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❖ Linear Shift-Invariant Systems 

❖ The Fourier Transform 

❖ The Wiener Filter
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1D Signal Coding

!4

❖ A 1D signal (e.g., a slice of a luminance image f(x) over horizontal location x) can be 
coded as a sequence of values 

❖ This can also be viewed as a superposition of shifted and weighted impulses
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Impulse (Delta) Functions
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Representing a Signal with Impulses
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Figure1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4
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Representing a Filter with Impulses
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❖ Of course we can also code a filter h(x) using impulses. 

❖ This is why we refer to h(x) as the impulse response function of the filter
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Figure1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4

h(x) = h(x)∗δ (x)
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Alternative Linear Codes
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❖ The impulse code is not the only way to code a signal or a filter! 

❖ In particular, there are many alternative linear codes, including 

๏ Fourier transforms 

๏ Discrete coding transforms (DCTs) 

๏ Wavelet transforms 

❖ These linear codes are simply linear transformations of the impulse code. 

❖ We begin with the Fourier code, which arises naturally from linear systems theory.
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What is a linear system?
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❖ A system h is linear if it satisfies the principle of superposition:

Additivity

Homogeneity

h α f1 + β f2( ) =αh f1( )+ βh f2( )
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Shift Invariance
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❖ A system h is shift-invariant if a shift in the input produces an identical shift in the 
output:

g(x) = h f (x)( )→ g(x − u) = h f (x − u)( )
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The Impulse Response Function
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❖ The output of a linear shift-invariant system at x is a weighted sum of the input, where 
the weights are fixed relative to x. 

❖ These filter weights are simply the reversed impulse response function.

past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using
shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its
impulse response (that is, its response to a unit impulse), we can forget about entirely, and
just add up scaled and shifted copies of to calculate the response of to any input whatsoever.
Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a
widespread and useful formula that it has its own shorthand notation, . For any two signals and
, there will be another signal obtained by convolving with ,

Convolution as aseries of weighted sums. While superposition and convolution may sound
a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-
invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3
shows an example: the output at each point in time is computed simply as a weighted sum of the
inputs at recently past times. The choice of weighting function determines the behavior of the
system. Not surprisingly, the weighting function is very closely related to the impulse response of
the system. In particular, the impulse response and the weighting function are time-reversed copies
of one another, as demonstrated in the top part of the figure.

7

h(x) = h(x)∗δ (x)

δ (s)
h(x − s)

h(x)
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Sinusoids
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❖ When we input an impulse to a linear shift-invariant system, we get a complicated 
output (the impulse response)  

❖ However, when we input a sinusoid, we get another sinusoid of the same frequency, 
but scaled and shifted in phase. 

❖ This makes sinusoids a natural code for linear shift invariant systems.

3.4 Fourier transforms 133
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Figure 3.24 The Fourier Transform as the response of a filter h(x) to an input sinusoid
s(x) = ej!x yielding an output sinusoid o(x) = h(x) ⇤ s(x) = Aej!x+�.

be the input sinusoid whose frequency is f , angular frequency is ! = 2⇡f , and phase is �i.
Note that in this section, we use the variables x and y to denote the spatial coordinates of an
image, rather than i and j as in the previous sections. This is both because the letters i and j

are used for the imaginary number (the usage depends on whether you are reading complex
variables or electrical engineering literature) and because it is clearer how to distinguish the
horizontal (x) and vertical (y) components in frequency space. In this section, we use the
letter j for the imaginary number, since that is the form more commonly found in the signal
processing literature (Bracewell 1986; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999).

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x),
we get another sinusoid of the same frequency but different magnitude A and phase �o,

o(x) = h(x) ⇤ s(x) = A sin(!x + �o), (3.48)

as shown in Figure 3.24. To see that this is the case, remember that a convolution can be
expressed as a weighted summation of shifted input signals (3.14) and that the summation of
a bunch of shifted sinusoids of the same frequency is just a single sinusoid at that frequency.8

The new magnitude A is called the gain or magnitude of the filter, while the phase difference
�� = �o � �i is called the shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(x) = ej!x
= cos !x + j sin !x. (3.49)

In that case, we can simply write,

o(x) = h(x) ⇤ s(x) = Aej!x+�. (3.50)
8 If h is a general (non-linear) transform, additional harmonic frequencies are introduced. This was traditionally

the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has intro-
duced pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that
simulate such distortions because of their “warmer sound”.
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that avoid the creation of a potentially large re-coloring (equivalence) table. Well-debugged
connected component algorithms are also available in most image processing libraries.

Once a binary or multi-valued image has been segmented into its connected components,
it is often useful to compute the area statistics for each individual region R. Such statistics
include:

• the area (number of pixels);

• the perimeter (number of boundary pixels);

• the centroid (average x and y values);

• the second moments,

M =

X

(x,y)2R

"
x� x

y � y

# h
x� x y � y

i
, (3.46)

from which the major and minor axis orientation and lengths can be computed using
eigenvalue analysis.7

These statistics can then be used for further processing, e.g., for sorting the regions by the area
size (to consider the largest regions first) or for preliminary matching of regions in different
images.

3.4 Fourier transforms

In Section 3.2, we mentioned that Fourier analysis could be used to analyze the frequency
characteristics of various filters. In this section, we explain both how Fourier analysis lets us
determine these characteristics (or equivalently, the frequency content of an image) and how
using the Fast Fourier Transform (FFT) lets us perform large-kernel convolutions in time that
is independent of the kernel’s size. More comprehensive introductions to Fourier transforms
are provided by Bracewell (1986); Glassner (1995); Oppenheim and Schafer (1996); Oppen-
heim, Schafer, and Buck (1999).

How can we analyze what a given filter does to high, medium, and low frequencies? The
answer is to simply pass a sinusoid of known frequency through the filter and to observe by
how much it is attenuated. Let

s(x) = sin(2⇡fx + �i) = sin(!x + �i) (3.47)

7 Moments can also be computed using Green’s theorem applied to the boundary pixels (Yang and Albregtsen
1996).
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Figure 3.24 The Fourier Transform as the response of a filter h(x) to an input sinusoid
s(x) = ej!x yielding an output sinusoid o(x) = h(x) ⇤ s(x) = Aej!x+�.

be the input sinusoid whose frequency is f , angular frequency is ! = 2⇡f , and phase is �i.
Note that in this section, we use the variables x and y to denote the spatial coordinates of an
image, rather than i and j as in the previous sections. This is both because the letters i and j

are used for the imaginary number (the usage depends on whether you are reading complex
variables or electrical engineering literature) and because it is clearer how to distinguish the
horizontal (x) and vertical (y) components in frequency space. In this section, we use the
letter j for the imaginary number, since that is the form more commonly found in the signal
processing literature (Bracewell 1986; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999).

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x),
we get another sinusoid of the same frequency but different magnitude A and phase �o,

o(x) = h(x) ⇤ s(x) = A sin(!x + �o), (3.48)

as shown in Figure 3.24. To see that this is the case, remember that a convolution can be
expressed as a weighted summation of shifted input signals (3.14) and that the summation of
a bunch of shifted sinusoids of the same frequency is just a single sinusoid at that frequency.8

The new magnitude A is called the gain or magnitude of the filter, while the phase difference
�� = �o � �i is called the shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(x) = ej!x
= cos !x + j sin !x. (3.49)

In that case, we can simply write,

o(x) = h(x) ⇤ s(x) = Aej!x+�. (3.50)
8 If h is a general (non-linear) transform, additional harmonic frequencies are introduced. This was traditionally

the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has intro-
duced pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that
simulate such distortions because of their “warmer sound”.
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Complex Sinusoids
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❖ It is often convenient to work with complex sinusoids:

3.4 Fourier transforms 133
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Figure 3.24 The Fourier Transform as the response of a filter h(x) to an input sinusoid
s(x) = ej!x yielding an output sinusoid o(x) = h(x) ⇤ s(x) = Aej!x+�.

be the input sinusoid whose frequency is f , angular frequency is ! = 2⇡f , and phase is �i.
Note that in this section, we use the variables x and y to denote the spatial coordinates of an
image, rather than i and j as in the previous sections. This is both because the letters i and j

are used for the imaginary number (the usage depends on whether you are reading complex
variables or electrical engineering literature) and because it is clearer how to distinguish the
horizontal (x) and vertical (y) components in frequency space. In this section, we use the
letter j for the imaginary number, since that is the form more commonly found in the signal
processing literature (Bracewell 1986; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999).

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x),
we get another sinusoid of the same frequency but different magnitude A and phase �o,

o(x) = h(x) ⇤ s(x) = A sin(!x + �o), (3.48)

as shown in Figure 3.24. To see that this is the case, remember that a convolution can be
expressed as a weighted summation of shifted input signals (3.14) and that the summation of
a bunch of shifted sinusoids of the same frequency is just a single sinusoid at that frequency.8

The new magnitude A is called the gain or magnitude of the filter, while the phase difference
�� = �o � �i is called the shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(x) = ej!x
= cos !x + j sin !x. (3.49)

In that case, we can simply write,

o(x) = h(x) ⇤ s(x) = Aej!x+�. (3.50)
8 If h is a general (non-linear) transform, additional harmonic frequencies are introduced. This was traditionally

the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has intro-
duced pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that
simulate such distortions because of their “warmer sound”.
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Figure 3.24 The Fourier Transform as the response of a filter h(x) to an input sinusoid
s(x) = ej!x yielding an output sinusoid o(x) = h(x) ⇤ s(x) = Aej!x+�.

be the input sinusoid whose frequency is f , angular frequency is ! = 2⇡f , and phase is �i.
Note that in this section, we use the variables x and y to denote the spatial coordinates of an
image, rather than i and j as in the previous sections. This is both because the letters i and j

are used for the imaginary number (the usage depends on whether you are reading complex
variables or electrical engineering literature) and because it is clearer how to distinguish the
horizontal (x) and vertical (y) components in frequency space. In this section, we use the
letter j for the imaginary number, since that is the form more commonly found in the signal
processing literature (Bracewell 1986; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999).

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x),
we get another sinusoid of the same frequency but different magnitude A and phase �o,

o(x) = h(x) ⇤ s(x) = A sin(!x + �o), (3.48)

as shown in Figure 3.24. To see that this is the case, remember that a convolution can be
expressed as a weighted summation of shifted input signals (3.14) and that the summation of
a bunch of shifted sinusoids of the same frequency is just a single sinusoid at that frequency.8

The new magnitude A is called the gain or magnitude of the filter, while the phase difference
�� = �o � �i is called the shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(x) = ej!x
= cos !x + j sin !x. (3.49)

In that case, we can simply write,

o(x) = h(x) ⇤ s(x) = Aej!x+�. (3.50)
8 If h is a general (non-linear) transform, additional harmonic frequencies are introduced. This was traditionally

the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has intro-
duced pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that
simulate such distortions because of their “warmer sound”.
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❖ Linear Shift-Invariant Systems 

❖ The Fourier Transform 

❖ The Wiener Filter
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Fourier Series
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❖ We have already seen that any signal f(x) or filter h(x) can be expressed exactly 
as an infinite sum of impulses. 

❖ It turns out that any signal can alternatively be expressed exactly as an infinite 
sum of  sinusoids. 

❖ This is known as a Fourier series. 

❖ For a finite signal f(x) defined on [0, X], we have:
Joseph Fourier 
1768 - 1830

f (x) = An sin 2πnx / X +φn( )
n=1

∞

∑
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The Fourier Transform
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❖ In the limit as X→∞, the Fourier series becomes the Fourier transform.  

❖ The Fourier transform of a signal f(x) or filter h(x) is the response to a complex 
sinusoid at each frequency 

❖ Continuous domain:
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The Fourier transform is simply a tabulation of the magnitude and phase response at each
frequency,

H(!) = F {h(x)} = Aej�, (3.51)

i.e., it is the response to a complex sinusoid of frequency ! passed through the filter h(x).
The Fourier transform pair is also often written as

h(x)
F$ H(!). (3.52)

Unfortunately, (3.51) does not give an actual formula for computing the Fourier transform.
Instead, it gives a recipe, i.e., convolve the filter with a sinusoid, observe the magnitude and
phase shift, repeat. Fortunately, closed form equations for the Fourier transform exist both in
the continuous domain,

H(!) =

Z 1

�1
h(x)e�j!xdx, (3.53)

and in the discrete domain,

H(k) =
1

N

N�1X

x=0

h(x)e�j
2⇡kx

N , (3.54)

where N is the length of the signal or region of analysis. These formulas apply both to filters,
such as h(x), and to signals or images, such as s(x) or g(x).

The discrete form of the Fourier transform (3.54) is known as the Discrete Fourier Trans-
form (DFT). Note that while (3.54) can be evaluated for any value of k, it only makes sense
for values in the range k 2 [�N

2 , N

2 ]. This is because larger values of k alias with lower
frequencies and hence provide no additional information, as explained in the discussion on
aliasing in Section 2.3.1.

At face value, the DFT takes O(N2
) operations (multiply-adds) to evaluate. Fortunately,

there exists a faster algorithm called the Fast Fourier Transform (FFT), which requires only
O(N log2 N) operations (Bracewell 1986; Oppenheim, Schafer, and Buck 1999). We do not
explain the details of the algorithm here, except to say that it involves a series of log2 N

stages, where each stage performs small 2⇥2 transforms (matrix multiplications with known
coefficients) followed by some semi-global permutations. (You will often see the term but-
terfly applied to these stages because of the pictorial shape of the signal processing graphs
involved.) Implementations for the FFT can be found in most numerical and signal processing
libraries.

Now that we have defined the Fourier transform, what are some of its properties and how
can they be used? Table 3.1 lists a number of useful properties, which we describe in a little
more detail below:
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Joseph Fourier 
1768 - 1830

H (ω ) is called the transfer function of the filter h(x).
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Fourier Transforms
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Figure9: Fourier transforms of sinusoidal signals of two different frequencies.

Appendix I I : The Fourier Transform

Any signal can be written as a sum of shifted and scaled sinusoids, as was expressed in Eq. 5. That
equation is usually written using complex exponential notation:

(8)

The complex exponential notation, remember, is just a shorthand for sinusoids and cosinusoids,
but it is mathematically more convenient. The are the Fourier transform coefficients for each
frequency component . These coefficientes are complex numbers and can be expressed either in
terms of their real (cosine) and imaginary (sine) parts or in terms of their amplitude and phase.

A second equation tells you how to compute the Fourier transfrom coefficients, , from
from the input signal:

(9)

These two equations are inverses of one another. Eq. 9 is used to compute the Fourier transform
coefficients from the input signal, and then Eq. 8 is used to reconstruct the input signal from the
Fourier coefficients.

The equations for the Fourier transform are rather complex (no pun intended). The best way to
get an intuition for the frequency domain is to look at a few examples. Figure 9 plots sinusoidal
signals of two different frequencies, along with their Fourier transform amplitudes. A sinusoidal
signal contains only one frequency component, hence the frequency plots contain impulses. Both
sinusoids are modulated between plus and minus one, so the impulses in the frequency plots have
unit amplitude. The only difference between the two sinusoids is that one has 4 cycles per second
and the other has 8 cycles per second. Hence the impulses in the frequency plots are located at
4 Hz and 8 Hz, respectively.

Figure 10 shows the Fourier transforms of a sinusoid and a cosinusoid. We can express the
Fourier transform coefficients either in terms of their real and imaginary parts, or in terms of their
amplitude and phase. Both representations are plotted in the figure. Sines and cosines of the same
frequency have identical amplitude plots, but the phases are different.
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cosine sine

real part

imaginary part
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phase

0

Frequency (Hz)

0

8-8 0

0 0

8-8 0

0 π/2

8-8 8-8

8-8 8-8
Frequency (Hz)

Figure 10: Fourier transforms of sine and cosine signals. The amplitudes are the same, but the
phases are different.

Do not be put off by the negative frequencies in the plots. The equations for the Fourier
transform and its inverse include both positive and negative frequencies. This is really just a
mathematical convenience. The information in the negative frequencies is redundant with that
in the positive frequencies. Since , the negative frequency components in the
real part of the frequency domain will always be the same as the corresponding postive frequency
components. Since the negative frequency components in the imaginary
part of the frequency domain will always be minus one times the corresponding postive frequency
components. Often, people plot only the positive frequency components, as was done in Fig. 9,
since the negative frequency components provide no additional information. Sometimes, people
plot only the amplitude. In this case, however, there is information missing.

There are a few facts about the Fourier transform that often come in handy. The first of the
properties is that the Fourier transform is itself a linear system, which you can check for yourself
by making sure that Eq. 9 obeys both homogeneity and additivity. This is important because it
makes it easy for us to write the Fourier transforms of lots of things. For example, the Fourier
transform of the sum of two signals is the sum of the two Fourier transforms:

where I have used as a shorthand notation for “the Fourier transform of”. The linearity of
the Fourier transform was one of the tricks that made it easy to write the transforms of both sides
of Eq. 6.

A second fact, known as the convolution property of the Fourier transform, is that the Fourier
transform of a convolution equals the product of the two Fourier transforms:

This property was also used was used to write the Fourier transform of Eq. 6. Indeed this property
is central to much of the discussion in this handout. Above I emphasized that for a shift-invariant
linear system (i.e., convolution), the system’s responses are always given by shifting and scaling the
frequency components of the input signal. This fact is expressed mathematically by the convolution
property above, where are the frequency components of the input and is the frequency
response, the (complex-valued) scale factors that shift and scale each frequency component.
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❖ Interpreting frequencies: 

๏ If N is odd:
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The Fourier transform is simply a tabulation of the magnitude and phase response at each
frequency,

H(!) = F {h(x)} = Aej�, (3.51)

i.e., it is the response to a complex sinusoid of frequency ! passed through the filter h(x).
The Fourier transform pair is also often written as

h(x)
F$ H(!). (3.52)

Unfortunately, (3.51) does not give an actual formula for computing the Fourier transform.
Instead, it gives a recipe, i.e., convolve the filter with a sinusoid, observe the magnitude and
phase shift, repeat. Fortunately, closed form equations for the Fourier transform exist both in
the continuous domain,

H(!) =

Z 1

�1
h(x)e�j!xdx, (3.53)

and in the discrete domain,

H(k) =
1

N

N�1X

x=0

h(x)e�j
2⇡kx

N , (3.54)

where N is the length of the signal or region of analysis. These formulas apply both to filters,
such as h(x), and to signals or images, such as s(x) or g(x).

The discrete form of the Fourier transform (3.54) is known as the Discrete Fourier Trans-
form (DFT). Note that while (3.54) can be evaluated for any value of k, it only makes sense
for values in the range k 2 [�N

2 , N

2 ]. This is because larger values of k alias with lower
frequencies and hence provide no additional information, as explained in the discussion on
aliasing in Section 2.3.1.

At face value, the DFT takes O(N2
) operations (multiply-adds) to evaluate. Fortunately,

there exists a faster algorithm called the Fast Fourier Transform (FFT), which requires only
O(N log2 N) operations (Bracewell 1986; Oppenheim, Schafer, and Buck 1999). We do not
explain the details of the algorithm here, except to say that it involves a series of log2 N

stages, where each stage performs small 2⇥2 transforms (matrix multiplications with known
coefficients) followed by some semi-global permutations. (You will often see the term but-
terfly applied to these stages because of the pictorial shape of the signal processing graphs
involved.) Implementations for the FFT can be found in most numerical and signal processing
libraries.

Now that we have defined the Fourier transform, what are some of its properties and how
can they be used? Table 3.1 lists a number of useful properties, which we describe in a little
more detail below:

where N is the number of samples in the signal.

k = 0 ⇔ DC value (mean)
k = 1⇔1 cycle per image, 1/ N  cycles per pixel
k = 2 ⇔ 2 cycles per image, 2 / N  cycles per pixel
!

k = (N −1) / 2 ⇔ (N −1) / 2 cycles per image, 
1
2

1− 1
N

⎛
⎝⎜

⎞
⎠⎟

 cycles per pixel (Nyquist limit)

k = (N +1) / 2 = N − (N −1) / 2 ⇔−(N −1) / 2 cycles per image, − 1
2

1− 1
N

⎛
⎝⎜

⎞
⎠⎟

 cycles per pixel (Nyquist limit)

!
k = N − 2 ⇔−2 cycles per image, − 2 / N  cycles per pixel
k = N −1⇔−1 cycles per image, −1/ N  cycles per pixel
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❖ Interpreting frequencies: 

๏ If N is even:
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where N is the length of the signal or region of analysis. These formulas apply both to filters,
such as h(x), and to signals or images, such as s(x) or g(x).

The discrete form of the Fourier transform (3.54) is known as the Discrete Fourier Trans-
form (DFT). Note that while (3.54) can be evaluated for any value of k, it only makes sense
for values in the range k 2 [�N

2 , N

2 ]. This is because larger values of k alias with lower
frequencies and hence provide no additional information, as explained in the discussion on
aliasing in Section 2.3.1.

At face value, the DFT takes O(N2
) operations (multiply-adds) to evaluate. Fortunately,

there exists a faster algorithm called the Fast Fourier Transform (FFT), which requires only
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libraries.
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where N is the number of samples in the signal.

k = 0 ⇔ DC value (mean)
k = 1⇔1 cycle per image, 1/ N  cycles per pixel
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!

k = N / 2−1⇔ N / 2−1 cycles per image, 
1
2
− 1
N

 cycles per pixel 

k = N / 2 ⇔ N / 2 cycles per image, 
1
2

 cycles per pixel (Nyquist limit)

k = N / 2+1= N − (N / 2−1) ⇔−(N / 2−1) cycles per image, − 1
2
− 1
N

⎛
⎝⎜

⎞
⎠⎟

 cycles per pixel 

!
k = N − 2 ⇔−2 cycles per image, − 2 / N  cycles per pixel
k = N −1⇔−1 cycles per image, −1/ N  cycles per pixel
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❖ What is the computational complexity for computing the DFT? 

๏ Naïve:  

๏ Fast Fourier Transform (FFT): 
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The Fourier transform is simply a tabulation of the magnitude and phase response at each
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H(!) = F {h(x)} = Aej�, (3.51)

i.e., it is the response to a complex sinusoid of frequency ! passed through the filter h(x).
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where N is the length of the signal or region of analysis. These formulas apply both to filters,
such as h(x), and to signals or images, such as s(x) or g(x).

The discrete form of the Fourier transform (3.54) is known as the Discrete Fourier Trans-
form (DFT). Note that while (3.54) can be evaluated for any value of k, it only makes sense
for values in the range k 2 [�N

2 , N

2 ]. This is because larger values of k alias with lower
frequencies and hence provide no additional information, as explained in the discussion on
aliasing in Section 2.3.1.

At face value, the DFT takes O(N2
) operations (multiply-adds) to evaluate. Fortunately,

there exists a faster algorithm called the Fast Fourier Transform (FFT), which requires only
O(N log2 N) operations (Bracewell 1986; Oppenheim, Schafer, and Buck 1999). We do not
explain the details of the algorithm here, except to say that it involves a series of log2 N

stages, where each stage performs small 2⇥2 transforms (matrix multiplications with known
coefficients) followed by some semi-global permutations. (You will often see the term but-
terfly applied to these stages because of the pictorial shape of the signal processing graphs
involved.) Implementations for the FFT can be found in most numerical and signal processing
libraries.

Now that we have defined the Fourier transform, what are some of its properties and how
can they be used? Table 3.1 lists a number of useful properties, which we describe in a little
more detail below:

where N is the number of samples in the signal.

O N 2( )

O N logN( )
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❖ Continuous domain: 

❖ Discrete domain:

space

Joseph Fourier 
1768 - 1830

h(x) = 1
2π

H (ω )e jω x dω
−∞

∞

∫

h(x) = 1
N

H (k)e
j2π kx
N

k==N /2

N /2

∑
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Property Signal Transform

superposition f1(x) + f2(x) F1(!) + F2(!)

shift f(x� x0) F (!)e�j!x0

reversal f(�x) F ⇤
(!)

convolution f(x) ⇤ h(x) F (!)H(!)

correlation f(x)⌦ h(x) F (!)H⇤
(!)

multiplication f(x)h(x) F (!) ⇤H(!)

differentiation f 0(x) j!F (!)

domain scaling f(ax) 1/aF (!/a)

real images f(x) = f⇤(x) , F (!) = F (�!)

Parseval’s Theorem
P

x
[f(x)]

2
=

P
!
[F (!)]

2

Table 3.1 Some useful properties of Fourier transforms. The original transform pair is
F (!) = F{f(x)}.

• Superposition: The Fourier transform of a sum of signals is the sum of their Fourier
transforms. Thus, the Fourier transform is a linear operator.

• Shift: The Fourier transform of a shifted signal is the transform of the original signal
multiplied by a linear phase shift (complex sinusoid).

• Reversal: The Fourier transform of a reversed signal is the complex conjugate of the
signal’s transform.

• Convolution: The Fourier transform of a pair of convolved signals is the product of
their transforms.

• Correlation: The Fourier transform of a correlation is the product of the first transform
times the complex conjugate of the second one.

• Multiplication: The Fourier transform of the product of two signals is the convolution
of their transforms.

• Differentiation: The Fourier transform of the derivative of a signal is that signal’s
transform multiplied by the frequency. In other words, differentiation linearly empha-
sizes (magnifies) higher frequencies.

• Domain scaling: The Fourier transform of a stretched signal is the equivalently com-
pressed (and scaled) version of the original transform and vice versa.
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Name Signal Transform

impulse
-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

�(x) , 1

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

shifted
impulse

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

�(x� u) , e�j!u

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

box filter
-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

box(x/a) , asinc(a!)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

tent
-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

tent(x/a) , asinc2
(a!)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Gaussian
-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

G(x;�) ,
p

2⇡

�
G(!;��1

)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Laplacian
of Gaussian

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

(
x
2

�4 � 1
�2 )G(x;�) , �

p
2⇡

�
!2G(!;��1

)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Gabor
-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

cos(!0x)G(x;�) ,
p

2⇡

�
G(! ± !0;��1

)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

unsharp
mask

-0.5

0.0

0.5

1.0

1.5

-1.0000 -0.5000 0.0000 0.5000 1.0000

(1 + �)�(x)

� �G(x;�)
,

(1 + �)�
p

2⇡�

�
G(!;��1

)
-0.5

0.0

0.5

1.0

1.5

-0.5000 0.0000 0.5000

windowed
sinc

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

rcos(x/(aW ))

sinc(x/a)
, (see Figure 3.29)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Table 3.2 Some useful (continuous) Fourier transform pairs: The dashed line in the Fourier
transform of the shifted impulse indicates its (linear) phase. All other transforms have zero
phase (they are real-valued). Note that the figures are not necessarily drawn to scale but
are drawn to illustrate the general shape and characteristics of the filter or its response. In
particular, the Laplacian of Gaussian is drawn inverted because it resembles more a “Mexican
hat”, as it is sometimes called.

(phase plot)
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Name Kernel Transform Plot

box-3
1
3 1 1 1 1

3 (1 + 2 cos !)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

box-5
1
5 1 1 1 1 1 1

5 (1 + 2 cos ! + 2 cos 2!)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

linear
1
4 1 2 1 1

2 (1 + cos !)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

binomial
1
16 1 4 6 4 1 1

4 (1 + cos!)
2

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Sobel
1
2 �1 0 1

sin !

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

corner
1
2 �1 2 �1 1

2 (1� cos !)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Table 3.3 Fourier transforms of the separable kernels shown in Figure 3.14.
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❖ The extension to 2D images and filters is straightforward. 

❖ The 2D Fourier transform tabulates the amplitude and phase of sinusoidal gratings for 
all combinations of horizontal and vertical frequency:
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3.4.2 Two-dimensional Fourier transforms

The formulas and insights we have developed for one-dimensional signals and their trans-
forms translate directly to two-dimensional images. Here, instead of just specifying a hor-
izontal or vertical frequency !x or !y , we can create an oriented sinusoid of frequency
(!x, !y),

s(x, y) = sin(!xx + !yy). (3.62)

The corresponding two-dimensional Fourier transforms are then

H(!x, !y) =

Z 1

�1

Z 1

�1
h(x, y)e�j(!xx+!yy)dx dy, (3.63)

and in the discrete domain,

H(kx, ky) =
1

MN

M�1X

x=0

N�1X

y=0

h(x, y)e�j2⇡
kxx+kyy

MN , (3.64)

where M and N are the width and height of the image.
All of the Fourier transform properties from Table 3.1 carry over to two dimensions if

we replace the scalar variables x, !, x0 and a with their 2D vector counterparts x = (x, y),
! = (!x, !y), x0 = (x0, y0), and a = (ax, ay), and use vector inner products instead of
multiplications.

3.4.3 Wiener filtering

While the Fourier transform is a useful tool for analyzing the frequency characteristics of a
filter kernel or image, it can also be used to analyze the frequency spectrum of a whole class
of images.

A simple model for images is to assume that they are random noise fields whose expected
magnitude at each frequency is given by this power spectrum Ps(!x, !y), i.e.,

⌦
[S(!x, !y)]

2
↵

= Ps(!x, !y), (3.65)

where the angle brackets h·i denote the expected (mean) value of a random variable.9 To
generate such an image, we simply create a random Gaussian noise image S(!x, !y) where
each “pixel” is a zero-mean Gaussian10 of variance Ps(!x, !y) and then take its inverse FFT.

The observation that signal spectra capture a first-order description of spatial statistics
is widely used in signal and image processing. In particular, assuming that an image is a

9 The notation E[·] is also commonly used.
10 We set the DC (i.e., constant) component at S(0, 0) to the mean grey level. See Algorithm C.1 in Appendix C.2

for code to generate Gaussian noise.
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9 The notation E[·] is also commonly used.
10 We set the DC (i.e., constant) component at S(0, 0) to the mean grey level. See Algorithm C.1 in Appendix C.2

for code to generate Gaussian noise.



EECS 4422/5323 Computer Vision J. Elder

Outline
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❖ Linear Shift-Invariant Systems 

❖ The Fourier Transform 

❖ The Wiener Filter
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Noise
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❖ Images formed by a camera or the eye are corrupted by noise. 

❖ This noise can often be approximated as a zero-mean, additive and stationary random 
process.

f x, y( ) = g x, y( )+ n x, y( )

Optical image

Noisy sensed image

=

Added noise

+
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Noise Filtering
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❖ Denoising is a core problem in image processing. 

❖ The linear systems solution to this problem is well understood. 

❖ The problem is to find the optimal filter h(x,y) that will maximize the accuracy of the 
filtered image in the least squares sense. 

❖ By the convolution theorem, this is equivalent to identifying the optimal transfer 
functionH ω x ,ω y( )
h(x, y)∗ f (x, y)⇔ H ω x ,ω y( )F ω x ,ω y( )

f x, y( ) = g x, y( )+ n x, y( )
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Probabilistic Model
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❖ To solve this problem, we assume that the optical image g(x,y) and the noise n(x,y) 
are both independent, stationary, random processes whose power spectral densities 
are known 

๏ Power spectral densities:

Pf ω x ,ω y( ) = F ω x ,ω y( ) 2 = E F ω x ,ω y( ) 2⎡
⎣⎢

⎤
⎦⎥

f x, y( ) = g x, y( )+ n x, y( )

Pg ω x ,ω y( ) = G ω x ,ω y( ) 2 = E G ω x ,ω y( ) 2⎡
⎣⎢

⎤
⎦⎥

Pn ω x ,ω y( ) = N ω x ,ω y( ) 2 = E N ω x ,ω y( ) 2⎡
⎣⎢

⎤
⎦⎥
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Image Log Fourier Energy

Power Spectral Density
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❖ Natural images tend to be lowpass - most of the energy is in the low spatial 
frequencies.

ω x

ω y

g x, y( ) log G ω x ,ω y( ) 2
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Noise Spectral Density
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❖ In contrast, the expected energy in image noise tends to be more flat (white) across 
spatial frequency

Image Log Fourier EnergyNoise Log Fourier Energy

ω x

ω y

n x, y( ) log N ω x ,ω y( ) 2
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The Wiener Filter
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❖ When the frequency distribution of the image energy and the noise energy differ, we 
can improve the signal-to-noise ratio (SNR) by boosting the Fourier amplitudes where 
the image is strong relative to the noise and attenuating the Fourier amplitudes where 
it is relatively weak. 

❖ Typically this means a lowpass filter. 

❖ The Wiener filter is given by

Norbert Wiener 1894 - 1964

H ω x ,ω y( ) = Pg ω x ,ω y( )
Pf ω x ,ω y( ) =

Pg ω x ,ω y( )
Pg ω x ,ω y( )+ Pn ω x ,ω y( ) ,  where

Pf ω x ,ω y( )  is the power spectral density of the noisy sensed image

Pg ω x ,ω y( )  is the power spectral density of the optical image before noise was added

Pn ω x ,ω y( )  is the power spectral density of the noise 
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The Wiener Filter
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❖ The Wiener filter minimizes the expected mean square error (MSE) of the estimated 
image relative to the original image before noise was added. 

❖ It is the optimal linear shift-invariant solution to this problem  

❖ Note that this optimality is general - it does not depend upon either the noise or the 
image being Gaussian.  (Be careful with the textbook here.)

H ω x ,ω y( ) = Pg ω x ,ω y( )
Pf ω x ,ω y( ) =

Pg ω x ,ω y( )
Pg ω x ,ω y( )+ Pn ω x ,ω y( ) ,  where

Pf ω x ,ω y( )  is the power spectral density of the noisy sensed image

Pg ω x ,ω y( )  is the power spectral density of the optical image before noise was added

Pn ω x ,ω y( )  is the power spectral density of the noise 



EECS 4422/5323 Computer Vision J. Elder

Estimating the Wiener Filter
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❖ To calculate the Wiener filter we need to know the power spectral density of the 
optical image and of the noise. 

❖ Typically, we employ simple approximations. 

H ω x ,ω y( ) = Pg ω x ,ω y( )
Pf ω x ,ω y( ) =

Pg ω x ,ω y( )
Pg ω x ,ω y( )+ Pn ω x ,ω y( ) ,  where

Pf ω x ,ω y( )  is the power spectral density of the noisy sensed image

Pg ω x ,ω y( )  is the power spectral density of the optical image before noise was added

Pn ω x ,ω y( )  is the power spectral density of the noise 
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Wiener Filter Example
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❖ Assume isotropic spectral densities for both image and noise 

๏ Image spectral density is lowpass 

๏ Noise spectral density is white 

๏ Then

H ω x ,ω y( ) = Pg ω x ,ω y( )
Pf ω x ,ω y( ) =

Pg ω x ,ω y( )
Pg ω x ,ω y( )+ Pn ω x ,ω y( ) ,  where

Pf ω x ,ω y( )  is the power spectral density of the noisy sensed image

Pg ω x ,ω y( )  is the power spectral density of the optical image before noise was added

Pn ω x ,ω y( )  is the power spectral density of the noise 

Pg ω x ,ω y( )  =α 2

ω 2 ,  where ω 2 =ω x
2 +ω y

2

Pn ω x ,ω y( )  =σ n
2

H ω x ,ω y( ) = α /ω( )2

α /ω( )2 +σ n
2
= 1

1+ ω / β( )2 ,  where β =α /σ n  is the SNR.

Field, 1987
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Wiener Filter Example
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❖ Observe that:

H ω x ,ω y( ) = 1
1+ ω / β( )2 ,  where β =α /σ n  is the SNR.

lim
β→∞

H ω x ,ω y( ) = 1 lim
β→0

H ω x ,ω y( ) = β
ω

⎛
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Wiener Filter Example
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❖ Note that: 

๏ h(r) is the inverse Hankel transform of H(ω), not the Fourier transform. 

๏ h(r) has no analytic form, but the discrete form of h(x, y) can be determined by taking 
the inverse Fourier transform of H(ωx,ωy).

H ω x ,ω y( ) = 1
1+ ω / β( )2 ,  where β =α /σ n  is the SNR.

The Hankel transform of β
2

2π
e−βr  is actually 1

1+ ω / β( )2( )3/2

⎛
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State of the Art
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❖ Deep convolutional neural networks 

๏ Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian 
denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on 
Image Processing, 26(7):3142–3155. 

๏ Wang, R. and Tao, D. (2016). Non-local auto-encoder with collaborative stabilization for 
image restoration. IEEE Transactions on Image Processing, 25(5):2117–2129. 

❖ Nonlinear filtering with learned parameters 

๏ Chen, Y. and Pock, T. (2017). Trainable nonlinear reaction diffusion: A flexible 
framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 39(6):1256–1272.
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❖ Linear Shift-Invariant Systems 

❖ The Fourier Transform 

❖ The Wiener Filter


