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❖ Line detection & Hough maps 

❖ Line segment detection 

❖ Vanishing points and Manhattan worlds
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The Built Environment
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❖ The built environment is largely piecewise planar. 

❖ Boundaries, creases and surface markings thus often project as straight lines. 

❖ Line detection is thus a core computer vision problem.
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The Hough Transform
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❖ We represent a line by the angle 𝜃 of its normal vector from the positive x axis and its 
signed distance 𝜌 from the origin. 

❖ We are free to choose the origin and the direction of the y axis. 

๏ In MATLAB, the origin is at the top left of the image and the y axis points down

−π / 2 <θ ≤ π / 2

ρ ∈!

x

y

θ
ρ

n̂xx + n̂yy − d = 0
cosθx + sinθy − ρ = 0



EECS 4422/5323 Computer Vision J. Elder

The Hough Transform
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❖ In the textbook, the origin is at the centre of the image and the y axis points up. 

❖ Also, Szeliski defines the normal vector to point in the direction of the luminance gradient, 
which means that -𝜋 < 𝜃 ≤ 𝜋. 

❖ This is unconventional.

ρ ∈!
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θ
ρ

n̂xx + n̂yy − d = 0
cosθx + sinθy − ρ = 0
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Houghing Points
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❖ Note that a point (x, y) in the image maps to a sinusoid in Hough space.

cosθx + sinθy − ρ = 0
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Figure 4.41 Original Hough transform: (a) each point votes for a complete family of poten-
tial lines ri(✓) = xi cos ✓ + yi sin ✓; (b) each pencil of lines sweeps out a sinusoid in (r, ✓);
their intersection provides the desired line equation.

by Ramer (1972) and Douglas and Peucker (1973), who recursively subdivide the curve at
the point furthest away from the line joining the two endpoints (or the current coarse polyline
approximation), as shown in Figure 4.40. Hershberger and Snoeyink (1992) provide a more
efficient implementation and also cite some of the other related work in this area.

Once the line simplification has been computed, it can be used to approximate the orig-
inal curve. If a smoother representation or visualization is desired, either approximating or
interpolating splines or curves can be used (Sections 3.5.1 and 5.1.1) (Szeliski and Ito 1986;
Bartels, Beatty, and Barsky 1987; Farin 1996), as shown in Figure 4.40c.

4.3.2 Hough transforms

While curve approximation with polylines can often lead to successful line extraction, lines
in the real world are sometimes broken up into disconnected components or made up of many
collinear line segments. In many cases, it is desirable to group such collinear segments into
extended lines. At a further processing stage (described in Section 4.3.3), we can then group
such lines into collections with common vanishing points.

The Hough transform, named after its original inventor (Hough 1962), is a well-known
technique for having edges “vote” for plausible line locations (Duda and Hart 1972; Ballard
1981; Illingworth and Kittler 1988). In its original formulation (Figure 4.41), each edge point
votes for all possible lines passing through it, and lines corresponding to high accumulator or
bin values are examined for potential line fits.9 Unless the points on a line are truly punctate,
a better approach (in my experience) is to use the local orientation information at each edgel
to vote for a single accumulator cell (Figure 4.42), as described below. A hybrid strategy,

9 The Hough transform can also be generalized to look for other geometric features such as circles (Ballard
1981), but we do not cover such extensions in this book.
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in the real world are sometimes broken up into disconnected components or made up of many
collinear line segments. In many cases, it is desirable to group such collinear segments into
extended lines. At a further processing stage (described in Section 4.3.3), we can then group
such lines into collections with common vanishing points.

The Hough transform, named after its original inventor (Hough 1962), is a well-known
technique for having edges “vote” for plausible line locations (Duda and Hart 1972; Ballard
1981; Illingworth and Kittler 1988). In its original formulation (Figure 4.41), each edge point
votes for all possible lines passing through it, and lines corresponding to high accumulator or
bin values are examined for potential line fits.9 Unless the points on a line are truly punctate,
a better approach (in my experience) is to use the local orientation information at each edgel
to vote for a single accumulator cell (Figure 4.42), as described below. A hybrid strategy,

9 The Hough transform can also be generalized to look for other geometric features such as circles (Ballard
1981), but we do not cover such extensions in this book.
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Houghing Points
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❖ Each point on a line in the image generates a different sinusoid in the Hough map. 

❖ The intersection of these sinusoids in the Hough map identifies the line.
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4.3.2 Hough transforms

While curve approximation with polylines can often lead to successful line extraction, lines
in the real world are sometimes broken up into disconnected components or made up of many
collinear line segments. In many cases, it is desirable to group such collinear segments into
extended lines. At a further processing stage (described in Section 4.3.3), we can then group
such lines into collections with common vanishing points.
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technique for having edges “vote” for plausible line locations (Duda and Hart 1972; Ballard
1981; Illingworth and Kittler 1988). In its original formulation (Figure 4.41), each edge point
votes for all possible lines passing through it, and lines corresponding to high accumulator or
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a better approach (in my experience) is to use the local orientation information at each edgel
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Houghing Edges
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❖ Edge detectors estimate the location and also the orientation of the edge. 

❖ If the orientation estimate is perfect, the edge exactly identifies the line as a point in the 
Hough map. 

❖ In practice, noise in the location and orientation of the edges on a line results in a distribution 
of ‘votes’ in the Hough map.
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θ
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Figure 4.42 Oriented Hough transform: (a) an edgel re-parameterized in polar (r, ✓) coor-
dinates, with n̂i = (cos ✓i, sin ✓i) and ri = n̂i · xi; (b) (r, ✓) accumulator array, showing the
votes for the three edgels marked in red, green, and blue.
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Figure 4.43 2D line equation expressed in terms of the normal n̂ and distance to the origin
d.

where each edgel votes for a number of possible orientation or location pairs centered around
the estimate orientation, may be desirable in some cases.

Before we can vote for line hypotheses, we must first choose a suitable representation.
Figure 4.43 (copied from Figure 2.2a) shows the normal-distance (n̂, d) parameterization for
a line. Since lines are made up of edge segments, we adopt the convention that the line normal
n̂ points in the same direction (i.e., has the same sign) as the image gradient J(x) = rI(x)

(4.19). To obtain a minimal two-parameter representation for lines, we convert the normal
vector into an angle

✓ = tan
�1 ny/nx, (4.26)

as shown in Figure 4.43. The range of possible (✓, d) values is [�180
�, 180

�
]⇥ [�

p
2,
p

2],
assuming that we are using normalized pixel coordinates (2.61) that lie in [�1, 1]. The number
of bins to use along each axis depends on the accuracy of the position and orientation estimate
available at each edgel and the expected line density, and is best set experimentally with some
test runs on sample imagery.

Given the line parameterization, the Hough transform proceeds as shown in Algorithm 4.2.
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Figure 4.42 Oriented Hough transform: (a) an edgel re-parameterized in polar (r, ✓) coor-
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where each edgel votes for a number of possible orientation or location pairs centered around
the estimate orientation, may be desirable in some cases.

Before we can vote for line hypotheses, we must first choose a suitable representation.
Figure 4.43 (copied from Figure 2.2a) shows the normal-distance (n̂, d) parameterization for
a line. Since lines are made up of edge segments, we adopt the convention that the line normal
n̂ points in the same direction (i.e., has the same sign) as the image gradient J(x) = rI(x)

(4.19). To obtain a minimal two-parameter representation for lines, we convert the normal
vector into an angle

✓ = tan
�1 ny/nx, (4.26)

as shown in Figure 4.43. The range of possible (✓, d) values is [�180
�, 180

�
]⇥ [�

p
2,
p

2],
assuming that we are using normalized pixel coordinates (2.61) that lie in [�1, 1]. The number
of bins to use along each axis depends on the accuracy of the position and orientation estimate
available at each edgel and the expected line density, and is best set experimentally with some
test runs on sample imagery.

Given the line parameterization, the Hough transform proceeds as shown in Algorithm 4.2.

ρi
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Probabilistic Houghing
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❖ The main challenge with Hough methods is that this distribution may generate 
multiple peaks in the Hough map, leading to the detection of spurious lines. 

❖ Probabilistic Houghing (Tal & Elder 2012) solves this problem by: 

๏ Propagating uncertainty in location and orientation of edges to the Hough map. 

๏ Subtracting edges contributing to a peak from the Hough map when a line is detected.

Ron Tal

Tal & Elder, ACCV 2012
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Fig. 3. Edge observation uncertainty with respect to ground-truth lines. Red curves
show fit of two-component normal+uniform mixture model. (a) Distance of edge ele-
ments from ground-truth line. (b) Angular deviation of edge element from ground-truth
line.

Approximating the deviations in these three dimensions as independent, we
define the covariance of uncertainty of edge observations in the image domain as

CI =
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x 0
0 0 σ2

θ

⎤

⎦ , (2)

where we use σx for both horizontal and vertical displacement. Using linear
propagation of uncertainty[15], the covariance of the corresponding parameters
in the Hough domain can be computed as

Ch(x, y, θ) = ∇P hCI∇P T
h (3)

where ∇P h is the Jacobian of the parameter vector with respect to the obser-
vation vector
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Edge Subtraction
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An Accurate Method for Line Detection and Manhattan Frame Estimation 587
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Fig. 4. Iterative peak detection with vote removal (a) Hough map with global maxima
shown in red. (b) Corresponding edge map. Edges associated with the detected peak
are shown in red. (c) Updated Hough map after kernel subtraction (d) Residual edge
map.

line ℓi is assumed to be generated by a latent Manhattan variable mℓi that can
assume values representing four classes of structure: vertical, horizontal(1), hor-
izontal(2), background. If we knew the Euler angles Ψ describing the rotation of
the camera with respect to the Manhattan frame of the scene, we could compute
the probability of observing the line as a mixture of the four possible causes

p(ℓi|Ψ) =
∑

mℓi

p(ℓi|Ψ,mℓi)p(mℓi) (8)

where p(mℓi) is the prior probability for the latent variable mℓi and p(ℓi|Ψ,mℓi)
is the probability of a line conditioned on mℓi . Next, we provide a statistical
model for p(ℓi|Ψ).

Previous gradient- and edge-based methods [2,3] used an error model that
relates localized, oriented image features to a set of vanishing points. Lines,
however, are infinite in length and so cannot be related to vanishing points in
the same way. Instead, it is natural to employ a Gauss sphere representation
[20] (Fig. 5(a)). A line in the image plane, together with the optical centre of
the camera, form an interpretation-plane that can be represented by its normal
vector ℓ. In a noise-free world, all lines conforming to the same 3D orientation
will produce interpretation plane normals that are coplanar. Thus, the error of

Peak in Hough map Associated edges

Hough and edge maps after  subtraction
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Fig. 7. Quantitative evaluation on the York UrbanDB test dataset (51 images) showing
Precision recall plot for the proposed extended line detection method vs. Barinova et
al.[16].

should be attributed to the improved localization and detection of edges, we find
that when supplying our line detection algorithm with edge estimates obtained
from the Canny edge detector used by [16], our proposed method still outper-
form theirs. Our experiments show that in fact the superior performance of our
method is due primarily to its lower susceptibility to the multiple response prob-
lem, likely deriving from a faithful representation of the underlying statistics and
more accurate propagation of uncertainty to the Hough domain.

4.2 Manhattan Frame Estimation

We evaluate our probabilistic line-based method for Manhattan Frame estima-
tion on the YorkUrbanDB benchmark database [3], comparing against previ-
ous gradient-based [2] and edge-based [3] methods, as well as a standard non-
probabilistic Hough method implemented in-house. We note that while algo-
rithms for vanishing point detection have been published more recently (e.g.,
[24,25]), these have not specifically addressed the problem of estimating the
Manhattan frame, and our own attempts to adapt these methods to this prob-
lem have led to poor results (average error of 19 deg).

The parameters for the line-based method were selected using a process of
cross-validation, in which the training set was divided using a random 50-50
split: the Hough transform parameters were tuned and the association priors
were learned on one subset and evaluated on the other. This process was repeated
over 20 trials, and the configuration that produced the lowest mean error on
the training data was used for final evaluation on the test set. With optimized
parameters, our probabilistic line-based method uses 36.5 lines per image, on
average, to estimate the Manhattan frame.

We measure performance by the angle between the estimated Manhattan
frame and ground truth. Evaluation on the test set (Fig. 8) shows that our
probabilistic Hough method, incorporating accurate non-stationary kernels and
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!14

An Accurate Method for Line Detection and Manhattan Frame Estimation 591

0

2

4

6

8

10

Method

M
ea

n 
Fr

am
e 

E
rr

or
 (d

eg
) MW (Caughlan & Yuille)

Edge−based (Denis et al.)
Line−based (Standard Hough)
Line−based (Proposed method)

Fig. 8. Mean error of estimated camera pose relative to ground truth

Fig. 9. Examples of automatically detected lines and association with Manhattan
frame. All lines used to estimate the Manhattan frame are shown. Lines are colour
coded according to the most probable Manhattan cause (red: vertical, green & blue:
horizontal, yellow: background).

dynamic kernel subtraction, increases accuracy by a factor of more than 2 over
prior methods, achieving an average frame error of 1.7 degrees. We provide a
wide range of images to demonstrate the effectiveness of our contribution in
both accurate line detection and robust Manhattan frame estimation in Fig. 9.
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Outline
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❖ Line detection & Hough maps 

❖ Line segment detection 

❖ Vanishing points and Manhattan worlds
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Step 2:  Line Segment Detection
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Almazen et al, CVPR 2017

Emilio Almazen 
Nielsen
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Line Segmentation Detection - MCMLSD
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❖ Prior approaches tend to be either global (Hough methods) or local 
(perceptual grouping). 

❖ Global methods can yield more accurate line extraction by 
accumulating more complete evidence. 

❖ Local methods tend to be better at localizing segment endpoints. 

❖ MCMLSD✝ combines the virtues of the two: 

๏ Step 1.  Use probabilistic Hough method to identify global lines. 

๏ Step 2.  Partition each line into maximum probability segments, 
using dynamic programming, in linear time. 

✝Markov Chain Marginal Line Segment Detector
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Dynamic Programming Solution
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❖ Factoring of posterior à optimal substructure property à dynamic 
programming solution 

❖ Max probability configuration ßà sequence minimizing cost   

❖ Can be computed sequentially in O(N) time using dynamic programming.
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Qualitative Results
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LSD (Gioi 2008) MCMLSD
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PPHT SSWMS LSD MCMLSD

Figure 6: Top 90 segments returned by PPHT, SSWMS, LSD and the proposed MCMLSD method, for four example test
images drawn from the YorkUrbanDB dataset.

(a) (b) (c)

Figure 7: Performance of the proposed MCMLSD methods compared with the state of the art. (a) Recall as a function of
number of segments returned. (b) Recall as a function of the total length of segments returned. (c) Precision-Recall.

that under- and over-segmentation are penalized appropri-
ately. Using this new evaluation methodology we find
that MCMLSD outperforms the state-of-the-art by a sub-
stantial margin. The code for MCMLSD and our evalua-
tion method is available at www.elderlab.yorku.ca/
resources.
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Quantitative Evaluation
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Outline
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❖ Line detection & Hough maps 

❖ Line segment detection 

❖ Linear perspective, Vanishing points and Manhattan worlds
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Linear Perspective
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Vanishing point
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Linear Perspective in Art
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❖ The discovery of the laws of linear perspective is a defining achievement of the early 
Renaissance.

Filippo Brunelleschi 
1377 - 1446

Adoration of the Magi, Leonardo da Vinci 
c. 1481
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The Forward Problem:  Early Attempts
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‘Jesus Before the Caïf’, by Giotto (1305).  

From CW Tyler, Perspective as a Geometric Tool that Launched the Renaissance 
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Progress
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Follower of Pietro Lorenzetti, Madonna and Child Enthroned 
with Angels 1360/70
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Success
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Masaccio's Trinity (1427–28)  
(Church of Santa Maria Novella, Florence)

http://www.kfki.hu/~arthp/html/m/masaccio/trinity/trinity.html
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The Healing of the Cripple and the Raising of Tabitha’, by Masolino (1425).  
Brancacci Chapel, Santa Maria del Carmine, Florence
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‘The School of Athens’ by Raphael (1518), Stanze di Raffaello, in the Apostolic Palace in the Vatican. 
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Linear Perspective in Computer Vision
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❖ How can we use linear perspective in computer vision?
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The Manhattan World

!32

❖ The Manhattan world is a model of the 3D environment that assumes that structure in 
the scene aligned with a 3D orthogonal Cartesian coordinate frame. 
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Manhattan Frame Estimation
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Linear 
Perspective
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End of Lecture 
Nov 7, 2018
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3-Point Perspective
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Vanishing Points and the Manhattan Frame
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Estimating the Manhattan Frame
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❖ To estimate the 3D rotation of the Manhattan world frame relative to the camera we need to find the 
vanishing points. 

❖ This rotation has 3 degrees of freedom. 

๏ e.g., the axis of rotation (2 dof) and the angle of rotation (1 dof) 

❖ The locations of Manhattan vanishing points in the images are determined by: 

๏ The camera rotation (3 dof) 

๏ The focal length (1 dof) 

๏ The principal point (2 dof) 

❖ How many Manhattan vanishing points are needed to estimate the camera rotation 

๏ If focal length and principal point are known? 

๏ If focal length and principal point are unknown?

ImageScene Camera

Manhattan Frame (3 dof) Focal Length (1 dof) 
Principal Point (2 dof) Vanishing Points (6 dof)

Projection

Inverse Inference
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Estimating the Manhattan Frame
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❖ Prior Work 

๏ Couglan & Yuille 1999, 2003 

๏ Deutscher et al 2002 

๏ Schindler & Dellaert 2004 

๏ Kosecka & Zhang 2002 

❖ Limitations 

๏ Methods can be slow 

๏ No standardized database 

๏ No systematic evaluation and comparison
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York Urban Database (2008)
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❖ www.elderlab.yorku.ca/YorkUrbanDB 
๏ 102 images of urban Toronto scenes 

๏ 12,122 labelled Manhattan line segments 

๏ Estimates of ground truth Manhattan frame for each image (estimated accuracy ~1.5 deg)

Patrick Denis

Denis, Elder & Estrada, ECCV 2008

http://www.elderlab.yorku.ca/YorkUrbanDB
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Estimating Vanishing Points in the Image
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❖ Evidence for a hypothesized vanishing point can be obtained by measuring angular 
deviations 𝛥𝜙 of local oriented observations from the predicted direction.

φΔ

× Hypothesized vanishing point

Observation
Observation

Observation
φΔ

φΔ

Image
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Estimating Vanishing Points on the Gauss Sphere

!41

❖ Definitions: 

๏ The Gauss sphere is the collection of viewing directions centred on the optical centre. 

๏ The interpretation plane is the 3D plane on which an oriented element must lie
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Finding Vanishing Points on the Gauss Sphere
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❖ A family of parallel 3D lines should generate interpretation plane normals distributed over a circle in 
the Gauss sphere. 

❖ The normal to this circle is the 3D vanishing point direction. 

❖ In practice, due to noise these interpretation plane normals are distributed over a circular band

588 R. Tal and J.H. Elder

Gauss Sphere

Interpretation Plane

pp

Image line
iA

(a)

i

G
A

iθΔ

Line interpretation
plane normal

3D Orientation
Vector

(b)

Fig. 5. Modeling uncertainty on the unit circle. (a) A line detected in the image can
be represented in the Gauss sphere by its interpretation plane normal. (b) Error model
for a line in the Gauss sphere.

an estimated line with respect to its true 3D orientation is given by the angular
deviation of the interpretation-plane normal for the line from this common plane.
The normal of this plane corresponds to the 3D orientation of the lines. Denis
et al. [3] found that a Gauss-sphere error model was less accurate than an image
model for edge primitives. However, line primitives have the potential to be much
more accurate, as they integrate over many edges, and we find that for lines, the
Gauss-sphere model works well.

We develop a statistical model for p(ℓi|Ψ,mℓi) by considering hand-labeled
ground-truth lines from the database[3]. The error ∆θi is the angular deviation
of the interpretation plane normal for a line ℓ from the plane normal to the 3D
Manhattan orientation vector (Fig. 5(b)). A histogram of ∆θi indicates that a
Laplace model for p(ℓi|Ψ,mℓi) is suitable (Fig. 6). Thus,

p(ℓi|Ψ,mℓi) =
1

2b
e

−|∆θmℓi
|

b (9)

when mℓi is not background, where b = 0.80 deg for horizontal lines and b = 0.57
deg for vertical lines.
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Angular Error (deg)

(a)

−10 −5 0 5 10
Angular Error (deg)

(b) (c)

Fig. 6. Distribution of line interpretation plane normals with respect to their associ-
ated (a) horizontal and (b) vertical Manhattan direction. Maximum likelihood Laplace
model shown in red. (c) Sample of uniform distribution of lines observable in the image.
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Mixture Model
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❖ Each oriented element Eu in the image is 
generated by one of four possible kinds of 
scene structure: 

๏ m1-3: a line in one of the three Manhattan 
directions 

๏ m4: non-Manhattan structure 

❖ The likelihoods of these elements are co-
determined by: 

๏ The causal process (m1-4) 

๏ The rotation Ψ of the Manhattan frame 
relative to the camera

mimi

mimi

E1 E2

Ek+1Ek

Ψ

Image

( )∑
Ψ

∗ Ψ=Ψ
u

uEP!
! |logmaxarg

( ) ( ) ( )∑ Ψ=Ψ
u
m uuuu mPmEPEP !

!!!! ,||

where

Likelihood Prior
Learn from labelled training data
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Searching for Ψ*
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❖ Search Methods 

๏ Coarse-to-Fine (Coughlan & Yuille 2001) 

๏ Quasi-Newton 

๏ EM (e.g., Schindler & Dellaert, 2004) 

๏ Quasi-EM
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Oriented Elements
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❖ What oriented elements in the image should be used to estimate vanishing points?

φΔ

× Hypothesized vanishing point

Observation
Observation

Observation
φΔ

φΔ

Image
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Dense Gradient Map
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❖ In the 1990s/2000s it was thought best to use dense image features to maximize the 
statistical power of inference. 

❖ Coughlan & Yuille thus proposed to use the dense gradient map, defined at every 
pixel.

Coughlan & Yuille, 1999
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But These are Highly Redundant

!47

Elder 1999 
Elder & Goldberg 2001
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The Input Space: Squeezing out Redundancy
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Gradient Map  
(Coughlan & Yuille, 1999)

Edge Map  
(Denis et al, 2008)

Patrick Denis 
Tamgam Systems

Image Line Map  
(Tal et al, 2012)

Decreasing Redundancy

Ron Tal 
Coinbase

Denis, Elder & Estrada, ECCV 2008 
Tal & Elder, ACCV 2012

Sparse Intermediate 
Representations
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Manhattan Algorithm Results
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Qualitative Results
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An Accurate Method for Line Detection and Manhattan Frame Estimation 591
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Fig. 8. Mean error of estimated camera pose relative to ground truth

Fig. 9. Examples of automatically detected lines and association with Manhattan
frame. All lines used to estimate the Manhattan frame are shown. Lines are colour
coded according to the most probable Manhattan cause (red: vertical, green & blue:
horizontal, yellow: background).

dynamic kernel subtraction, increases accuracy by a factor of more than 2 over
prior methods, achieving an average frame error of 1.7 degrees. We provide a
wide range of images to demonstrate the effectiveness of our contribution in
both accurate line detection and robust Manhattan frame estimation in Fig. 9.
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Curvilinear Perspective?
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Outline
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❖ Line detection & Hough maps 

❖ Line segment detection 

❖ Vanishing points and Manhattan worlds


