3.2 Frequency Analysis

Outline

* Linear Shift-Invariant Systems
* The Fourier Transform
* The Wiener Filter

Outline

* Linear Shift-Invariant Systems
* The Fourier Transform
* The Wiener Filter

1D Signal Coding

* A 1D signal (e.g., a slice of a luminance image $f(x)$ over horizontal location x) can be coded as a sequence of values
* This can also be viewed as a superposition of shifted and weighted impulses

Impulse (Delta) Functions

Representing a Signal with Impulses

$$
\begin{aligned}
& f(x) \simeq \sum_{k=-\infty}^{\infty} f(k \Delta) \delta_{\Delta}(x-k \Delta) \Delta \\
& f(x)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{\infty} f(k \Delta) \delta_{\Delta}(x-k \Delta) \Delta \\
& =\int_{-\infty}^{\infty} f(u) \delta(x-u) d u \\
& \quad=f(x) * \delta(x)
\end{aligned}
$$

Representing a Filter with Impulses

* Of course we can also code a filter $h(x)$ using impulses.
* This is why we refer to $h(\mathrm{x})$ as the impulse response function of the filter

$$
h(x)=h(x) * \delta(x)
$$

Alternative Linear Codes

* The impulse code is not the only way to code a signal or a filter!
* In particular, there are many alternative linear codes, including
- Fourier transforms
- Discrete coding transforms (DCTs)
- Wavelet transforms
* These linear codes are simply linear transformations of the impulse code.
* We begin with the Fourier code, which arises naturally from linear systems theory.

What is a linear system?

* A system h is linear if it satisfies the principle of superposition:

Shift Invariance

* A system h is shift-invariant if a shift in the input produces an identical shift in the output:

$$
g(x)=h(f(x)) \rightarrow g(x-u)=h(f(x-u))
$$

The Impulse Response Function

* The output of a linear shift-invariant system at x is a weighted sum of the input, where the weights are fixed relative to x.
* These filter weights are simply the reversed impulse response function.

$$
h(x)=h(x) * \delta(x)
$$

Sinusoids

* When we input an impulse to a linear shift-invariant system, we get a complicated output (the impulse response)

* However, when we input a sinusoid, we get another sinusoid of the same frequency, but scaled and shifted in phase.

$s(x)=\sin \left(2 \pi f x+\phi_{i}\right)=\sin \left(\omega x+\phi_{i}\right)$

$$
o(x)=h(x) * s(x)=A \sin \left(\omega x+\phi_{o}\right)
$$

* This makes sinusoids a natural code for linear shift invariant systems.

Complex Sinusoids

* It is often convenient to work with complex sinusoids:
$s(x)=e^{j \omega x}=\cos \omega x+j \sin \omega x$

$$
o(x)=h(x) * s(x)=A e^{j \omega x+\phi}
$$

Outline

* Linear Shift-Invariant Systems
* The Fourier Transform
* The Wiener Filter
* We have already seen that any signal $f(x)$ or filter $h(x)$ can be expressed exactly as an infinite sum of impulses.
* It turns out that any signal can alternatively be expressed exactly as an infinite sum of sinusoids.
* This is known as a Fourier series.

Joseph Fourier 1768-1830

* For a finite signal $f(x)$ defined on $[0, X]$, we have:

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(2 \pi n x / X+\phi_{n}\right)
$$

Fourier Series Approximations

8 Term Approximation

16 Term Approximation

The Fourier Transform

* In the limit as $\mathrm{X} \rightarrow \infty$, the Fourier series becomes the Fourier transform.
* The Fourier transform of a signal $f(x)$ or filter $h(x)$ is the response to a complex sinusoid at each frequency

$$
H(\omega)=\mathcal{F}\{h(x)\}=A e^{j \phi}
$$

$$
h(x) \stackrel{\mathcal{F}}{\leftrightarrow} H(\omega)
$$

$H(\omega)$ is called the transfer function of the filter $h(x)$.

* Continuous domain:

$$
H(\omega)=\int_{-\infty}^{\infty} h(x) e^{-j \omega x} d x
$$

Amplitude \& Phase

$z=x+j y=A e^{j \phi}$, where $A=\sqrt{x^{2}+y^{2}}$ and $\phi=\arctan (y / x)$

End of Lecture Oct 3, 2018

The Discrete Fourier Transform (DFT)

$H(k)=\frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j \frac{2 \pi k x}{N}}$
where N is the number of samples in the signal.

* Interpreting frequencies:
- If N is odd:
$k=0 \Leftrightarrow \mathrm{DC}$ value (mean)
$k=1 \Leftrightarrow 1$ cycle per image, $1 / N$ cycles per pixel
$k=2 \Leftrightarrow 2$ cycles per image, $2 / N$ cycles per pixel
$k=(N-1) / 2 \Leftrightarrow(N-1) / 2$ cycles per image, $\frac{1}{2}\left(1-\frac{1}{N}\right)$ cycles per pixel (Nyquist limit)
$k=(N+1) / 2=N-(N-1) / 2 \Leftrightarrow-(N-1) / 2$ cycles per image, $-\frac{1}{2}\left(1-\frac{1}{N}\right)$ cycles per pixel (Nyquist limit)
$k=N-2 \Leftrightarrow-2$ cycles per image, $-2 / N$ cycles per pixel
$k=N-1 \Leftrightarrow-1$ cycles per image, $-1 / N$ cycles per pixel

The Discrete Fourier Transform (DFT)

$H(k)=\frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j \frac{2 \pi k x}{N}}$
where N is the number of samples in the signal.

* Interpreting frequencies:
- If N is even:
$k=0 \Leftrightarrow \mathrm{DC}$ value (mean)
$k=1 \Leftrightarrow 1$ cycle per image, $1 / N$ cycles per pixel
$k=2 \Leftrightarrow 2$ cycles per image, $2 / N$ cycles per pixel
$k=N / 2-1 \Leftrightarrow N / 2-1$ cycles per image, $\frac{1}{2}-\frac{1}{N}$ cycles per pixel
$k=N / 2 \Leftrightarrow N / 2$ cycles per image, $\frac{1}{2}$ cycles per pixel (Nyquist limit)
$k=N / 2+1=N-(N / 2-1) \Leftrightarrow-(N / 2-1)$ cycles per image, $-\left(\frac{1}{2}-\frac{1}{N}\right)$ cycles per pixel
$k=N-2 \Leftrightarrow-2$ cycles per image, $-2 / N$ cycles per pixel
$k=N-1 \Leftrightarrow-1$ cycles per image, $-1 / N$ cycles per pixel

The Discrete Fourier Transform (DFT)

$H(k)=\frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j \frac{2 \pi k x}{N}}$
where N is the number of samples in the signal.

* What is the computational complexity for computing the DFT?
- Naïve: $O\left(N^{2}\right)$
- Fast Fourier Transform (FFT): $O(N \log N)$

The Inverse Fourier Transform

* Continuous domain:

$$
h(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) e^{j \omega x} d \omega
$$

* Discrete domain:

$$
h(x)=\frac{1}{N} \sum_{k=N / 2}^{N / 2} H(k) e^{j \frac{2 \pi k x}{N}}
$$

Properties of the Fourier Transform

Property	Signal	Transform
superposition	$f_{1}(x)+f_{2}(x)$	$F_{1}(\omega)+F_{2}(\omega)$
shift	$f\left(x-x_{0}\right)$	$F(\omega) e^{-j \omega x_{0}}$
reversal	$f(-x)$	$F^{*}(\omega)$
convolution	$f(x) * h(x)$	
correlation	$f(x) \otimes h(x)$	
multiplication	$f(x) h(x)$	
differentiation	$f^{\prime}(x)$	
domain scaling	$f(a x) H^{*}(\omega)$	
real images	$f(x)=f^{*}(x) * H(\omega)$	
Parseval's Theorem	$\sum_{x}[f(x)]^{2}$	$=$

Fourier Pairs

Name	Signal		Transfor	
impulse	$\delta(x)$	\Leftrightarrow	1	
shifted impulse	$\delta(x-u)$	\Leftrightarrow	$e^{-j \omega u}$	
box filter	$\operatorname{box}(x / a)$	\Leftrightarrow	$a \operatorname{sinc}(a \omega)$	
tent	tent (x / a)	\Leftrightarrow	$a \operatorname{sinc}^{2}(a \omega)$	
Gaussian	$G(x ; \sigma)$	\Leftrightarrow	$\frac{\sqrt{2 \pi}}{\sigma} G\left(\omega ; \sigma^{-1}\right)$	
Laplacian of Gaussian	$\left(\frac{x^{2}}{\sigma^{4}}-\frac{1}{\sigma^{2}}\right) G(x ; \sigma)$	\Leftrightarrow	$-\frac{\sqrt{2 \pi}}{\sigma} \omega^{2} G\left(\omega ; \sigma^{-1}\right)$	$A+\Lambda$
Gabor	$\cos \left(\omega_{0} x\right) G(x ; \sigma)$	\Leftrightarrow	$\frac{\sqrt{2 \pi}}{\sigma} G\left(\omega \pm \omega_{0} ; \sigma^{-1}\right)$	
unsharp mask	$\begin{aligned} & (1+\gamma) \delta(x) \\ & -\gamma G(x ; \sigma) \end{aligned}$	\Leftrightarrow	$\begin{gathered} (1+\gamma)- \\ \frac{\sqrt{2 \pi} \gamma}{\sigma} G\left(\omega ; \sigma^{-1}\right) \end{gathered}$	
windowed sinc	$\begin{gathered} \operatorname{rcos}(x /(a W)) \\ \operatorname{sinc}(x / a) \end{gathered}$	\Leftrightarrow	(see Figure 3.29)	

Fourier transforms of simple filters

The 2D Fourier Transform

* The extension to 2D images and filters is straightforward.
* The 2D Fourier transform tabulates the amplitude and phase of sinusoidal gratings for all combinations of horizontal and vertical frequency:

$$
\begin{aligned}
& s(x, y)=\sin \left(\omega_{x} x+\omega_{y} y\right) \\
& H\left(\omega_{x}, \omega_{y}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j\left(\omega_{x} x+\omega_{y} y\right)} d x d y \\
& H\left(k_{x}, k_{y}\right)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x, y) e^{-j 2 \pi \frac{k_{x} x+k_{y} y}{M N}}
\end{aligned}
$$

Outline

* Linear Shift-Invariant Systems
* The Fourier Transform
* The Wiener Filter

Noise

* Images formed by a camera or the eye are corrupted by noise.
* This noise can often be approximated as a zero-mean, additive and stationary random process.

Noise Filtering

$f(x, y)=g(x, y)+n(x, y)$

* Denoising is a core problem in image processing.
* The linear systems solution to this problem is well understood.
* The problem is to find the optimal filter $h(x, y)$ that will maximize the accuracy of the filtered image in the least squares sense.
* By the convolution theorem, this is equivalent to identifying the optimal transfer function $H\left(\omega_{x}, \omega_{y}\right)$

$$
h(x, y) * f(x, y) \Leftrightarrow H\left(\omega_{x}, \omega_{y}\right) F\left(\omega_{x}, \omega_{y}\right)
$$

Probabilistic Model

$f(x, y)=g(x, y)+n(x, y)$

* To solve this problem, we assume that the optical image $g(x, y)$ and the noise $n(x, y)$ are both independent, stationary, random processes whose power spectral densities are known
- Power spectral densities:

$$
\begin{aligned}
& \left.P_{f}\left(\omega_{x}, \omega_{y}\right)=\left.\langle | F\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right\rangle=\mathbb{E}\left[\left|F\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right] \\
& \left.P_{g}\left(\omega_{x}, \omega_{y}\right)=\left.\langle | G\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right\rangle=\mathbb{E}\left[\left|G\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right] \\
& \left.P_{n}\left(\omega_{x}, \omega_{y}\right)=\left.\langle | N\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right\rangle=\mathbb{E}\left[\left|N\left(\omega_{x}, \omega_{y}\right)\right|^{2}\right]
\end{aligned}
$$

End of Lecture
 Oct 15, 2018

Power Spectral Density

* Natural images tend to be lowpass - most of the energy is in the low spatial frequencies.

Image

$g(x, y)$

Log Fourier Energy

$\log _{g}\left|G\left(\omega_{x}, \omega_{y}\right)\right|^{2}$

Noise Spectral Density

* In contrast, the expected energy in image noise tends to be more flat (white) across spatial frequency

Noise

$$
n(x, y)
$$

Log Fourier Energy

$\log \left|N\left(\omega_{x}, \omega_{y}\right)\right|^{2}$

The Wiener Filter

* When the frequency distribution of the image energy and the noise energy differ, we can improve the signal-to-noise ratio (SNR) by boosting the Fourier amplitudes where the image is strong relative to the noise and attenuating the Fourier amplitudes where it is relatively weak.
* Typically this means a lowpass filter.
* The Wiener filter is given by
$H\left(\omega_{x}, \omega_{y}\right)=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{f}\left(\omega_{x}, \omega_{y}\right)}=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{g}\left(\omega_{x}, \omega_{y}\right)+P_{n}\left(\omega_{x}, \omega_{y}\right)}$, where
$P_{f}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noisy sensed image
$P_{g}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the optical image before noise was added
$P_{n}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noise

Norbert Wiener 1894-1964

The Wiener Filter

$H\left(\omega_{x}, \omega_{y}\right)=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{f}\left(\omega_{x}, \omega_{y}\right)}=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{g}\left(\omega_{x}, \omega_{y}\right)+P_{n}\left(\omega_{x}, \omega_{y}\right)}$, where
$P_{f}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noisy sensed image
$P_{g}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the optical image before noise was added
$P_{n}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noise

* The Wiener filter minimizes the expected mean square error (MSE) of the estimated image relative to the original image before noise was added.
* It is the optimal linear shift-invariant solution to this problem
* Note that this optimality is general - it does not depend upon either the noise or the image being Gaussian. (Be careful with the textbook here.)

Estimating the Wiener Filter

$H\left(\omega_{x}, \omega_{y}\right)=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{f}\left(\omega_{x}, \omega_{y}\right)}=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{g}\left(\omega_{x}, \omega_{y}\right)+P_{n}\left(\omega_{x}, \omega_{y}\right)}$, where
$P_{f}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noisy sensed image
$P_{g}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the optical image before noise was added
$P_{n}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noise

* To calculate the Wiener filter we need to know the power spectral density of the optical image and of the noise.
* Typically, we employ simple approximations.

Wiener Filter Example

$H\left(\omega_{x}, \omega_{y}\right)=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{f}\left(\omega_{x}, \omega_{y}\right)}=\frac{P_{g}\left(\omega_{x}, \omega_{y}\right)}{P_{g}\left(\omega_{x}, \omega_{y}\right)+P_{n}\left(\omega_{x}, \omega_{y}\right)}$, where
$P_{f}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noisy sensed image
$P_{g}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the optical image before noise was added
$P_{n}\left(\omega_{x}, \omega_{y}\right)$ is the power spectral density of the noise

* Assume isotropic spectral densities for both image and noise
- Image spectral density is lowpass

$$
P_{g}\left(\omega_{x}, \omega_{y}\right)=\frac{\alpha^{2}}{\omega^{2}}, \text { where } \omega^{2}=\omega_{x}^{2}+\omega_{y}^{2}
$$

- Noise spectral density is white

$$
P_{n}\left(\omega_{x}, \omega_{y}\right)=\sigma_{n}^{2}
$$

- Then

$$
H\left(\omega_{x}, \omega_{y}\right)=\frac{(\alpha / \omega)^{2}}{(\alpha / \omega)^{2}+\sigma_{n}^{2}}=\frac{1}{1+(\omega / \beta)^{2}}, \text { where } \beta=\alpha / \sigma_{n} \text { is the SNR. }
$$

Wiener Filter Example

$H\left(\omega_{x}, \omega_{y}\right)=\frac{1}{1+(\omega / \beta)^{2}}$, where $\beta=\alpha / \sigma_{n}$ is the SNR.

* Observe that:

$$
\lim _{\beta \rightarrow \infty} H\left(\omega_{x}, \omega_{y}\right)=1 \quad \lim _{\beta \rightarrow 0} H\left(\omega_{x}, \omega_{y}\right)=\left(\frac{\beta}{\omega}\right)^{2}
$$

$-\beta=0.63$
$-\beta=1.00$
-
-

Wiener Filter Example

$H\left(\omega_{x}, \omega_{y}\right)=\frac{1}{1+(\omega / \beta)^{2}}$, where $\beta=\alpha / \sigma_{n}$ is the SNR.

* Note that:
- $\mathrm{h}(\mathrm{r})$ is the inverse Hankel transform of $\mathrm{H}(\omega)$, not the Fourier transform.
- $\mathrm{h}(\mathrm{r})$ has no analytic form, but the discrete form of $\mathrm{h}(\mathrm{x}, \mathrm{y})$ can be determined by taking the inverse Fourier transform of $\mathrm{H}\left(\omega_{\mathrm{x}}, \omega_{\mathrm{y}}\right)$.
(The Hankel transform of $\frac{\beta^{2}}{2 \pi} e^{-\beta r}$ is actually $\left.\frac{1}{\left(1+(\omega / \beta)^{2}\right)^{3 / 2}}\right)$

$$
\begin{array}{r}
-\beta=0.63 \\
-\beta=1.00 \\
-\beta=1.58
\end{array}
$$

ω_{x} (cycles per pixel)

State of the Art

* Deep convolutional neural networks
- Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142-3155.
- Wang, R. and Tao, D. (2016). Non-local auto-encoder with collaborative stabilization for image restoration. IEEE Transactions on Image Processing, 25(5):2117-2129.
* Nonlinear filtering with learned parameters
- Chen, Y. and Pock, T. (2017). Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1256-1272.

Outline

* Linear Shift-Invariant Systems
* The Fourier Transform
* The Wiener Filter

