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❖ Feature descriptors 

❖ Feature matching 
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What Makes a Good Feature?
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❖ Constant colour 
๏ Bad - many false matches 

❖ Straight lines or smooth curves 
๏ Better - but still suffer from the ‘aperture problem’ 

❖ Sharp corners 

๏ Great - often unique!4.1 Points and patches 209

Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.

feature matching stage (Section 4.1.3) efficiently searches for likely matching candidates in
other images. The feature tracking stage (Section 4.1.4) is an alternative to the third stage
that only searches a small neighborhood around each detected feature and is therefore more
suitable for video processing.

A wonderful example of all of these stages can be found in David Lowe’s (2004) paper,
which describes the development and refinement of his Scale Invariant Feature Transform
(SIFT). Comprehensive descriptions of alternative techniques can be found in a series of
survey and evaluation papers covering both feature detection (Schmid, Mohr, and Bauck-
hage 2000; Mikolajczyk, Tuytelaars, Schmid et al. 2005; Tuytelaars and Mikolajczyk 2007)
and feature descriptors (Mikolajczyk and Schmid 2005). Shi and Tomasi (1994) and Triggs
(2004) also provide nice reviews of feature detection techniques.

4.1.1 Feature detectors

How can we find image locations where we can reliably find correspondences with other
images, i.e., what are good features to track (Shi and Tomasi 1994; Triggs 2004)? Look again
at the image pair shown in Figure 4.3 and at the three sample patches to see how well they
might be matched or tracked. As you may notice, textureless patches are nearly impossible
to localize. Patches with large contrast changes (gradients) are easier to localize, although
straight line segments at a single orientation suffer from the aperture problem (Horn and
Schunck 1981; Lucas and Kanade 1981; Anandan 1989), i.e., it is only possible to align
the patches along the direction normal to the edge direction (Figure 4.4b). Patches with
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The Barber Pole Illusion
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By Sakurambo - Own work (animated 3D model),  
CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=798589
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Feature Stability

!6

❖ Local stability of feature can be assessed by computing a local weighted squared 
deviation of the image patch at the feature location from neighbouring patches:
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(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.
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Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like”) flow;
(b) classic aperture problem (barber-pole illusion); (c) textureless region. The two images I0

(yellow) and I1 (red) are overlaid. The red vector u indicates the displacement between the
patch centers and the w(xi) weighting function (patch window) is shown as a dark circle.

gradients in at least two (significantly) different orientations are the easiest to localize, as
shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching criterion
for comparing two image patches, i.e., their (weighted) summed square difference,

EWSSD(u) =

X

i

w(xi)[I1(xi + u)� I0(xi)]
2, (4.1)

where I0 and I1 are the two images being compared, u = (u, v) is the displacement vector,
w(x) is a spatially varying weighting (or window) function, and the summation i is over all
the pixels in the patch. Note that this is the same formulation we later use to estimate motion
between complete images (Section 8.1).

When performing feature detection, we do not know which other image locations the
feature will end up being matched against. Therefore, we can only compute how stable this
metric is with respect to small variations in position �u by comparing an image patch against
itself, which is known as an auto-correlation function or surface

EAC(�u) =

X

i

w(xi)[I0(xi + �u)� I0(xi)]
2 (4.2)

(Figure 4.5).1 Note how the auto-correlation surface for the textured flower bed (Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,
indicating that it can be well localized. The correlation surface corresponding to the roof
edge (Figure 4.5c) has a strong ambiguity along one direction, while the correlation surface
corresponding to the cloud region (Figure 4.5d) has no stable minimum.

1 Strictly speaking, a correlation is the product of two patches (3.12); I’m using the term here in a more qualitative
sense. The weighted sum of squared differences is often called an SSD surface (Section 8.1).

EAC Δu( )

EAC Δu( )

EAC Δu( )
Note:  Bright pixels ⇔ low EAC .
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Gradient-Based Features
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❖ Taylor series approximation of the local deviation:
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Using a Taylor Series expansion of the image function I0(xi+�u) ⇡ I0(xi)+rI0(xi)·
�u (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation
surface as

EAC(�u) =

X

i

w(xi)[I0(xi + �u)� I0(xi)]
2 (4.3)

⇡
X

i

w(xi)[I0(xi) +rI0(xi) · �u� I0(xi)]
2 (4.4)

=

X

i

w(xi)[rI0(xi) · �u]
2 (4.5)

= �uT A�u, (4.6)

where
rI0(xi) = (

@I0

@x
,
@I0

@y
)(xi) (4.7)

is the image gradient at xi. This gradient can be computed using a variety of techniques
(Schmid, Mohr, and Bauckhage 2000). The classic “Harris” detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with � = 1).

The auto-correlation matrix A can be written as

A = w ⇤
"

I2
x

IxIy

IxIy I2
y

#
, (4.8)

where we have replaced the weighted summations with discrete convolutions with the weight-
ing kernel w. This matrix can be interpreted as a tensor (multiband) image, where the outer
products of the gradientsrI are convolved with a weighting function w to provide a per-pixel
estimate of the local (quadratic) shape of the auto-correlation function.

As first shown by Anandan (1984; 1989) and further discussed in Section 8.1.3 and (8.44),
the inverse of the matrix A provides a lower bound on the uncertainty in the location of a
matching patch. It is therefore a useful indicator of which patches can be reliably matched.
The easiest way to visualize and reason about this uncertainty is to perform an eigenvalue
analysis of the auto-correlation matrix A, which produces two eigenvalues (�0, �1) and two
eigenvector directions (Figure 4.6). Since the larger uncertainty depends on the smaller eigen-
value, i.e., ��1/2

0 , it makes sense to find maxima in the smaller eigenvalue to locate good
features to track (Shi and Tomasi 1994).

Förstner–Harris. While Anandan and Lucas and Kanade (1981) were the first to analyze
the uncertainty structure of the auto-correlation matrix, they did so in the context of asso-
ciating certainties with optic flow measurements. Förstner (1986) and Harris and Stephens
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Eigenvalue Analysis
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❖ This is the Hessian matrix of I(x, y).   

❖ It provides a quadratic approximation to the local shape of the deviation. 

❖ The deviation changes most gradually in the direction of the smallest eigenvector. 

❖ Thus when selecting features we should try to maximize the smallest eigenvalue.
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Figure 4.6 Uncertainty ellipse corresponding to an eigenvalue analysis of the auto-
correlation matrix A.

(1988) were the first to propose using local maxima in rotationally invariant scalar measures
derived from the auto-correlation matrix to locate keypoints for the purpose of sparse feature
matching. (Schmid, Mohr, and Bauckhage (2000); Triggs (2004) give more detailed histori-
cal reviews of feature detection algorithms.) Both of these techniques also proposed using a
Gaussian weighting window instead of the previously used square patches, which makes the
detector response insensitive to in-plane image rotations.

The minimum eigenvalue �0 (Shi and Tomasi 1994) is not the only quantity that can be
used to find keypoints. A simpler quantity, proposed by Harris and Stephens (1988), is

det(A)� ↵ trace(A)
2

= �0�1 � ↵(�0 + �1)
2 (4.9)

with ↵ = 0.06. Unlike eigenvalue analysis, this quantity does not require the use of square
roots and yet is still rotationally invariant and also downweights edge-like features where
�1 � �0. Triggs (2004) suggests using the quantity

�0 � ↵�1 (4.10)

(say, with ↵ = 0.05), which also reduces the response at 1D edges, where aliasing errors
sometimes inflate the smaller eigenvalue. He also shows how the basic 2⇥ 2 Hessian can be
extended to parametric motions to detect points that are also accurately localizable in scale
and rotation. Brown, Szeliski, and Winder (2005), on the other hand, use the harmonic mean,

det A

tr A
=

�0�1

�0 + �1
, (4.11)

which is a smoother function in the region where �0 ⇡ �1. Figure 4.7 shows isocontours
of the various interest point operators, from which we can see how the two eigenvalues are
blended to determine the final interest value.

Eigenvalues λmin ,λmax
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Scalar Interest Measures
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❖ A number of scalar interest measures based upon the eigenvalues of the Hessian have 
been proposed:

For λ0 < λ1 :

λ0 (Shi & Tomasi 1994)

λ0λ1 −α λ0 + λ1( )2 (Harris & Stephens 1988)
λ0 −αλ1 (Triggs 2004)
λ0λ1

λ0 + λ1

(Brown, Szeliski & Winder 2005)



EECS 4422/5323 Computer Vision J. Elder

Outline of Basic Feature Detection Algorithm
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Figure 4.7 Isocontours of popular keypoint detection functions (Brown, Szeliski, and
Winder 2004). Each detector looks for points where the eigenvalues �0, �1 of A =

w ⇤ rIrIT are both large.

1. Compute the horizontal and vertical derivatives of the image Ix and Iy by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.

4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature
point locations.

Algorithm 4.1 Outline of a basic feature detection algorithm.

Output of Harris Detector
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Multi-Scale Methods
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❖ Features can exist at any scale 

❖ Only using the finest-scale may  not make sense (e.g., for images with no fine-scale 
structure) 

❖ One option is to run the feature detector at many scales, in a pyramid design. 

❖ Matching and tracking can then be done within each scale. 

❖ This makes sense when the scale of a feature is not expected to change between 
frames  

๏ Aerial imagery 

๏ Panorama stitching

4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) c� 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H =

"
Dxx Dxy

Dxy Dyy

#
, (4.12)

and then rejecting keypoints for which

Tr(H)
2

Det(H)
> 10. (4.13)
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Scale-Invariant Methods
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❖ It is often desirable to be able to detect and track a feature despite changes in scale due 
to, e.g., 

๏ Changes in distance 

๏ Changes in focal length 

❖ For this purpose, we seek a feature that is stable in both location and scale.  

๏ e.g., extrema (in both location and scale ) of Laplacian of Gaussian (LoG) or Difference of 
Gaussian (DoG) response  

✦ Lindeberg 1993, Lowe 2004 (SIFT)
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 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.
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Invariance to In-Plane Rotations
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❖ Objects may also change in orientation between frames. 

❖ Solution 1:  Use a rotationally invariant descriptor 

๏ Problem:  such descriptors are not very discriminative - map very different image patches 
to similar descriptors 

❖ Solution 2:  Estimate locally dominant orientation 

๏ Estimate dominant orientation by averaging the Gaussian gradients within a local patch  

๏ Then align descriptor in both scale and orientation with detected key point4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) c� 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H =

"
Dxx Dxy

Dxy Dyy

#
, (4.12)

and then rejecting keypoints for which

Tr(H)
2

Det(H)
> 10. (4.13)
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Affine Invariance
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❖ In general, objects will undergo out-of-plane rotations between views. 

❖ These transformations cannot be accounted for by scaling and rotation within the 
plane of the image 

❖ However, small out-of-plane rotations can often be handled by building feature 
detectors that are affine invariant. 
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Figure 4.13 Affine region detectors used to match two images taken from dramatically
different viewpoints (Mikolajczyk and Schmid 2004) c� 2004 Springer.

x0 !
A�1/2

0 x0
0

x0
0 !

Rx0
1

A�1/2
1 x0

1
 x1

Figure 4.14 Affine normalization using the second moment matrices, as described by Miko-
lajczyk, Tuytelaars, Schmid et al. (2005) c� 2005 Springer. After image coordinates are trans-
formed using the matrices A�1/2

0 and A�1/2
1 , they are related by a pure rotation R, which

can be estimated using a dominant orientation technique.

Affine-invariant detectors not only respond at consistent locations after scale and orientation
changes, they also respond consistently across affine deformations such as (local) perspective
foreshortening (Figure 4.13). In fact, for a small enough patch, any continuous image warping
can be well approximated by an affine deformation.

To introduce affine invariance, several authors have proposed fitting an ellipse to the auto-
correlation or Hessian matrix (using eigenvalue analysis) and then using the principal axes
and ratios of this fit as the affine coordinate frame (Lindeberg and Garding 1997; Baumberg
2000; Mikolajczyk and Schmid 2004; Mikolajczyk, Tuytelaars, Schmid et al. 2005; Tuyte-
laars and Mikolajczyk 2007). Figure 4.14 shows how the square root of the moment matrix
can be used to transform local patches into a frame which is similar up to rotation.

Another important affine invariant region detector is the maximally stable extremal region
(MSER) detector developed by Matas, Chum, Urban et al. (2004). To detect MSERs, binary
regions are computed by thresholding the image at all possible gray levels (the technique
therefore only works for grayscale images). This operation can be performed efficiently by
first sorting all pixels by gray value and then incrementally adding pixels to each connected
component as the threshold is changed (Nistér and Stewénius 2008). As the threshold is
changed, the area of each component (region) is monitored; regions whose rate of change of
area with respect to the threshold is minimal are defined as maximally stable. Such regions
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Feature Detection:  State of the Art
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❖ Machine learning has become an important part of feature detection. 

❖ State-of-the-art for object detection/recognition based on dense deep network features 

๏ Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object 
detection with region proposal networks. In Advances in Neural Information Processing 
Systems, pages 91–99. 

๏ He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image 
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pages 770–778.
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Outline
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❖ Feature detectors 

❖ Feature descriptors 

❖ Feature matching 

❖ Feature tracking
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Feature Descriptors
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❖ A 2D spatial pattern or 1D vector describing the appearance of the image patch 
centred at the keypoint. 

❖ Used to match key points across images for tracking, structure from motion, stereo, 
object recognition, pose estimation. 

❖ May estimate local scale, orientation and/or affine frame prior to computing 
descriptor to achieve invariance to these transformations.

4.1 Points and patches 221

Figure 4.15 Maximally stable extremal regions (MSERs) extracted and matched from a
number of images (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier.

Figure 4.16 Feature matching: how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish correct correspon-
dences?

are therefore invariant to both affine geometric and photometric (linear bias-gain or smooth
monotonic) transformations (Figure 4.15). If desired, an affine coordinate frame can be fit to
each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-
ery year at major computer vision conferences (Xiao and Shah 2003; Koethe 2003; Carneiro
and Jepson 2005; Kenney, Zuliani, and Manjunath 2005; Bay, Tuytelaars, and Van Gool 2006;
Platel, Balmachnova, Florack et al. 2006; Rosten and Drummond 2006). Mikolajczyk, Tuyte-
laars, Schmid et al. (2005) survey a number of popular affine region detectors and provide
experimental comparisons of their invariance to common image transformations such as scal-
ing, rotations, noise, and blur. These experimental results, code, and pointers to the surveyed
papers can be found on their Web site at http://www.robots.ox.ac.uk/⇠vgg/research/affine/.

Of course, keypoints are not the only features that can be used for registering images.
Zoghlami, Faugeras, and Deriche (1997) use line segments as well as point-like features to
estimate homographies between pairs of images, whereas Bartoli, Coquerelle, and Sturm
(2004) use line segments with local correspondences along the edges to extract 3D structure
and motion. Tuytelaars and Van Gool (2004) use affine invariant regions to detect corre-
spondences for wide baseline stereo matching, whereas Kadir, Zisserman, and Brady (2004)
detect salient regions where patch entropy and its rate of change with scale are locally max-
imal. Corso and Hager (2005) use a related technique to fit 2D oriented Gaussian kernels
to homogeneous regions. More details on techniques for finding and matching curves, lines,
and regions can be found later in this chapter.
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Scale-Invariant Feature Transformation (SIFT)
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❖ Keypoint detected at location (x, y) and scale 𝜎 in Gaussian pyramid 

❖ Compute intensity gradient at each pixel within 16x16 pixel patch centred at keypoint at scale 𝜎 in 
Gaussian pyramid 

❖ Weight gradients by Gaussian centred at keypoint 

❖ Bin the 16 gradients within each of the 16 4x4 pixel blocks of the patch into an 8-orientation histogram, 
using gradient magnitude as weight and trilinear interpolation over (x, y, 𝜃) 

❖ Result is a 4 x 4 x 8 = 128-element feature vector. 

❖ Normalize to unit length to increase invariance to photometric variations 

❖ Also cap the maximum gradient magnitude to 0.2 to avoid errors due to camera saturation and larger 
illumination changes

Lowe, 2004
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Outline
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❖ Feature detectors 

❖ Feature descriptors 

❖ Feature matching 

❖ Feature tracking
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Feature Matching
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❖ Given keypoint A in Image 1 and keypoint B in Image 2, we compute the Euclidean 
distance d between their feature vector.  A small distance implies a likely match. 

❖ Fixed threshold 𝜃 on distance:   

๏ d < 𝜃 → match 

๏ d > 𝜃 → no match 

❖ There are 4 possible outcomes:

Match Non-
Match

d < 𝜃 Hit False 
Positive

d > 𝜃 Miss Correct 
Reject

Ground Truth

M
at

ch
in

g 
Al

go
rit

hm
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4 Possible Outcomes
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criterion response
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Figure 2: Internal response probability density functions for noise-alone and signal-plus-
noise trials. Since the curves overlap, the internal response for a noise-alone trial may
exceed the internal response for a signal-plus-noise trial. Vertical lines correspond to the
criterion response.

The receiver operating characteristic. We can describe the full range of the subject’s
options in a single curve, called an ROC curve, which stands for receiver-operating char-
acteristic. The receiver-operating characteristic captures, in a single graph, the various
alternatives that are available to the subject as they move their criterion to higher and
lower levels.

ROC curves (Figure 4) are plotted with the false alarm rate on the horizontal axis and
the hit rate on the vertical axis. We already know that if the criterion is high, then both
the false alarm rate and the hit rate will be very low. If we move the criterion lower, then
the hit rate and the false alarm rate both increase. So the full ROC curve has an upward
sloping shape. Notice also that for any reasonable choice of criterion, the hit rate is always
larger than the false alarm rate, so the ROC curve is bowed upward. The subject may set
the criterion anywhere, but any choice that they make will land them with a hit and false
alarm rate somewhere on the ROC curve.

The role of signal strength. If we present a brighter flash (e.g., with 200 photons emitted
per flash on average rather than 100), then the subject’s internal response strength will,
on the average, be stronger. Pictorially, this will have the effect of shifting the probability
density function for signal-plus-noise trials to the right, a bit further away from the noise-
alone probability density.

Figure 4 shows two sets of probability densities and two ROC curves. When the signal
is stronger there is less overlap between the two probability density curves. When this

4

Euclidean distance d between feature vectors

Threshold

p(d|different)p(d|same)

hit

miss

correct rejectfalse alarm

Euclidean distance d between feature vectors
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Performance Evaluation

!24

❖ Let  

๏ P = # of ground truth matches  

๏ N = # of ground truth non-matches 

❖ Then 

๏ Hit  Rate =  

๏ False Alarm Rate = 

Hits
P

False Alarms
N
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ROC Plots
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❖ Algorithms can be compared without committing to a specific threshold using a 
receiver-operator characteristic (ROC) plot 

❖ Given ground truth data, the optimal threshold can be determined if we know the 
relative cost of misses and false alarms (decision theory).
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Figure 4: Internal response probability density functions and ROC curves for different
signal strengths. When the signal is stronger there is less overlap in the probability of
occurrence curves, and the ROC curve becomes more bowed. A: Probability density func-
tions when the signal evokes an average of 2 photon absorptions per trial. B: Probability
density functions when the signal evokes an average of 5 photon absorptions per trial.
C: ROC curves for a series of signal strengths that evoke an average of
photon absorptions per trial. In all cases the dark noise (average number of spontaneous
isomerizations per trial) was 3.

a complete characterization of the detectability of the signal assuming that the noise
follows a normal (Gaussian) distribution with a fixed variance, independent of the sig-
nal strength. This assumption of IID (independent and identically distributed) Gaussian
noise is often reasonable approximations. However, if you have more information about
the noise distribution (e.g., that it follows the Poisson distribution), you might as well use
that information rather than assuming IID Gaussian noise.

The primary virtue of , and the reason that it is so widely used, is that its value does
not depend upon the criterion the subject is adopting, but instead it is a true measure of
the internal response.

Comparing neural responses with behavioral performance. Let’s say that we carefully
measure, in a separate experiment, the average number of spontaneous (thermal) isomer-
izations per trial. Then we can compute a series of ROC curves each corresponding to
a different number of photon absorptions. Figure 4 shows such a family of ROC curves.
Exactly how to compute these curves is illustrated in assignment3Tutorial.m.

Now we do our detection experiment in which we ask our subject to run 1000 trials.
On half the trials, the flash is absent (noise-only trials) and on half the trials the light is

6

Better Algorithms

d’ = 1

Hits = 97.5% 

False alarms = 84%

Hits = 84%

False alarms =  50%

Hits = 50%

False alarms =  16%

Figure 3: Effect of shifting the criterion.

happens the subject’s choices are not so difficult as before. They can pick a criterion to
get nearly a perfect hit rate with almost no false alarms. ROC curves for stronger signals
bow out further than ROC curves for weaker signals.

Varying the noise. There is another aspect of the probability densities that also deter-
mines detectability: the spread of the curves. For example, consider the two sets of proba-
bility densities in Figure 5. The separation between the peaks is the same but the second
set of curves are much skinnier. Clearly, the signal is much more discriminable when
there is less spread (less noise) in the probability densities. So the subject would have an
easier time setting their criterion in order to be right nearly all the time.

In our example, we have assumed Poisson noise so the absorption count variance is
proportional to the mean absorption count. However, one can easily imagine situations
in which the response variance depends on factors that are independent of the mean
response.

Discriminability index ( ). Thus, the discriminability of a signal depends both on the
separation and the spread of the noise-alone and signal-plus-noise curves. To write down
a full description of how discriminable the signal is from no-signal, we want a formula
that captures both the separation and the spread. The most widely used measure is called
d-prime ( ), and its formula is simply:

where the separation corresponds to the difference between the means, and the spread
corresponds to the standard deviation of the probability densities. This number, , is

5

Sweep Threshold
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Alternative Terminologies
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❖ Hit ≡ True Positive 

❖ Miss ≡ False Negative 

❖ False Alarm ≡ False Positive 

❖ Correct Reject ≡ True Negative

4.1 Points and patches 229
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Figure 4.23 ROC curve and its related rates: (a) The ROC curve plots the true positive rate
against the false positive rate for a particular combination of feature extraction and match-
ing algorithms. Ideally, the true positive rate should be close to 1, while the false positive
rate is close to 0. The area under the ROC curve (AUC) is often used as a single (scalar)
measure of algorithm performance. Alternatively, the equal error rate is sometimes used. (b)
The distribution of positives (matches) and negatives (non-matches) as a function of inter-
feature distance d. As the threshold ✓ is increased, the number of true positives (TP) and false
positives (FP) increases.

In the information retrieval (or document retrieval) literature (Baeza-Yates and Ribeiro-
Neto 1999; Manning, Raghavan, and Schütze 2008), the term precision (how many returned
documents are relevant) is used instead of PPV and recall (what fraction of relevant docu-
ments was found) is used instead of TPR.

Any particular matching strategy (at a particular threshold or parameter setting) can be
rated by the TPR and FPR numbers; ideally, the true positive rate will be close to 1 and the
false positive rate close to 0. As we vary the matching threshold, we obtain a family of such
points, which are collectively known as the receiver operating characteristic (ROC curve)
(Fawcett 2006) (Figure 4.23a). The closer this curve lies to the upper left corner, i.e., the
larger the area under the curve (AUC), the better its performance. Figure 4.23b shows how
we can plot the number of matches and non-matches as a function of inter-feature distance d.
These curves can then be used to plot an ROC curve (Exercise 4.3). The ROC curve can also
be used to calculate the mean average precision, which is the average precision (PPV) as you
vary the threshold to select the best results, then the two top results, etc.

The problem with using a fixed threshold is that it is difficult to set; the useful range
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Scalar Measures of Performance
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❖ Area Under the ROC Curve (AUC) 

❖ Equal Error Rate

4.1 Points and patches 229
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Figure 4.23 ROC curve and its related rates: (a) The ROC curve plots the true positive rate
against the false positive rate for a particular combination of feature extraction and match-
ing algorithms. Ideally, the true positive rate should be close to 1, while the false positive
rate is close to 0. The area under the ROC curve (AUC) is often used as a single (scalar)
measure of algorithm performance. Alternatively, the equal error rate is sometimes used. (b)
The distribution of positives (matches) and negatives (non-matches) as a function of inter-
feature distance d. As the threshold ✓ is increased, the number of true positives (TP) and false
positives (FP) increases.

In the information retrieval (or document retrieval) literature (Baeza-Yates and Ribeiro-
Neto 1999; Manning, Raghavan, and Schütze 2008), the term precision (how many returned
documents are relevant) is used instead of PPV and recall (what fraction of relevant docu-
ments was found) is used instead of TPR.

Any particular matching strategy (at a particular threshold or parameter setting) can be
rated by the TPR and FPR numbers; ideally, the true positive rate will be close to 1 and the
false positive rate close to 0. As we vary the matching threshold, we obtain a family of such
points, which are collectively known as the receiver operating characteristic (ROC curve)
(Fawcett 2006) (Figure 4.23a). The closer this curve lies to the upper left corner, i.e., the
larger the area under the curve (AUC), the better its performance. Figure 4.23b shows how
we can plot the number of matches and non-matches as a function of inter-feature distance d.
These curves can then be used to plot an ROC curve (Exercise 4.3). The ROC curve can also
be used to calculate the mean average precision, which is the average precision (PPV) as you
vary the threshold to select the best results, then the two top results, etc.

The problem with using a fixed threshold is that it is difficult to set; the useful range
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Alternative Terminology:  Precision-Recall
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❖ Let 

๏ p = # of algorithm matches  

๏ P = # of ground truth matches 

❖ Then 

๏ Precision  

๏ Recall  

=
Hits
p

=
Hits
P

Note: Recall ≡ Hit Rate



EECS 4422/5323 Computer Vision J. Elder

Efficient Matching
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❖ Exhaustive:  Compare all keypoints in Image A to all keypoints in Image B 

๏ Cost:  Quadratic 

❖ More efficient alternatives: 

๏ Hashing 

๏ Search trees
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Example:  k-d Trees
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❖ Consider  keypoints A-H. 
❖ Recursively: 

๏ Select dimension with greatest variance 

๏ Partition at median 

❖ Partitions can now be represented as binary tree with (dimension, threshold) stored at each node. 

❖ Given query point, Best Bin First (BBF) strategy searches bins in order of proximity to query.

4.1 Points and patches 233

(a) (b)

Figure 4.27 K-d tree and best bin first (BBF) search (Beis and Lowe 1999) c� 1999 IEEE:
(a) The spatial arrangement of the axis-aligned cutting planes is shown using dashed lines.
Individual data points are shown as small diamonds. (b) The same subdivision can be repre-
sented as a tree, where each interior node represents an axis-aligned cutting plane (e.g., the
top node cuts along dimension d1 at value .34) and each leaf node is a data point. During a
BBF search, a query point (denoted by “+”) first looks in its containing bin (D) and then in
its nearest adjacent bin (B), rather than its closest neighbor in the tree (C).

be examined. The coefficients in the bin can then be used to select k approximate nearest
neighbors for further processing (such as computing the NNDR).

A more complex, but more widely applicable, version of hashing is called locality sen-
sitive hashing, which uses unions of independently computed hashing functions to index
the features (Gionis, Indyk, and Motwani 1999; Shakhnarovich, Darrell, and Indyk 2006).
Shakhnarovich, Viola, and Darrell (2003) extend this technique to be more sensitive to the
distribution of points in parameter space, which they call parameter-sensitive hashing. Even
more recent work converts high-dimensional descriptor vectors into binary codes that can be
compared using Hamming distances (Torralba, Weiss, and Fergus 2008; Weiss, Torralba, and
Fergus 2008) or that can accommodate arbitrary kernel functions (Kulis and Grauman 2009;
Raginsky and Lazebnik 2009).

Another widely used class of indexing structures are multi-dimensional search trees. The
best known of these are k-d trees, also often written as kd-trees, which divide the multi-
dimensional feature space along alternating axis-aligned hyperplanes, choosing the threshold
along each axis so as to maximize some criterion, such as the search tree balance (Samet
1989). Figure 4.27 shows an example of a two-dimensional k-d tree. Here, eight different data
points A–H are shown as small diamonds arranged on a two-dimensional plane. The k-d tree
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Beis & Lowe, 1999
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Verification & Densification
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❖ Once a set of hypothesized matches are identified, an optimal geometric alignment 
between the images can be computed. 

❖ This alignment can then be used to prune outlier matches. 

❖ This alternation of alignment and pruning can be iterated to convergence. 

❖ An approximate alignment can also be used to conduct a more constrained search for 
additional feature matches 

❖ These can be used to further refine the alignment.
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Outline
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❖ Feature detectors 

❖ Feature descriptors 

❖ Feature matching 

❖ Feature tracking
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Feature Tracking
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❖ In some applications deviation between images is small 

๏ Object tracking in 30fps video 

๏ Optic flow at 30fps video 

❖ In these scenarios, we may employ a detect-then-track strategy: 

๏ Detect features in Frame t 

๏ Search for corresponding features in Frame t + 1
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Correlation Trackers
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❖ Minimize squared deviation (maximize correlation) 

๏ Sensitive to photometric changes caused by variation in camera parameters, illumination, 
specular reflections 

❖ Normalized cross-correlation reduces these effects

8.1 Translational alignment 387

For this reason, normalized cross-correlation is more commonly used,

ENCC(u) =

P
i
[I0(xi)� I0] [I1(xi + u)� I1]qP

i
[I0(xi)� I0]

2
qP

i
[I1(xi + u)� I1]

2
, (8.11)

where

I0 =
1

N

X

i

I0(xi) and (8.12)

I1 =
1

N

X

i

I1(xi + u) (8.13)

are the mean images of the corresponding patches and N is the number of pixels in the patch.
The normalized cross-correlation score is always guaranteed to be in the range [�1, 1], which
makes it easier to handle in some higher-level applications, such as deciding which patches
truly match. Normalized correlation works well when matching images taken with different
exposures, e.g., when creating high dynamic range images (Section 10.2). Note, however,
that the NCC score is undefined if either of the two patches has zero variance (and, in fact, its
performance degrades for noisy low-contrast regions).

A variant on NCC, which is related to the bias–gain regression implicit in the matching
score (8.9), is the normalized SSD score

ENSSD(u) =
1

2

P
i

⇥
[I0(xi)� I0]� [I1(xi + u)� I1]

⇤2
qP

i
[I0(xi)� I0]

2 + [I1(xi + u)� I1]
2

(8.14)

recently proposed by Criminisi, Shotton, Blake et al. (2007). In their experiments, they find
that it produces comparable results to NCC, but is more efficient when applied to a large
number of overlapping patches using a moving average technique (Section 3.2.2).

8.1.1 Hierarchical motion estimation

Now that we have a well-defined alignment cost function to optimize, how can we find its
minimum? The simplest solution is to do a full search over some range of shifts, using ei-
ther integer or sub-pixel steps. This is often the approach used for block matching in motion
compensated video compression, where a range of possible motions (say, ±16 pixels) is ex-
plored.4

To accelerate this search process, hierarchical motion estimation is often used: an image
pyramid (Section 3.5) is constructed and a search over a smaller number of discrete pixels

4 In stereo matching (Section 11.1.2), an explicit search over all possible disparities (i.e., a plane sweep) is almost
always performed, since the number of search hypotheses is much smaller due to the 1D nature of the potential
displacements.
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Bias and gain (exposure differences). Often, the two images being aligned were not taken
with the same exposure. A simple model of linear (affine) intensity variation between the two
images is the bias and gain model,

I1(x + u) = (1 + ↵)I0(x) + �, (8.8)

where � is the bias and ↵ is the gain (Lucas and Kanade 1981; Gennert 1988; Fuh and
Maragos 1991; Baker, Gross, and Matthews 2003; Evangelidis and Psarakis 2008). The least
squares formulation then becomes

EBG(u) =

X

i

[I1(xi + u)� (1 + ↵)I0(xi)� �]
2

=

X

i

[↵I0(xi) + � � ei]
2. (8.9)

Rather than taking a simple squared difference between corresponding patches, it becomes
necessary to perform a linear regression (Appendix A.2), which is somewhat more costly.
Note that for color images, it may be necessary to estimate a different bias and gain for each
color channel to compensate for the automatic color correction performed by some digital
cameras (Section 2.3.2). Bias and gain compensation is also used in video codecs, where it is
known as weighted prediction (Richardson 2003).

A more general (spatially varying, non-parametric) model of intensity variation, which is
computed as part of the registration process, is used in (Negahdaripour 1998; Jia and Tang
2003; Seitz and Baker 2009). This can be useful for dealing with local variations such as
the vignetting caused by wide-angle lenses, wide apertures, or lens housings. It is also pos-
sible to pre-process the images before comparing their values, e.g., using band-pass filtered
images (Anandan 1989; Bergen, Anandan, Hanna et al. 1992), gradients (Scharstein 1994;
Papenberg, Bruhn, Brox et al. 2006), or using other local transformations such as histograms
or rank transforms (Cox, Roy, and Hingorani 1995; Zabih and Woodfill 1994), or to max-
imize mutual information (Viola and Wells III 1997; Kim, Kolmogorov, and Zabih 2003).
Hirschmüller and Scharstein (2009) compare a number of these approaches and report on
their relative performance in scenes with exposure differences.

Correlation. An alternative to taking intensity differences is to perform correlation, i.e., to
maximize the product (or cross-correlation) of the two aligned images,

ECC(u) =

X

i

I0(xi)I1(xi + u). (8.10)

At first glance, this may appear to make bias and gain modeling unnecessary, since the images
will prefer to line up regardless of their relative scales and offsets. However, this is actually
not true. If a very bright patch exists in I1(x), the maximum product may actually lie in that
area.
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Appearance Drift
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❖ How should we track feature over multiple frames? 

๏ Match features in Frame 0 to features in all subsequent frames 

✦ Features may change substantially if object undergoes out-of-plane transformations 

๏ Re-sample features in each frame 

✦ Features may drift from original object to other objects 

๏ KLT Tracker:  Use affine motion model to transform frames back to Frame 0 coordinates 

✦ Only re-sample when tracking fails
236 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.28 Feature tracking using an affine motion model (Shi and Tomasi 1994) c� 1994
IEEE, Top row: image patch around the tracked feature location. Bottom row: image patch
after warping back toward the first frame using an affine deformation. Even though the speed
sign gets larger from frame to frame, the affine transformation maintains a good resemblance
between the original and subsequent tracked frames.

Since their original work on feature tracking, Shi and Tomasi’s approach has generated a
string of interesting follow-on papers and applications. Beardsley, Torr, and Zisserman (1996)
use extended feature tracking combined with structure from motion (Chapter 7) to incremen-
tally build up sparse 3D models from video sequences. Kang, Szeliski, and Shum (1997)
tie together the corners of adjacent (regularly gridded) patches to provide some additional
stability to the tracking, at the cost of poorer handling of occlusions. Tommasini, Fusiello,
Trucco et al. (1998) provide a better spurious match rejection criterion for the basic Shi and
Tomasi algorithm, Collins and Liu (2003) provide improved mechanisms for feature selec-
tion and dealing with larger appearance changes over time, and Shafique and Shah (2005)
develop algorithms for feature matching (data association) for videos with large numbers of
moving objects or points. Yilmaz, Javed, and Shah (2006) and Lepetit and Fua (2005) survey
the larger field of object tracking, which includes not only feature-based techniques but also
alternative techniques based on contour and region (Section 5.1).

One of the newest developments in feature tracking is the use of learning algorithms to
build special-purpose recognizers to rapidly search for matching features anywhere in an
image (Lepetit, Pilet, and Fua 2006; Hinterstoisser, Benhimane, Navab et al. 2008; Rogez,
Rihan, Ramalingam et al. 2008; Özuysal, Calonder, Lepetit et al. 2010).2 By taking the time
to train classifiers on sample patches and their affine deformations, extremely fast and reliable
feature detectors can be constructed, which enables much faster motions to be supported
(Figure 4.29). Coupling such features to deformable models (Pilet, Lepetit, and Fua 2008) or
structure-from-motion algorithms (Klein and Murray 2008) can result in even higher stability.

2 See also my previous comment on earlier work in learning-based tracking (Avidan 2001; Jurie and Dhome
2002; Williams, Blake, and Cipolla 2003).
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❖ Rather than hardwiring the feature descriptor, one can train a classifier to discriminate 
a patch on the object to be tracked from background patches, then use this classifier to 
track. 

❖ This has now led to the application of fast deep networks for tracking, e.g., 

๏ H Li, Y Li, F Porikli.  Deeptrack: Learning discriminative feature representations online 
for robust visual tracking, IEEE Transactions on Image Processing, 25(4), 1834-1848, 
2016.
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❖ Feature detectors 

❖ Feature descriptors 

❖ Feature matching 

❖ Feature tracking


