), then

- 1 . . : . . _ 1
f= —2 f(x,y) 1s an optimal (unbiased and efficient) estimator of g = —2 2(x,y),
n Moy

where 7 1s the number of pixels in the patch.

Notes:

This 1s a box filter, which can be implemented using integral images.

- .. T .1 . 2
/ minimizes the mean squared deviation: f =arg mln—Z( f—f(x, y))
f n X,y
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¢ Point Operators
¢ Linear Filters

** Nonlinear Filters
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Nonlinear Filters e

¢ For many problems/conditions, linear filtering is provably sub-optimal.

Example: shot noise.

Image + shot noise After linear filtering with a Gaussian lowpass filter

Can we do better than this?
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Median Filters AT

¢ A median filter simply replaces the pixel value with the median value 1n its
neighbourhood.
1121121 4 -
2113 ]5]s MATLAB function
L[3]7]6]9 medfilt2
3148|617
415171819

¢ Itis a good choice for shot (heavy-tailed) noise, as the median value 1s not affected by
extreme noise values

¢ Can be computed 1n linear time.

¢ Reduces blurring of edges -

Image + shot noise Gaussian lowpass filter Median filter

EECS 4422/5323 Computer Vision 27 J. Elder



UNIVERSITE

Median Filters = &5

¢ While averaging minimizes the squared deviation, median filtering minimizes the
absolute (L1) error:

7=argmin— Y| 7 - £(x,)
S n.,
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Bilateral Filters e

¢ Gaussian linear filters provide a nice way of grading the weights of neighbouring
pixels so that closer pixels have more influence than more distant pixels.

¢ Median filters provide a nice way of reducing the influence of outlier values.

/

% Can we somehow combine these two things?
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Bilateral Filters = &

In the bilateral filter, the output pixel value depends on a weighted combination of neigh-

boring pixel values

(Z ) _ Zk,l f(k,l)TU(Z,j,k,l)
g S wlig kD)

The weighting coefficient w(z, j, k, [) depends on the product of a domain kernel

AV . \2 0.1/03]0.4]03]0.1
(i —k)*+(—1) o3o0slosloslo
20c2i 0.4[08|1.0[0.8l04

0.310.6/0.810.610.3
0.1]10.310.410.3]0.1

d(i, 7, k,1) = exp (—

and a data-dependent range kernel (Figure 3.19d),

0.0{0.010.0(0.010.2
!U@J%aﬂhﬂw>. soloo[ialos]os

2
207

0.0/10.210.8|0.8]|1.0
0210.4]1.0/0.8|0.4

r(i, 7, k,1) = exp (—

When multiplied together, these yield the data-dependent bilateral weight function

@—kV+C%%V_JV@JM—ﬂhDW>.

2 2
207 207

w(i, j, k,1) = exp (—
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Bilateral Filters - Example

Example pixel

Domain kernel d

Bilateral weight function w Output 1image g

Input 1mage f

Range kernel r

Tomasi & Manduci, 1998
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¢ Iterative application of bilateral filtering leads to a smoothing process equivalent to a
popular edge-preserving smoothing technique due to Perona & Malik called
anistropic diffusion.

\ (
% e.g., for a 4-neighbourhood: - QO — 0
. . {
. (1 — k)% + (j — 1)?
d(’t,],k‘,l) — €eXp (_ 20_3 *
. ) ISOTROPIC DIFFUSION ANISOTROPIC DIFFUSION
_ 1, [k =i+l —j]=0,
n=e 2 |k—i|+|l—j|=1.

% and so

A R Al CE) e ) SR G CE LY

(4,5, k, D[F P (k, 1) — FP (4, 5)],

= 9%,

k,l

where R — Z(k,l) r(i,j,k, 1), (k,1) are the Ny neighbors of (¢, j)

Perona & Malik, 1990
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Anisotropic Diffusion Example HHe

«* But note that

lim £ (i, j) = constant

rrErFk

t—>00
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End of Lecture
Oct 1, 2018
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Convolve with local filter s called a structuring element

c=f*s

UNIVERSITE

Morphological Filters ~ ##0

¢ Binary image processing often involves morphological filtering:

Threshold result: G(C,t) = { 1 ifc2t

Example: Boxcar structuring element of size S =9

%)

|
—
el

S N Sy

0 otherwise

imdilate
imerode
imopen
inclose

MATLAB functions

EECS 4422/5323 Computer Vision
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dilate(f,s) = 0(c, 1) ’
erode(f,s) = 0(c, 5) 9’

open(f, s) = dilate(erode(f, s), s) }

close(f, s) = erode(dilate( f, s), s) }

J. Elder
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The Distance Transform = =

The distance transform D(z, 7) of a binary image b(z, j) is defined as follows. Let d(k, )
be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

di(k, 1) = k| + |1

and the Euclidean distance

do(k, 1) = VK2 + [2.

The distance transform 1is then defined as

DA —  min di— i1
(4,4) =, in _ di =k, j—=1),

1.e., 1t 1s the distance to the nearest background pixel whose value 1s O.

MATLAB function
bwdist
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Computing the Distance Transform =

s City block
Forward-backward two-pass raster scan

4 Initialize:
b(find(b(:))) = oo

4 Forward pass
forj=2m
ifb(1,))>0
b(1,))=1+Db(1,;-1)
fori=2:m
if b(i,1) >0
b(i,1) =1 + b(i-1,1)
forj=2m
if b(1,j) >0
b(i, j) = 1 + min(b(i-1, j),b(i, k-1))

4+ Backward pass
forj =n-1:-1:1
if b(m,j) >0
b(m,j) = 1 + min(b(m,j),b(m,j+1))
fori=m-1:-1:1
if b(i,n) >0
b(i,n) = 1 + min(b(i,n),b(i+1,n))
forj =n-1:-1:1
ifb(i,j) >0
b(i, j) = min(b(i,j),1+b(i+1, j),1+b(i, j+1))
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¢ Point Operators
¢ Linear Filters

** Nonlinear Filters
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