

4.1 Feature Detection & Matching: Points & Patches

Outline

- Feature detectors
- Feature descriptors
- Feature matching
- Feature tracking

Outline

***** Feature detectors

- Feature descriptors
- Feature matching
- Feature tracking

What Makes a Good Feature?

- Constant colour
 - Bad many false matches
- Straight lines or smooth curves
 - Better but still suffer from the 'aperture problem'
- Sharp corners
 - Great often unique!

The Barber Pole Illusion

By Sakurambo - Own work (animated 3D model), CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=798589

EECS 4422/5323 Computer Vision

Feature Stability

Local stability of feature can be assessed by computing a local weighted squared deviation of the image patch at the feature location from neighbouring patches:

$$E_{\rm AC}(\Delta \boldsymbol{u}) = \sum_{i} w(\boldsymbol{x}_i) [I_0(\boldsymbol{x}_i + \Delta \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2$$

YORK

End of Lecture Oct 17, 2018

Gradient-Based Features

Taylor series approximation of the local deviation:

$$\begin{split} E_{\mathrm{AC}}(\Delta \boldsymbol{u}) &= \sum_{i} w(\boldsymbol{x}_{i}) [I_{0}(\boldsymbol{x}_{i} + \Delta \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2} \\ &\approx \sum_{i} w(\boldsymbol{x}_{i}) [I_{0}(\boldsymbol{x}_{i}) + \nabla I_{0}(\boldsymbol{x}_{i}) \cdot \Delta \boldsymbol{u} - I_{0}(\boldsymbol{x}_{i})]^{2} \\ &= \sum_{i} w(\boldsymbol{x}_{i}) [\nabla I_{0}(\boldsymbol{x}_{i}) \cdot \Delta \boldsymbol{u}]^{2} \\ &= \Delta \boldsymbol{u}^{T} \boldsymbol{A} \Delta \boldsymbol{u}, \end{split}$$

where

$$\nabla I_0(\boldsymbol{x}_i) = (\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y})(\boldsymbol{x}_i)$$

and

$$\boldsymbol{A} = \boldsymbol{w} * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Eigenvalue Analysis

- This is the Hessian matrix of I(x, y).
- ◆ It provides a quadratic approximation to the local shape of the deviation.
- The deviation changes most gradually in the direction of the smallest eigenvector.
- ◆ Thus when selecting features we should try to maximize the smallest eigenvalue.

Scalar Interest Measures

A number of scalar interest measures based upon the eigenvalues of the Hessian have been proposed:

For $\lambda_0 < \lambda_1$: λ_0 (Shi & Tomasi 1994) $\lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$ (Harris & Stephens 1988) $\lambda_0 - \alpha \lambda_1$ (Triggs 2004) $\frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$ (Brown, Szeliski & Winder 2005)

Outline of Basic Feature Detection Algorithm

- 1. Compute the horizontal and vertical derivatives of the image I_x and I_y by convolving the original image with derivatives of Gaussians (Section 3.2.3).
- Compute the three images corresponding to the outer products of these gradients.
 (The matrix A is symmetric, so only three entries are needed.)
- 3. Convolve each of these images with a larger Gaussian.
- 4. Compute a scalar interest measure using one of the formulas discussed above.
- 5. Find local maxima above a certain threshold and report them as detected feature point locations.

Output of Harris Detector

Multi-Scale Methods

- Features can exist at any scale
- Only using the finest-scale may not make sense (e.g., for images with no fine-scale structure)
- One option is to run the feature detector at many scales, in a pyramid design.
- Matching and tracking can then be done within each scale.
- This makes sense when the scale of a feature is not expected to change between frames
 - Aerial imagery
 - Panorama stitching

Scale-Invariant Methods

- It is often desirable to be able to detect and track a feature despite changes in scale due to, e.g.,
 - Changes in distance
 - Changes in focal length
- For this purpose, we seek a feature that is stable in both location *and* scale.
 - e.g., extrema (in both location and scale) of Laplacian of Gaussian (LoG) or Difference of Gaussian (DoG) response
 - Lindeberg 1993, Lowe 2004 (SIFT)

End of Lecture Oct 22, 2018

Invariance to In-Plane Rotations

- Objects may also change in orientation between frames.
- Solution 1: Use a rotationally invariant descriptor
 - Problem: such descriptors are not very discriminative map very different image patches to similar descriptors
- Solution 2: Estimate locally dominant orientation
 - Estimate dominant orientation by averaging the Gaussian gradients within a local patch
 - Then align descriptor in both scale and orientation with detected key point

Affine Invariance

- ✤ In general, objects will undergo out-of-plane rotations between views.
- These transformations cannot be accounted for by scaling and rotation within the plane of the image
- However, small out-of-plane rotations can often be handled by building feature detectors that are *affine invariant*.

Feature Detection: State of the Art

- ✤ Machine learning has become an important part of feature detection.
- State-of-the-art for object detection/recognition based on dense deep network features
 - Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91–99.
 - He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Feature detectors

- ***** Feature descriptors
- Feature matching
- Feature tracking

Feature Descriptors

- ♦ A 2D spatial pattern or 1D vector describing the appearance of the image patch centred at the keypoint.
- Used to match key points across images for tracking, structure from motion, stereo, object recognition, pose estimation.
- May estimate local scale, orientation and/or affine frame prior to computing descriptor to achieve invariance to these transformations.

Scale-Invariant Feature Transformation (SIFT)

- ***** Keypoint detected at location (x, y) and scale σ in Gaussian pyramid
- Compute intensity gradient at each pixel within 16x16 pixel patch centred at keypoint at scale σ in Gaussian pyramid
- ✤ Weight gradients by Gaussian centred at keypoint
- Solution Bin the 16 gradients within each of the 16 4x4 pixel blocks of the patch into an 8-orientation histogram, using gradient magnitude as weight and trilinear interpolation over (x, y, θ)
- Result is a $4 \times 4 \times 8 = 128$ -element feature vector.
- Normalize to unit length to increase invariance to photometric variations
- Also cap the maximum gradient magnitude to 0.2 to avoid errors due to camera saturation and larger illumination changes

Feature detectors

- Feature descriptors
- **♦** Feature matching
- Feature tracking

Feature Matching

- Given keypoint A in Image 1 and keypoint B in Image 2, we compute the Euclidean distance *d* between their feature vector. A small distance implies a likely match.
- Fixed threshold θ on distance:
 - $d < \theta \rightarrow match$
 - $d > \theta \rightarrow no match$
- There are 4 possible outcomes:

Ground Truth

rithm		Match	Non- Match
Matching Algo	d < θ	Hit	False Positive
	d > θ	Miss	Correct Reject

4 Possible Outcomes

Euclidean distance d between feature vectors

23

Performance Evaluation

✤ Let

- P = # of ground truth matches
- N = # of ground truth non-matches

Then

ROC Plots

- Algorithms can be compared without committing to a specific threshold using a receiver-operator characteristic (ROC) plot
- Given ground truth data, the optimal threshold can be determined if we know the relative cost of misses and false alarms (decision theory).

Alternative Terminologies

- $Hit \equiv True Positive$
- $\bigstar Miss \equiv False Negative$
- ♦ False Alarm \equiv False Positive
- ♦ Correct Reject = True Negative

Scalar Measures of Performance

Alternative Terminology: Precision-Recall

- p = # of algorithm matches
- P = # of ground truth matches

Then

• Precision =
$$\frac{|\text{Hits}|}{p}$$

• Recall = $\frac{|\text{Hits}|}{P}$

Note: Recall \equiv Hit Rate

Efficient Matching

- Exhaustive: Compare all keypoints in Image A to all keypoints in Image B
 - Cost: Quadratic
- More efficient alternatives:
 - Hashing
 - Search trees

Example: k-d Trees

- Consider keypoints A-H.
- Recursively:
 - Select dimension with greatest variance
 - Partition at median
- Partitions can now be represented as binary tree with (dimension, threshold) stored at each node.
- ✤ Given query point, Best Bin First (BBF) strategy searches bins in order of proximity to query.

Verification & Densification

- Once a set of hypothesized matches are identified, an optimal geometric alignment between the images can be computed.
- This alignment can then be used to prune outlier matches.
- This alternation of alignment and pruning can be iterated to convergence.
- An approximate alignment can also be used to conduct a more constrained search for additional feature matches
- These can be used to further refine the alignment.

Feature detectors

- Feature descriptors
- Feature matching
- **♦** Feature tracking

Feature Tracking

- In some applications deviation between images is small
 - Object tracking in 30fps video
 - Optic flow at 30fps video
- ◆ In these scenarios, we may employ a detect-then-track strategy:
 - Detect features in Frame *t*
 - Search for corresponding features in Frame t + 1

Correlation Trackers

Minimize squared deviation (maximize correlation)

$$E_{\mathrm{CC}}(\boldsymbol{u}) = \sum_{i} I_0(\boldsymbol{x}_i) I_1(\boldsymbol{x}_i + \boldsymbol{u})$$

- Sensitive to photometric changes caused by variation in camera parameters, illumination, specular reflections
- Normalized cross-correlation reduces these effects

$$E_{\text{NCC}}(\boldsymbol{u}) = \frac{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}] [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]}{\sqrt{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}]^2} \sqrt{\sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]^2}}$$

Appearance Drift

- ✤ How should we track feature over multiple frames?
 - Match features in Frame 0 to features in all subsequent frames
 - + Features may change substantially if object undergoes out-of-plane transformations
 - Re-sample features in each frame
 - Features may drift from original object to other objects
 - KLT Tracker: Use affine motion model to transform frames back to Frame 0 coordinates
 - Only re-sample when tracking fails

Original

Transformed

Frame 0

Frame 1

Frame 2

Frame 4

EECS 4422/5323 Computer Vision

Feature Tracking State of the Art: Learning

- Rather than hardwiring the feature descriptor, one can train a classifier to discriminate a patch on the object to be tracked from background patches, then use this classifier to track.
- This has now led to the application of fast deep networks for tracking, e.g.,
 - H Li, Y Li, F Porikli. Deeptrack: Learning discriminative feature representations online for robust visual tracking, IEEE Transactions on Image Processing, 25(4), 1834-1848, 2016.

Outline

- Feature detectors
- Feature descriptors
- Feature matching
- Feature tracking