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3.2 Frequency Analysis
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¢ Linear Shift-Invariant Systems

s The Fourier Transform

«* The Wiener Filter
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¢ Linear Shift-Invariant Systems

s The Fourier Transform

«* The Wiener Filter
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1D Signal Coding S

* A 1D signal (e.g., a slice of a luminance image f(x) over horizontal location x) can be
coded as a sequence of values

A

¢ This can also be viewed as a superposition of shifted and weighted impulses

_><1O4
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Impulse (Delta) Functions
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0 A 0
Discrete pulse lim 5A (X ) Dirac delta function
A—0
1 o ifx=0
—if0<x<A o(x)=
0,(x)=1 A 1 g ) { 0 otherwise
0 otherwise
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Representing a Signal with Impulses "

Al

fx)= Eitf kA)S, (x—kA)A

k=—o0

f@)=lim Y £(kA)S, (x—kA)A

A—0
- oo

_“

= f(x)*0(x)
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Representing a Filter with Impulses

¢ Of course we can also code a filter /(x) using impulses.

/

h(x)=h(x)*0(x)

Al
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¢ This 1s why we refer to /(x) as the impulse response function of the filter

A
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Alternative Linear Codes = = 0

¢ The impulse code is not the only way to code a signal or a filter!

/

¢ In particular, there are many alternative linear codes, including

Fourier transforms

Discrete coding transforms (DCTs)

Wavelet transforms

¢ These linear codes are simply linear transformations of the impulse code.

/

¢ We begin with the Fourier code, which arises naturally from linear systems theory.
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What is a linear system? e

“* A system h is linear if it satisfies the principle of superposition:

/AddﬂMtY\A
h(ef+Bf,)=ah(f;)+Bh(f,)
\_/

Homogeneity
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Shift Invariance @ e

“* A system h is shift-invariant if a shift in the input produces an identical shift in the
output:

g(x)=h(f(x)) = g(x—u)=h(f(x—u))

LA
PN
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The Impulse Response Function =

¢ The output of a linear shift-invariant system at x 1s a weighted sum of the input, where
the weights are fixed relative to x.

¢ These filter weights are simply the reversed impulse response function.

h(x)=h(x)*0(x)

past present future
O(s) O (l) (l) 1 0O 0 0 0 O input (impulse)
h(x—s) 1/w1fz — weights
h(x) 0 0 0 121418 0 0 O output (impulse response)
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output (the impulse response)

/

SinUSOidS Criversit

¢ When we input an impulse to a linear shift-invariant system, we get a complicated

Impulse

Impulse Response

but scaled and shifted in phase.

A

\V

X

* However, when we input a sinusoid, we get another sinusoid of the same frequency,

AI/\ /:

s(x)

h(x)

AR

o(x)

s(x) =sin(2n fr + ¢;) = sin(wz + ¢;)

/
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o(x) = h(x) x s(x) = Asin(wx + ¢,)

¢ This makes sinusoids a natural code for linear shift invariant systems.
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Complex Sinusoids @

¢ It is often convenient to work with complex sinusoids:

s(x) = €% = coswz + jsinwx

A

Im

J e'?=cos @ + isino

o(z) = h(z) * s(x) = Aed“T?
sin @
P =

0 |cos @ l Re
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¢ Linear Shift-Invariant Systems

7/

< The Fourier Transform

«* The Wiener Filter
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Fourier Series

YORKJ I

UNIVERSITE
UNIVERSITY

*» We have already seen that any signal f(x) or filter 4(x) can be expressed exactly

as an infinite sum of impulses.

¢ It turns out that any signal can alternatively be expressed exactly as an infinite

sum of sinusoids.
*» This 1s known as a Fourier series.

% For a finite signal f(x) defined on [0, X], we have:

f(x)= iAn sin(27nx/ X +¢,)
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Joseph Fourier
1768 - 1830

Fourier Series Approximations

Original Squarewave

2

45
-1 - - - - -
o b4 - 6 g

8 Term Approximation

4 Term Approximation

as |

2" - . ]
2 “ 6 8

16 Term Approximation
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The Fourier Transform bt

“* In the limit as X =0, the Fourier series becomes the Fourier transform.

¢ The Fourier transform of a signal f(x) or filter 4(x) 1s the response to a complex
sinusoid at each frequency

H(w) = F{h(z)} = Ae’?

hx) 5 Hw)

H (w) 1s called the transfer function of the filter i(x).

Joseph Fourier
1768 - 1830

+» Continuous domain:

H(w) = / b h(z)e 7" dx

— 0

/ frequency
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Fourier Transforms =

Signal Amplitude of Fourier Transform

U LViT

LML
L

0 4 8

cosl6mrx 0
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Amplltude & Phase TIET e

r=x+ jy = Ae’?, where A = /22 + 92 and ¢ = arctan (y/z)

F|cos6mx] F|sin67zx]
cosine sine

real part ‘

8 0 8 -8 0 8
imaginary part ‘

-8 0 8 -8 0 8
amplitude ‘ ‘ ‘

8 0 8 -8 0 8

Frequency (Hz) Frequency (Hz)

phase 0 /2
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End of Lecture
Oct 3, 2018
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HR) = 5 3 hx)e ™5

where N 1s the number of samples in the signal.

Y/

 Interpreting frequencies:

If N 1s odd:

k =0 < DC value (mean)
k=1<1 cycle per image, 1/ N cycles per pixel
k =2 & 2 cycles per image, 2/ N cycles per pixel

: 1 1 : e
k=(N-1)/2& (N —-1)/2 cycles per image, 5[1 — ﬁ} cycles per pixel (Nyquist limit)

1 1 : .
k=(N+1)/2=N—-(N-1)/2 & —(N —-1)/2 cycles per image, — 5(1 — F] cycles per pixel (Nyquist limi)

k=N -2 < -2 cycles per image, —2/ N cycles per pixel
k=N—-1& —1 cycles per image, —1/ N cycles per pixel
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- 2mkx

where N 1s the number of samples in the signal.

Y/

 Interpreting frequencies:

If N 1s even:

k =0 < DC value (mean)
k=1&1 cycle per image, 1/ N cycles per pixel
k=2 < 2 cycles per image, 2/ N cycles per pixel

: 1 1 :
k=N/2-1& N/2-1 cycles per image, 2N cycles per pixel

: 1 : Y
k=N/2& N/2 cycles per image, > cycles per pixel (Nyquist limit)

: 1 1 :
k=N/24+1=N—-(N/2-1)< —(N/2-1) cycles per image, _(E_FJ cycles per pixel

k=N -2 & -2 cycles per image, —2/ N cycles per pixel
k=N —-1& —1 cycles per image, —1/ N cycles per pixel
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- 2mkx

where N 1s the number of samples in the signal.

Y/

¢ What 1s the computational complexity for computing the DFT?
Naive: O(N 2)

Fast Fourier Transform (FFT): O(NlogN)
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The Inverse Fourier Transform bt

+» Continuous domain:

1 h 1039
h(x):g [o H(w)e'™ dw

*» Discrete domain:

1 N2 2k
h(x)=— Y H(k)e "
NkzN/2

Joseph Fourier
1768 - 1830

/ frequency
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Properties of the Fourier Transform

UNIVERSITE
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Property Signal Transform
superposition fi(z) + fa(x) Fi(w) + Fa(w)
shift flz — xq) F(w)ewo
reversal f(—x) F*(w)
convolution f(x) * h(x) F(w)H (w)
correlation f(zr) ® h(x) Fw)H* (w)
multiplication f(z)h(x) F(w)* H(w)
differentiation f'(x) JwF(w)
domain scaling f(ax) 1/aF (w/a)
real images flx)=f"(z) & F(w)=F(-w)

Parseval’s Theorem

> [F (W)
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Fourier Pairs
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L (phase plot)

Name Signal Transform
impulse o(x) 1
shifted .
impulse 0(z — u) e J¥H
box filter box(z/a) asinc(aw) A A
tent tent(z/a) asinc? (aw)
Gaussian G(z;0) ﬁG(W; o) /\
eplactan (% — J5)G(as0) — Y2 2G (wi oY)
of Gaussian  —=/+{=~
ol e o Fobrae L
unsharp (1+7)d(z) \/—(1 )= \/
mask —~vG(x;0) V2T Gw; o L) | —
windowed reos(z/(aWV)) (see Figure 3.29) /\
sinc /- sinc(x/a) '
25
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Fourier transforms of simple filters

Name Kernel Transform Plot
1 el
box-3 s L)1 5(1+2cosw) |
box-5 % 11117171 2(1+ 2cosw + 2 cos 2w) ZZ\
_0:20 OTI OWA
1 ol
linear 711121 %(1 + cose) : \
oo L1 14]6(4]1 11 2
binomial 16 7 (1 +cosw) AN
l-110/|1 .
Sobel 2 Sin w
51 —-1]2] -1 1(1 - cosw)
corner 2 2
26 J. Elder
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The 2D Fourier Transform bt

¢ The extension to 2D images and filters 1s straightforward.

o%

% The 2D Fourier transform tabulates the amplitude and phase of sinusoidal gratings for
all combinations of horizontal and vertical frequency:

s(x,y) = sin(wz T + wyy)

Hwnw) = [ [ hwgeseromizay

— OO — 00

]_ M—1N— O ka;33+kyy
H(kx,k M—Zoyzo ijej MN

8
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¢ Linear Shift-Invariant Systems

s The Fourier Transform

«* The Wiener Filter
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NOISe I
¢ Images formed by a camera or the eye are corrupted by noise.

Y/

¢ This noise can often be approximated as a zero-mean, additive and stationary random
process.

f(x.y)=g(x.y)+n(x.y)

\

Optical 1image

Noisy sensed 1mage Added noise
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Noise Filtering eain:

f(xy)=g(x.y)+n(x.y)
¢ Denoising 1s a core problem in image processing.
¢ The linear systems solution to this problem 1s well understood.

¢ The problem is to find the optimal filter 4(x,y) that will maximize the accuracy of the
filtered 1mage in the least squares sense.

¢ By the convolution theorem, this is equivalent to identifying the optimal transfer
function H (a)x NOR )

h(x,y)* f(x,y) & H(o,.0,)F(o,.0,)
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Probabilistic Model bt

f(x.y)=g(x,y)+n(x,y)

/

¢ To solve this problem, we assume that the optical image g(x,y) and the noise n(x,y)

are both independent, stationary, random processes whose power spectral densities
are known

Power spectral densities:

Pf(a)x,a)y): <‘F(a)xa)y)

Pg(a)x,a)y): <‘G(a)x,a)y)

(V(o.o)

P (a) ,a)y)

n X
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End of Lecture
Oct 15, 2018
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Power Spectral Density &%~

¢ Natural images tend to be lowpass - most of the energy is in the low spatial
frequencies.

Image Log Fourier Energy
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Noise Spectral Density TCHE

In contrast, the expected energy in image noise tends to be more flat (white) across
spatial frequency

R/
%®

Log Fourier Energy

nix,y log‘N .0,
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The Wiener Filter S

¢ When the frequency distribution of the image energy and the noise energy differ, we
can improve the signal-to-noise ratio (SNR) by boosting the Fourier amplitudes where
the image 1s strong relative to the noise and attenuating the Fourier amplitudes where
it 1s relatively weak.

Y/

¢ Typically this means a lowpass filter.

¢ The Wiener filter is given by

_Rle.o)  Rlo.0)

(a) a)y) P(a)x,a)y)+Pn(a)x,a)y

here
) , W

) 1s the power spectral density of the noisy sensed image
) 1s the power spectral density of the optical image before noise was added

is the power spectral density of the noise

Norbert Wiener 1894 - 1964
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The Wiener Filter AT

_Rle.w)  Elo.0)
(a) a)) P(a)x,a)y)+Pn(a)x,a)y

is the power spectral density of the noisy sensed image

here
) , W

is the power spectral density of the optical image before noise was added

X y )
) 1s the power spectral density of the noise

¢ The Wiener filter minimizes the expected mean square error (MSE) of the estimated
image relative to the original image before noise was added.

o%

% It 1s the optimal linear shift-invariant solution to this problem

¢ Note that this optimality is general - it does not depend upon either the noise or the
image being Gaussian. (Be careful with the textbook here.)
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Estimating the Wiener Filter

Flo.o)  EAlo.o)
(a) a)) P(a)x,a)y)+Pn(a)x,a)y

is the power spectral density of the noisy sensed image

here
) , W

is the power spectral density of the optical image before noise was added

)=
0,)
)
) s the power spectral density of the noise

*» To calculate the Wiener filter we need to know the power spectral density of the
optical image and of the noise.

R/

» Typically, we employ simple approximations.
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Wiener Filter Example — ##

_Rle.w)  Elo.0)
(a) a)) P(a)x,a)y)+Pn(a)x,a)y

is the power spectral density of the noisy sensed image

here
) , W

is the power spectral density of the optical image before noise was added

X y )
) is the power spectral density of the noise

¢ Assume 1sotropic spectral densities for both image and noise

Image spectral density is lowpass
2

Pg(a)x,a)y) =%, where 0” = 0] + @,

Noise spectral density 1s white y ._
o) -1
Then

H(a)x,a)y)z (o)) ~ = : -, where f=a /0, is the SNR.

(a/w) +0> 1+(w/p)
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Wiener Filter Example — ##

1 :
H(a)x,a)y)z 1+(a)/ﬁ)2 , where =0 /0, is the SNR.
< Observe that: — 3=0.63
BY — (3=1.00
%gI;H(a)x,a)y)zl }3123H(a)x,a)y):(g) £=1.58

2 0 2
w,, (cycles per pixel)
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Wiener Filter Example — ##

1
1+(w/p)

H(a)x,a)y) = =, where B=0o /0, is the SNR.

% Note that:
h(r) 1s the inverse Hankel transform of H(w), not the Fourier transform.

h(r) has no analytic form, but the discrete form of h(x, y) can be determined by taking
the inverse Fourier transform of H(wx,wy).

2
1
The Hankel transform of ﬁ—e_ﬁr is actually 7
2n (1+(a)/,8) )
—— 3=0.63 — $=0.63
—— 3=1.00 —— 3=1.00
5=1.58 3=1.58
0.4
0.3
0.2
o N
0.1}
N
. . . -0.1 . .
-2 0 2 -5 0 5
w, (cycles per pixel) X (pixels)
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State of the Art e

¢ Deep convolutional neural networks

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on
Image Processing, 26(7):3142-3155.

Wang, R. and Tao, D. (2016). Non-local auto-encoder with collaborative stabilization for
image restoration. IEEE Transactions on Image Processing, 25(5):2117-2129.

¢ Nonlinear filtering with learned parameters

Chen, Y. and Pock, T. (2017). Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6):1256—1272.
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¢ Linear Shift-Invariant Systems

s The Fourier Transform

«* The Wiener Filter
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