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4.1 Feature Detection & Matching:
Points & Patches
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¢ Feature detectors
¢ Feature descriptors
¢ Feature matching

% Feature tracking
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What Makes a Good Feature? St

+» Constant colour

@ Bad - many false matches

Y/

% Straight lines or smooth curves

@ Better - but still suffer from the ‘aperture problem’

% Sharp corners

@ Great - often unique!
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The Barber Pole lllusion = e

By Sakurambo - Own work (animated 3D model),
CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=798589
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Feature Stability @

¢ Local stability of feature can be assessed by computing a local weighted squared
deviation of the image patch at the feature location from neighbouring patches:

E,c(Au)

Eac(Au) wa x;)[Io(x; + Au) — Ip(x;)]?

BE Y |
EAC(Au) s ?' "N

‘3

Note: Bright pixels < low E ...
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End of Lecture
Oct 17, 2018
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Gradient-Based Features @

¢ Taylor series approximation of the local deviation:

Bac(Au) = Zw(wi)[lo(wﬁ—Au)—Io(wi)]2

Q

Z w(@:)[lo(z;) + VIo(z:) - Au — Io(z;)]”

— Z w(®;)[VIo(x;) - Auj’

= Au’ AAu,
where oL, oI,
Vio(xi) = (5~ 5y )(x;)
and
A=wx* { If}y Iﬂ}ygy ]
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Eigenvalue Analysis ~ ©#

2 I,I
A = w ooy # Eigenvalues A_. ,A__
{ LI, I2 }

¢ This 1s the Hessian matrix of /(x, y).
¢ It provides a quadratic approximation to the local shape of the deviation.
¢ The deviation changes most gradually in the direction of the smallest eigenvector.

¢ Thus when selecting features we should try to maximize the smallest eigenvalue.

direction of the
fastest change

direction of the
slowest change
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Scalar Interest Measures T

¢ A number of scalar interest measures based upon the eigenvalues of the Hessian have
been proposed:

For A, < A, :
Ay (Shi & Tomasi 1994)
A —0(Ay+A,)  (Harris & Stephens 1988)
A, — A, (Triggs 2004)
/SOTA}LI (Brown, Szeliski & Winder 2005)
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Outline of Basic Feature Detection Algorithm

1. Compute the horizontal and vertical derivatives of the image I, and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.
4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature
point locations.

Output of Harris Detector
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Multi-Scale Methods BT
¢ Features can exist at any scale

¢ Only using the finest-scale may not make sense (e.g., for images with no fine-scale
structure)

% One option 1s to run the feature detector at many scales, 1n a pyramid design.
¢ Matching and tracking can then be done within each scale.

¢ This makes sense when the scale of a feature i1s not expected to change between
frames

@ Aerial imagery

® Panorama stitching
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Scale-Invariant Methods = = @

¢ It 1s often desirable to be able to detect and track a feature despite changes in scale due
to, e.g.,

Changes in distance
Changes in focal length
¢ For this purpose, we seek a feature that 1s stable in both location and scale.

e.g., extrema (in both location and scale ) of Laplacian of Gaussian (LoG) or Difference of
Gaussian (DoGQG) response

4 Lindeberg 1993, Lowe 2004 (SIFT)

“ﬁw
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Gaussian (DOG)

Gaussian
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End of Lecture
Oct 22, 2018
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Invariance to In-Plane Rotations B

% Objects may also change in orientation between frames.
¢ Solution 1: Use a rotationally invariant descriptor

@ Problem: such descriptors are not very discriminative - map very different image patches
to similar descriptors

¢ Solution 2: Estimate locally dominant orientation

@ Estimate dominant orientation by averaging the Gaussian gradients within a local patch

@ Then align descriptor in both scale and orientation with detected key point
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Affine Invariance TR

*» In general, objects will undergo out-of-plane rotations between views.

¢ These transformations cannot be accounted for by scaling and rotation within the

plane of the image

*» However, small out-of-plane rotations can often be handled by building feature
detectors that are affine invariant.

AR

1
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Feature Detection: State of the Art SEA

¢ Machine learning has become an important part of feature detection.

/

¢ State-of-the-art for object detection/recognition based on dense deep network features

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing
Systems, pages 91-99.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770-778.
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¢ Feature detectors
¢ Feature descriptors
¢ Feature matching

% Feature tracking
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Feature Descriptors

A 2D spatial pattern or 1D vector describing the appearance of the image patch
centred at the keypoint.

% Used to match key points across images for tracking, structure from motion, stereo,
object recognition, pose estimation.

% May estimate local scale, orientation and/or affine frame prior to computing
descriptor to achieve invariance to these transformations.
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Scale-Invariant Feature Transformation (SIFT)

** Keypoint detected at location (x, y) and scale o in Gaussian pyramid

* Compute intensity gradient at each pixel within 16x16 pixel patch centred at keypoint at scale o in
Gaussian pyramid

% Weight gradients by Gaussian centred at keypoint

» Bin the 16 gradients within each of the 16 4x4 pixel blocks of the patch into an 8-orientation histogram,
using gradient magnitude as weight and trilinear interpolation over (x, y, 0)

** Resultis a4 x4 x 8 = 128-element feature vector.
* Normalize to unit length to increase invariance to photometric variations

** Also cap the maximum gradient magnitude to 0.2 to avoid errors due to camera saturation and larger

illumination changes
I Lowe, 2004
%
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¢ Feature detectors
¢ Feature descriptors
< Feature matching

% Feature tracking
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Feature Matching

* Given keypoint A in Image 1 and keypoint B in Image 2, we compute the Euclidean
distance d between their feature vector. A small distance implies a likely match.

¢ Fixed threshold 8 on distance:
d < 6 — match

d > 6 — no match

¢ There are 4 possible outcomes:

Ground Truth

E Mm
<

=

|

S

> . False
; S Hit Positive
IE
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= BB Miss  Correct
s Reject
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4 Possible Outcomes

p(d|same)

false alarm

Probability

Threshold
v

p(d|different)

correct reject

Euclidean distance d between feature vectors

hit

Probability

/)

miss

Euclidean distance d between feature vectors
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Performance Evaluation

% Let

P =# of ground truth matches

N = # of ground truth non-matches

% Then
- | Hits
t te =
it Rate p
|False Alarms|
False Alarm Rate =

N
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ROC PIOtS

¢ Algorithms can be compared without committing to a specific threshold using a
recerver-operator characteristic (ROC) plot

¢ Given ground truth data, the optimal threshold can be determined if we know the
relative cost of misses and false alarms (decision theory).

Hits = 84%

False alarms = 50% *

Hit Rate

Sweep Threshold
>
Hits = 97.5% 1
J False alarms = 84%
0.8
/ 0.6

7

0.4 |/ / Better Algorithms

0.2

j\ Hits = 50%
\¥ False alarms = 16% 0 , , , , , , . . .
0 02 04 06 08 1

False Alarm Rate
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Alternative Terminologies ##

+» Hit = True Positive

% Miss = False Negative

+» False Alarm = False Positive

% Correct Reject = True Negative
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Scalar Measures of Performance

¢ Area Under the ROC Curve (AUC)

/

¢ Equal Error Rate

true positive rate

random chance

false positive rate

EECS 4422/5323 Computer Vision

TP

TN

UNIVERSITE
||||||||||

27

J. Elder



Alternative Terminology: Precision-Recall

03
DX Let relevant elements

false negatives true negatives

p = # of algorithm matches

P =# of ground truth matches

true positives false positives

** Then
.. \Hits|
Precision =
P
| Hits|
Recall =
P
selected elements
Note: Recall = Hit Rate How many selected How many relevant
items are relevant? items are selected?
Precision = Recall = ———

) [
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Efficient MatCh|ng

¢ Exhaustive: Compare all keypoints in Image A to all keypoints in Image B
Cost: Quadratic

¢ More efficient alternatives:
Hashing

Search trees
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Example: k-d Trees @
% Consider keypoints A-H.

¢ Recursively:

Select dimension with greatest variance

Partition at median

7/
%*

Partitions can now be represented as binary tree with (dimension, threshold) stored at each node.

4

* Given query point, Best Bin First (BBF) strategy searches bins in order of proximity to query.
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Feature Dimension 1
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Verification & Densification #%F

* Once a set of hypothesized matches are identified, an optimal geometric alignment
between the images can be computed.

¢ This alignment can then be used to prune outlier matches.

¢ This alternation of alignment and pruning can be iterated to convergence.

¢ An approximate alignment can also be used to conduct a more constrained search for
additional feature matches

¢ These can be used to further refine the alignment.
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¢ Feature detectors
¢ Feature descriptors
¢ Feature matching

* Feature tracking
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Feature Tracking

¢ In some applications deviation between images is small

Object tracking in 30fps video

Optic flow at 30fps video

¢ In these scenarios, we may employ a detect-then-track strategy:

Detect features in Frame ¢

Search for corresponding features in Frame ¢ + 1
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Correlation Trackers ~ #0

¢ Minimize squared deviation (maximize correlation)

Ecc(u ZIO x;)I1(x; +u)

Sensitive to photometric changes caused by variation in camera parameters, illumination,
specular reflections

*» Normalized cross-correlation reduces these effects

> illo(:) — Io] [Ii(2; + u) — 1]

Freetw \/z To(e:) — Tl /2, 1 (@ + w) — T2
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Appearance Drift AR
*» How should we track feature over multiple frames?

@ Match features in Frame 0O to features in all subsequent frames
4 Features may change substantially if object undergoes out-of-plane transformations
® Re-sample features in each frame

4 Features may drift from original object to other objects

® KULT Tracker: Use affine motion model to transform frames back to Frame 0 coordinates

4 Only re-sample when tracking fails

Original

Transformed

Frame O Frame 1 Frame 2 Frame 3 Frame 4
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Feature Tracking State of the Art: Learning “"

¢ Rather than hardwiring the feature descriptor, one can train a classifier to discriminate
a patch on the object to be tracked from background patches, then use this classifier to
track.

¢ This has now led to the application of fast deep networks for tracking, e.g.,

H L1, Y L1, F Porikli. Deeptrack: Learning discriminative feature representations online
for robust visual tracking, IEEE Transactions on Image Processing, 25(4), 1834-1848,
2016.
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¢ Feature detectors
¢ Feature descriptors
¢ Feature matching

% Feature tracking
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