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Edge Coding
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❖ Edges carry a lot of information about the image

Figure 17. Top left: Original image. Top right: Detected Edges. Bottom left: Reconstructed luminance function. Bottom right: Reblurred
result. Due to higher noise levels, minimum reliable scales for estimation are generally greater, so that some smaller signals are not detected.
Note that the failure to encode the attached shadows on the legs results in an artifactual reconstruction. Edge density for this image is 5%, and
reconstruction is 11.1 grey levels, including a 2.7 grey-level DC component, and an estimated 5.8 grey levels due to noise removal.
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How can we reliably detect edges?
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Standard Model for Edge Detection
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Step Edge Linear Filters Decision
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The Problem of Scale
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ground surface. For a shaded edge, r is determined by the
curvature of the surface. In natural scenes, these variables
may assume a wide range of values, producing edges over
a broad range of blur scales.

Our conclusions are twofold. First, edges in the world
generically project to the image as sigmoidal luminance
transitions over a broad range of blur scales. Second, we
cannot restrict the goal of the local computation to the de-
tection of a specific type of edge (e.g., occlusion edges),
since we expect different types of edges to be locally indis-
tinguishable. Thus, the goal of the local computation must
be to detect, localize and characterize all edges over this
broad range of conditions, regardless of the physical struc-
tures from which they project.

To illustrate the challenge in achieving this goal, con-
sider the scene shown in Fig. 2. Because the light source is
not a point source, the contour of the cast shadow is not
uniformly sharp. The apparent blur is of course the pe-
numbra of the shadow: that region of the shadowed surface
where the source is only partially eclipsed.

Fig. 2b shows the edge map generated by the
Canny/Deriche edge detector [1], [2], tuned to detect the
details of the mannequin (the scale parameter and thresh-
olds were adjusted by trial and error to give the best possi-
ble result). At this relatively small scale, the contour of the
shadow cannot be reliably resolved and the smooth inten-
sity gradients behind the mannequin and in the foreground
and background are detected as many short, disjoint
curves. Fig. 2c shows the edge map generated by the
Canny/Deriche edge detector tuned to detect the contour
of the shadow. At this larger scale, the details of the man-
nequin cannot be recovered, and the contour of the
shadow is fragmented at the section of high curvature un-
der one arm.

This example suggests that to process natural images,
operators of multiple scales must be employed. This con-
clusion is further supported by findings that the receptive
fields of neurons in the early visual cortex of cat [6] and
primate [7] are scattered over several octaves in size. While
this conclusion has been reached by many computer vision

researchers (e.g., [8], [1], [9], [10], [11], [12]), the problem has
been and continues to be: Once a scale space has been com-
puted, how is it used? Is there any principled way to com-
bine information over scale, or to reason within this scale
space, to produce usable assertions about the image?

In this paper, we develop a novel method for local scale
adaptatation based upon two goals:

1)!Explicit testing of the statistical reliability of local in-
ferences.

2)!Minimization of distortion in local estimates due to
neighboring image structures.

This method for reliable estimation forms the basis for gen-
eralizing edge detection to the detection of natural image
edges over a broad range of blur scales and contrasts. Our
ultimate objective is the detection of all intensity edges in a
natural image, regardless of their physical cause (e.g., oc-
clusions, shadows, textures).

2 SCALE SPACE METHODS IN EDGE DETECTION
The issue of scale plays a prominent role in several of the
best-known theories of edge detection. Marr and Hildreth
[8] employed a Laplacian of Gaussian operator to construct
zero-crossing segments at a number of scales and proposed
that the presence of a physical edge be asserted if a segment
exists at a particular position and orientation over a con-
tiguous range of scale. Canny [1] defined edges at direc-
tional maxima of the first derivative of the luminance func-
tion and proposed a complex system of rules to combine
edges detected at multiple scales. The main problem with
these methods is the difficulty in distinguishing whether
nearby responses at different scales correspond to a single
edge or to multiple edges.

Continuous scale-space methods applied to edge detec-
tion have also tended to be complex [13]. In an anisotropic
diffusion network [14], the rate of diffusion at each point is
determined by a space- and time-varying conduction coef-
ficient which is a decreasing function of the estimated gra-
dient magnitude of the luminance function at the point.

                                     (a)                                                                        (b)                                                                          (c)

Fig. 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. (a) The
original image contains edges over a broad range of contrasts and blur scales. (b) The edges detected with a Canny/Deriche operator tuned to
detect structure in the mannequin. (c) The edges detected with a Canny/Deriche operator tuned to detect the smooth contour of the shadow. Pa-
rameters are (α = 1.25, ω = 0.02) and (α = 0.5, ω = 0.02), respectively. See [2] for details of the Deriche detector.

Small Scale Large Scale
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Multi-Scale Processing in Primary Visual Cortex
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Sample of Receptive Field Extents in V1 of Monkey (Hubel & Wiesel 1968)
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Scale Selection for Edge Detection
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Elder & Zucker,  PAMI 1998
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Critical Value Function s(σ)
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❖ Lower bound on filter response for reliable inference,  

❖ e.g. p(>0 errors over entire image) < 5%. 

❖ Assumes known, stationary, additive sensor noise 

❖ Prior computation based on: 

๏ 2nd moment of sensor noise σn 

๏ L2 norm of operator 

๏ Required inference

Minimum reliable scale
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Gradient Estimation using Local Scale Control
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Edge Filter Scale Gradient
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cal estimation at the minimum reliable scale guarantees
that the sign of the second derivative estimate is reliable,
and hence that the zero-crossing is unique. The number of
peaks in the gradient response, on the other hand, depends
on the blur of the edge, and is not revealed in the response
of the operator at any single point: ensuring the uniqueness
of a gradient maximum is not a local problem. Thus, the
reliable detection and localization of blurred edges requires
both gradient and second derivative information.

8 ANALYSIS OF DETECTION
As a first step in analyzing the performance of local scale
control for edge detection, we can use the edge model of (1)

to predict the range of SNR and blur scale over which edges
can be detected, and the range of filter scales required.

To detect the sigmoidal shape of an edge, we must at
least reliably determine the sign of the second derivative in
the gradient direction at its positive and negative extrema,
which occur at the zero-crossings x+ and x− of the third de-
rivative of the blurred step edge:
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Fig. 5. Unique localization of blurred luminance transitions. (a) Original image with locus of one-dimensional cut used in figures (b)-(f). (b) Lumi-
nance function. (c) Minimum reliable scale for the gradient estimate. (d) Estimated gradient magnitude. Note that the signal is not unimodal, pos-
sessing five maxima. (e) Minimum reliable scale for the second derivative estimate. (f) Estimated directional second derivative. A unique zero-
crossing localizes the edge. The location of the edge is shown by a vertical line segment in (b) and (d).
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2nd Derivative Estimation Using Local Scale Control
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that the sign of the second derivative estimate is reliable,
and hence that the zero-crossing is unique. The number of
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Results

!14



EECS 4422/5323 Computer Vision J. Elder

Estimating Photometric Parameters

!15



EECS 4422/5323 Computer Vision J. Elder

Depth from Blur for Cluttered Scenes
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ELDER AND ZUCKER:  LOCAL SCALE CONTROL FOR EDGE DETECTION AND BLUR ESTIMATION 713

14 SPACE CURVES FROM DEFOCUS AND CAST
SHADOWS

While others have had some success in classifying contours
as thin or diffuse [41], [42], [43], we show here that our
method for estimating contour blur can provide dense esti-
mates continuously along image contours to recover com-
plete space curves from an image. As an example, consider
the image of a model car (Fig. 11a) photographed with shal-
low depth of field (f/2.5). The lens was focused on the rear
wheel of the car, so that the hood and front bumper are defo-
cused. Fig. 11b shows the edges selected by the minimum
reliable scale method. Note that, in spite of the severe defo-
cus, the foreground and background structures are reliably
detected and localized. Fig. 11c shows a three-dimensional
plot of one of the main contours of the car. Here the vertical
axis represents the focal blur σb, estimated as described in the
previous section, and smoothed along the contour with a
Gaussian blur kernel (σ = 22 pixels). The contour provides a
continuous estimate of focal blur, related by a monotonic

function to the distance from the plane of best focus, which
in this case is at the rear wheel of the model car.

This method for blur estimation can also be used to es-
timate penumbral blur. Let us again consider the image of
the mannequin casting a shadow (Fig. 2a). The blur of the
shadow contour increases toward the head of the shadow.
The results of penumbral blur estimation along the shadow
contour (after Gaussian smoothing blur estimates along the
contour, σ = 22 pixels) are shown in Fig. 11d.

As discussed in Section 1, the duality between defocus
and cast shadows indicates that focal and penumbral
blur cannot be distinguished by a local computation on a
single image frame. Existing passive methods for esti-
mating depth from defocus typically use two frames
with different depths of field to distinguish focal blur
from other types of blur [20], [38], [39]. This technique
could also be applied to our method for blur estimation,
allowing focal and penumbral blur to be decoupled and
estimated separately.

   
                                                           (a)                                                                                                         (b)

  
                                                            (c)                                                                                                       (d)

Fig. 10. Depth segmentation based on focal blur. (a) A photograph of tree branches with shallow depth of field (f/3.5) and near focus. (b) Edge
map. (c) Foreground structure (focused contours). (d) Background structure (blurred contours).

Foreground Background
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Depth from Shadows
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Edge detection in natural images:  clutter and noise
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V1 Receptive Field Diversity in Shape  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Example Psychophysical Stimuli
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Edge Filter Shape Selection
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❖ The human brain appears to select from a diversity of filter shapes for edge detection

93.5 arcmin found for the hyperbolic scalespace model is
less consistent with the Parker and Hawken data, sug-
gesting a neural locus in an extrastriate area such as V2,
where receptive fields are larger (Baizer et al., 1977;
Levitt et al., 1994).

We found that imposing a lower bound ay on the
length scale constant did not improve the fit of the 2D
scalespace model to the data, and increasing ay above
5.1 arcmin increased the error of the fit. Thus the 2D
scalespace model suggests that the neural population
includes filters with length scale constants as low as 5.1
arcmin. The hyperbolic scalespace model predicts a
lower bound of 5.5 arcmin. Only three of the 56 V1
simple cells examined by Parker and Hawken had length
scale constants below 5 arcmin. Thus the lower bounds
predicted by our models are in rough agreement with the
physiological data.

Schiller et al. (1976) measured orientation bandwidth
at 1=

ffiffiffi
2

p
height for simple cells in V1, reporting a range

of 10 deg to more than 120 deg. Devalois, Yund et al.
(1982) and Parker & Hawken (1988) measured orienta-
tion bandwidth at half-height for simple cells in V1, and
Levitt et al. (1994) used the same measure for simple
cells in V2. Devalois, Yund et al. reported orientation
bandwidths ranging from 6 to 360 deg. Parker and

Hawken reported orientation bandwidths ranging from
less than 10 deg to more than 90 deg. However, they
excluded 7 of 105 cells from analysis because their ori-
entation tuning was too weak to be measured. It is
possible that these cells correspond to the higher range
of orientation bandwidths reported by De Valois et al.
Levitt et al. reported a range of 26 deg to more than 180
deg for simple cells in V2.

The 2D scalespace and hyperbolic scalespace models
predict an almost full use of this range of orientation
bandwidths for edge detection (Table 3), with the
exception of the most weakly-tuned neurons (full-width
at half-height bandwidths greater than about 153 deg).
It is possible that these weakly orientation-tuned neu-
rons are poorly matched to our stimuli in other ways
(e.g., spatial frequency bandwidth). The nonlinear
pooling model predicts a single detection filter toward
the upper end of this range.

In summary, all three models are roughly consistent
with known receptive field properties of neurons in V1
and V2. The two filter selection models predict a broad
diversity in receptive field shape and orientation tuning
roughly consistent with physiological data, but only
relatively modest variation in receptive field width
(scale) for broadband (2.6 octave) receptive fields. The

Table 3
Predicted receptive field properties

2D scalespace Hyperbolic scalespace Nonlinear pooling

Peak spatial frequency (cpd) 1.2–1.7 0.8–1.8 1.7
Length (arcmin) <5.1–59.8 5.5–93.5 7.0
Elongation 0.5–7.5 0.3–12.7 0.9
Orientation bandwidth, full-width at half-height (deg) 27–152 16–154 123
Orientation bandwidth, full-width at 1=

ffiffiffi
2

p
-height (deg) 16–132 10–141 95
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Fig. 11. Optimal filter scales for detection of stimuli employed in this paper, overlaid on filter scales predicted by each model.

J.H. Elder, A.J. Sachs / Vision Research 44 (2004) 795–813 809

Elder & Sachs, Vision Research 2004
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Information Loss?
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❖ Does the brain discard the information not carried by edges?
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Brightness Filling-In
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Cornsweet (1970)
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Estimating Photometric Parameters
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Brightness Filling-In
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Reconstructed Intensities

Original Edge Map

Intermediate
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Image Reconstruction from Contours
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Elder, IJCV 1999
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Origins of edge blur in natural scenes
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Perception of shadow from edge 
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Elder et al., Perception 2004

Blur inner arc Blur outer arc
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Parallel Filling-In of Intensity and Blur
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Are Edges Incomplete? 111

Figure 9. Reconstruction of brightness alone leads to perceptually significant artifact. Left: Original image, with 3D rendering of intensity
function for indicated region. Right: Reconstruction obtained by solving Laplace’s equation for brightness, with 3D rendering of intensity
function for indicated region. Deblurring of intensity edges leads to artifactual rendering of shadows and shading.

Figure 10. The complete reconstruction algorithm. Brightness and
blur reconstructions are computed in parallel by solving Laplace’s
equation. These two functions are then recombined with a space-
varying convolution to compute the final reconstruction.

on a 200 MHz Pentium Pro computer for a typical
512× 512 image.
The RMS error of the reconstruction is 10.1 grey

levels for this image. TheDCcomponent of this error is

3.9 grey levels, the reconstruction being slightly darker
than the original image. This DC error may be due to
the fact that considerable parts of the original image
were saturated at a luminance of 255. Since estimated
luminances were thresholded at 255, this may have
introduced a systematic negative bias in luminance
estimation.
In addition to the DC component, roughly 1.6 grey

levels can be attributed to the sensor noise in the orig-
inal image which has been removed in the reconstruc-
tion. This leaves an RMS error of roughly 9.2 grey
levels due to other factors. We discuss sources of error
in Section 5.
It should be noted that the perceptual fidelity of the

reconstruction is better than might be predicted by the
RMS accuracy. In other words, although the edge code
is technically lossy, it appears to retain the perceptually
critical image features, while discarding only unimpor-
tant (largely imperceptible) information. What appears
to matter most to perceptual fidelity is accurate rep-
resentation of edge information. This underscores the
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Restoring Blur
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Reblurred Result Error Map

Original Reconstructed Intensities
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Reconstruction Example
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Reconstructed 
Intensities Reblurred ResultOriginal Edge Map
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Reconstruction Example 
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Elder, IJCV 1999
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Reconstruction Example
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Elder, PAMI 2001
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❖ The Importance of Edges 

❖ Local Filter Scale Control 

❖ Local Filter Shape Control 

❖ Image Reconstruction from Edges 

❖ Application:  Interactive Contour Editing 

❖ Salient Edges
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❖ Luminance edges are generated by many causes 

๏ Object boundaries and creases 

๏ Reflectance changes 

๏ Shadows 

❖ Not all of these may be important for the task at hand 

❖ This motivates the problem of salient edge detection
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❖ Martin, Fowlkes & Malik (2004) defined salient edges based on human segmentation 
of images

4.2 Edges 239

Figure 4.31 Human boundary detection (Martin, Fowlkes, and Malik 2004) c� 2004 IEEE.
The darkness of the edges corresponds to how many human subjects marked an object bound-
ary at that location.

intensity variation.3 Think of an image as a height field. On such a surface, edges occur
at locations of steep slopes, or equivalently, in regions of closely packed contour lines (on a
topographic map).

A mathematical way to define the slope and direction of a surface is through its gradient,

J(x) = rI(x) = (
@I

@x
,
@I

@y
)(x). (4.19)

The local gradient vector J points in the direction of steepest ascent in the intensity function.
Its magnitude is an indication of the slope or strength of the variation, while its orientation
points in a direction perpendicular to the local contour.

Unfortunately, taking image derivatives accentuates high frequencies and hence amplifies
noise, since the proportion of noise to signal is larger at high frequencies. It is therefore
prudent to smooth the image with a low-pass filter prior to computing the gradient. Because
we would like the response of our edge detector to be independent of orientation, a circularly
symmetric smoothing filter is desirable. As we saw in Section 3.2, the Gaussian is the only
separable circularly symmetric filter and so it is used in most edge detection algorithms.
Canny (1986) discusses alternative filters and a number of researcher review alternative edge
detection algorithms and compare their performance (Davis 1975; Nalwa and Binford 1986;
Nalwa 1987; Deriche 1987; Freeman and Adelson 1991; Nalwa 1993; Heath, Sarkar, Sanocki
et al. 1998; Crane 1997; Ritter and Wilson 2000; Bowyer, Kranenburg, and Dougherty 2001;
Arbeláez, Maire, Fowlkes et al. 2010).

Because differentiation is a linear operation, it commutes with other linear filtering oper-

3 We defer the topic of edge detection in color images.
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❖ Based on this dataset, Martin et al designed a probabilistic edge detector that fused 
multiple cues to distinguish salient edges, including: 

๏ Luminance (L*) 

๏ Colour (a*, b*) 

๏ Texture (Gabor filter responses) 

❖ Cues were fused using logistic regression to generate a decision (edge, no-edge)
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have identical weight. Given an assignment solution, used
outlier edges are interchangeable and unused outlier
connections could not have affected the solution. Conse-
quently, dense outlier connections contain enormous re-
dundancy and are overly conservative. By appealing to the
high degree of connectivity present in random graphs, we
can keep the size of our graph linear in the number of nodes
by including a constant number of outlier connections per
node. We found d ¼ 6 connectivity to be sufficient, so that
there are d random outlier connections to each real node
and d random outlier connections to each outlier node.

One small detail remains, as the graph still does not
guarantee the existence of a perfect matching. As a safety
net, we overlay a perfect matching of high cost that matches
each real node to an outlier node in a parallel fashion. We
add these connections before the random outlier connec-
tions and add the outlier connections randomly without
replacement. The minimum cost perfect matching in this
graph provides the best correspondence of pixels between
the machine and human boundary maps, with a maximum
localization tolerance of dmax. Fig. 18 depicts the graph
construction procedure.

18 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

Fig. 17. Close-up boundary and nonboundary examples. These examples are taken from the images shown in Figs. 15 and 16. They have been
chosen to illustrate the strengths of the different features, as well as the shortcomings of these various local detectors. Briefly, they show (a) a
difficult texture boundary and an illusory contour, (b) useful CG signal and appropriate scale for TG, (c) a difficult texture boundary (bottom of boat)
found by TG, (d) an example where BC, CG, and TG cooperate effectively, (e) and (f) more difficult texture boundaries (from images (b) and (i) in
Figs. 15 and 16) arguably localized by our detectors but completely lost in the GM and 2MM responses, and (g) the interior of a textured region (from
the wall in image (g)) showing the reduced false positive responses of our detectors inside a natural texture.

Prior Methods Luminance Colour Texture All Human
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❖ The Importance of Edges 

❖ Local Filter Scale Control 

❖ Local Filter Shape Control 

❖ Image Reconstruction from Edges 

❖ Application:  Interactive Contour Editing 

❖ Salient Edges


