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4.3 Line Detection
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¢ Line detection & Hough maps
¢ Line segment detection

¢ Vanishing points and Manhattan worlds
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The Built Environment =550

¢ The built environment 1s largely piecewise planar.

¢ Boundaries, creases and surface markings thus often project as straight lines.

¢ Line detection 1s thus a core computer vision problem.
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Line Detection 7
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The Hough Transform

“* We represent a line by the angle 6 of its normal vector from the positive x axis and its
signed distance p from the origin.

** We are free to choose the origin and the direction of the y axis.
In MATLAB, the origin 1s at the top left of the image and the y axis points down
—w/2<60<m/2 nx+ny—d=0
pelR cosOx+sinby—p=0

theta = +45 degrees

rho

Line
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The Hough Transform =%

% In the textbook, the origin is at the centre of the image and the y axis points up.

% Also, Szeliski defines the normal vector to point in the direction of the luminance gradient,
which means that -m <0 <.

«¢* This 1s unconventional.
nx+ny—d=0
cosOx+sinfy—p=0

pelR
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Houghing Points

¢ Note that a point (X, y) in the image maps to a sinusoid in Hough space.

cosOx+sinfy—p=0

Letx=rcosf,,y=rsinf,

Then p=rcos@cosf, +rsinfsinf, = rcos(@—@o)
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¢ Each point on a line in the image generates a different sinusoid in the Hough map.

7/

Houghing Points

¢ The intersection of these sinusoids in the Hough map 1dentifies the line.
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Houghing Edges "%

» Edge detectors estimate the location and also the orientation of the edge.

s If the orientation estimate 1s perfect, the edge exactly identifies the line as a point in the
Hough map.

¢ In practice, noise in the location and orientation of the edges on a line results 1n a distribution
of ‘votes’ in the Hough map.
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Probabilistic Houghing

¢ The main challenge with Hough methods 1s that this distribution may generate
multiple peaks in the Hough map, leading to the detection of spurious lines.

¢ Probabilistic Houghing (Tal & Elder 2012) solves this problem by:

Propagating uncertainty in location and orientation of edges to the Hough map.

Subtracting edges contributing to a peak from the Hough map when a line is detected.

Edge Map
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Edge Subtraction P
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Quantitative Results = s
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Qualitative Results T
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¢ Line detection & Hough maps
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 Line segment detection

¢ Vanishing points and Manhattan worlds
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Almazen et al, CVPR 2017
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Line Segmentation Detection - MCMLSD

¢ Prior approaches tend to be either global (Hough methods) or local
(perceptual grouping).

¢ Global methods can yield more accurate line extraction by
accumulating more complete evidence.

¢ Local methods tend to be better at localizing segment endpoints.
* MCMLSDt combines the virtues of the two:
Step 1. Use probabilistic Hough method to identify global lines.

Step 2. Partition each line into maximum probability segments,
using dynamic programming, in linear time.

tMarkov Chain Marginal Line Segment Detector
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¢ Factoring of posterior = optimal substructure property = dynamic
programming solution

“* Max probability configuration €= sequence minimizing cost

¢ Can be computed sequentially in O(N) time using dynamic programming.
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Qualitative Results

LSD (Gioi 2008) MCMLSD
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Quantitative Evaluation
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End of Lecture
Nov 5, 2018
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¢ Line detection & Hough maps
¢ Line segment detection

/

» Linear perspective, Vanishing points and Manhattan worlds

EECS 4422/5323 Computer Vision 23 J. Elder



+~
g
o)
o,
!l
g
<
4
S
>

J. Elder

EECS 4422/5323 Computer Vision



Linear Perspective in Art FHEHE

¢ The discovery of the laws of linear perspective is a defining achievement of the early
Renaissance.

Adoration of the Magi, Leonardo da Vinci
c. 1481

Filippo Brunelleschi
1377 - 1446
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‘Jesus Before the Caif’, by Giotto (1305).

From CW Tyler, Perspective as a Geometric Tool that Launched the Renaissance
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Follower of Pietro Lorenzetti, Madonna and Child Enthroned
with Angels 1360/70
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Success

Masaccio's Trinity (1427-28)
(Church of Santa Maria Novella, Florence)
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http://www.kfki.hu/~arthp/html/m/masaccio/trinity/trinity.html
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The Healing of the Cripple and the Raising of Tabitha’, by Masolino (1425).
Brancacci Chapel, Santa Maria del Carmine, Florence

J. Elder
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‘The School of Athens’ by Raphael (1518), Stanze di Raffaello, in the Apostolic Palace in the Vatican.

J. Elder
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Linear Perspective in Computer Vision ="

¢ How can we use linear perspective in computer vision?
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The Manhattan World

the scene aligned with a 3D orthogonal Cartesian coordinate frame.

R
W "l.-l
J

EECS 4422/5323 Computer Vision

:I - ] ‘ ' /.gv I;‘

AF Y ||":‘ p ' 1 a 1

["’ “ |‘ 3 ' ® | a li"
) A { . I8 i ‘ :':
o \ 'l A1 ||

: . \ 4 P i

: R ™ N ‘ i ! ‘ '*i l!:

N : VN Lyt "“q i

-y
e

A

-

Fag R
X / X‘:\" —\.“.\'1 3
. et i P~
; r #
- . :‘_” :'l :
..*'

—=

-~ [ -~ &

-58 Kamaagy wrna wioh, 20y
el

L J [o]

32

IIIIIIIIII

+» The Manhattan world 1s a model of the 3D environment that assumes that structure in
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Manhattan Frame Estimation
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End of Lecture
Nov 7, 2018
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3-Point Perspective S
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Vanishing Points and the Manhattan Frame

T Vertical vanishing
point

% (at infinit
Vanishing ( Y)
line
o= — ' — | ’
Vanis_hing Vanishing
point point _
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Estimating the Manhattan Frame

vanishing points.

¢ This rotation has 3 degrees of freedom.

e.g., the axis of rotation (2 dof) and the angle of rotation (1 dof)

The camera rotation (3 dof)
The focal length (1 dof)

The principal point (2 dof)

< To estimate the 3D rotation of the Manhattan world frame relative to the camera we need to find the

» The locations of Manhattan vanishing points in the images are determined by:

+» How many Manhattan vanishing points are needed to estimate the camera rotation

If focal length and principal point are known?

If focal length and principal point are unknown?

Scene

Manhattan Frame (3 dof)
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Projection
>
Camera Image
Focal Length (1 dof) o .
Principal Point (2 dof) Vanishing Points (6 dof)

<€
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Estimating the Manhattan Frame ##

% Prior Work

Couglan & Yuille 1999, 2003

Deutscher et al 2002

Schindler & Dellaert 2004

Kosecka & Zhang 2002

*» Limitations

Methods can be slow

No standardized database

No systematic evaluation and comparison
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York Urban Database (2008) St

102 images of urban Toronto scenes

12,122 labelled Manhattan line segments

Estimates of ground truth Manhattan frame for each image (estimated accuracy ~1.5 deg)

EECS 4422/5323 Computer Vision

Denis, Elder & Estrada, ECCV 2008
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http://www.elderlab.yorku.ca/YorkUrbanDB

Estimating Vanishing Points in the Image
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¢ Evidence for a hypothesized vanishing point can be obtained by measuring angular

deviations 4¢ of local oriented observations from the predicted direction.
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g Vanishing Points on the Gauss Sphere

The Gauss sphere 1s the collection of viewing directions centred on the optical centre.

The interpre

tation plane 1s the 3D plane on which an oriented element must lie
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Finding Vanishing Points on the Gauss Sphere

the Gauss sphere.

% The normal to this circle 1s

the 3D vanishing point direction.

% In practice, due to noise these interpretation plane normals are distributed over a circular band

Image Plane
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* A family of parallel 3D lines should generate interpretation plane normals distributed over a circle in

Horizontal Vertical
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generated by one of four possible kinds of

scene structure;

m,_;: a line in one of the three Manhattan

directions

m,: non-Manhattan structure

determined by:

The causal process (m,_,)

The rotation W of the Manhattan frame

relative to the camera

| argmaxElogP(Eﬁ P)

Y u

where

P(E; W)= Xm. P(E; | mz, ¥ )P(m; )
u AN J

A

Mixture Model

% Each oriented element E  in the image 1s
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«» The likelihoods of these elements are co-

Likelihood
Learn from labelled training data
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SearChing for V* AR
% Search Methods
® Coarse-to-Fine (Coughlan & Yuille 2001)
® Quasi-Newton

® EM (e.g., Schindler & Dellaert, 2004)

® Quasi-EM

Log Likelihood

|
>
»

0 10 20 30 40 50 60 70 80
Rotation angle around vertical axis (deq)
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Oriented Elements T

¢ What oriented elements in the image should be used to estimate vanishing points?

Observation

/,// ~~~~~~~~~ ‘4\
Observation .
Observation

Image
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Dense Gradient Map

¢ In the 1990s/2000s it was thought best to use dense 1image features to maximize the
statistical power of inference.

¢ Coughlan & Yuille thus proposed to use the dense gradient map, defined at every
pixel.

Coughlan & Yuille, 1999
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But These are Highly Redundant
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Gradient Map Edge Map Line Map

Image (Coughlan & Yuille, 1999) (Denis et al, 2008) (Tal et al, 2012)

Decreasing Redundancy

Sparse Intermediate ,
Represe ntq ii o n s Patrick Denis Ron Tal

Tamgam Systems  Coinbase

Denis, Elder & Estrada, ECCV 2008
Tal & Elder, ACCV 2012
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Manhattan Algorithm Results
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Tal & Elder, ACCV 2012

Denis, Elder & Estrada, ECCV 2008

Mean Frame Error (deg)
(@)
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Bl VW (Caughlan & Yuille)
Edge—-based (Denis et al.)
Bl L ine-based (Proposed method)
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Qualitative Results &
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Curvilinear Perspective?
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¢ Line detection & Hough maps
¢ Line segment detection

¢ Vanishing points and Manhattan worlds
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