
EECS 4422/5323 Computer Vision J. Elder

7.1-7.2 3D - Motion

!1

EECS 4422/5323 Computer Vision J. Elder

Outline

!2

❖ Triangulation

❖ Two-Frame Structure from Motion

EECS 4422/5323 Computer Vision J. Elder

Outline

!3

❖ Triangulation

❖ Two-Frame Structure from Motion

EECS 4422/5323 Computer Vision J. Elder

Structure from Motion

!4

❖ Pose Estimation and Geometric Camera Calibration:

๏ Given known 3D scene points and 2D correspondences in one image, compute the camera
pose and intrinsic parameters.

❖ Triangulation:

๏ Given 2D correspondences over multiple images and known camera pose, compute the
unknown 3D scene points

EECS 4422/5323 Computer Vision J. Elder

Triangulation

!5

❖ Definition. The identification of a 3D point from a set of corresponding 2D image
locations, from known camera poses.

❖ Consider multiple cameras with projection matrices Pj:

❖ Let cj represent the 3D camera centre for camera j, in world coordinates.

❖ Observe that

❖ Now consider a 3D point p that projects to 2D image points xj in each of the cameras.

❖ To recover the point p, we seek the 3D point that comes closest to the set of rays
passing through each camera centre cj and each 2D image projection xj.

❖ In other words, we seek the p that minimizes

❖ where

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

Pj = K j R j | t j⎡⎣ ⎤⎦

t j = −R jc j

7.1 Triangulation 345

In the previous chapter, we saw how 2D and 3D point sets could be aligned and how such
alignments could be used to estimate both a camera’s pose and its internal calibration parame-
ters. In this chapter, we look at the converse problem of estimating the locations of 3D points
from multiple images given only a sparse set of correspondences between image features.
While this process often involves simultaneously estimating both 3D geometry (structure)
and camera pose (motion), it is commonly known as structure from motion (Ullman 1979).

The topics of projective geometry and structure from motion are extremely rich and
some excellent textbooks and surveys have been written on them (Faugeras and Luong 2001;
Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen 2010). This chapter skips
over a lot of the richer material available in these books, such as the trifocal tensor and al-
gebraic techniques for full self-calibration, and concentrates instead on the basics that we
have found useful in large-scale, image-based reconstruction problems (Snavely, Seitz, and
Szeliski 2006).

We begin with a brief discussion of triangulation (Section 7.1), which is the problem of
estimating a point’s 3D location when it is seen from multiple cameras. Next, we look at the
two-frame structure from motion problem (Section 7.2), which involves the determination of
the epipolar geometry between two cameras and which can also be used to recover certain
information about the camera intrinsics using self-calibration (Section 7.2.2). Section 7.3
looks at factorization approaches to simultaneously estimating structure and motion from
large numbers of point tracks using orthographic approximations to the projection model.
We then develop a more general and useful approach to structure from motion, namely the
simultaneous bundle adjustment of all the camera and 3D structure parameters (Section 7.4).
We also look at special cases that arise when there are higher-level structures, such as lines
and planes, in the scene (Section 7.5).

7.1 Triangulation

The problem of determining a point’s 3D position from a set of corresponding image locations
and known camera positions is known as triangulation. This problem is the converse of the
pose estimation problem we studied in Section 6.2.

One of the simplest ways to solve this problem is to find the 3D point p that lies closest to
all of the 3D rays corresponding to the 2D matching feature locations {xj} observed by cam-
eras {P j = Kj [Rj |tj]}, where tj = �Rjcj and cj is the jth camera center (2.55–2.56).
As you can see in Figure 7.2, these rays originate at cj in a direction v̂j = N (R�1

j
K�1

j
xj).

The nearest point to p on this ray, which we denote as qj , minimizes the distance

kcj + dj v̂j � pk2, (7.1)

7.1 Triangulation 345

In the previous chapter, we saw how 2D and 3D point sets could be aligned and how such
alignments could be used to estimate both a camera’s pose and its internal calibration parame-
ters. In this chapter, we look at the converse problem of estimating the locations of 3D points
from multiple images given only a sparse set of correspondences between image features.
While this process often involves simultaneously estimating both 3D geometry (structure)
and camera pose (motion), it is commonly known as structure from motion (Ullman 1979).

The topics of projective geometry and structure from motion are extremely rich and
some excellent textbooks and surveys have been written on them (Faugeras and Luong 2001;
Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen 2010). This chapter skips
over a lot of the richer material available in these books, such as the trifocal tensor and al-
gebraic techniques for full self-calibration, and concentrates instead on the basics that we
have found useful in large-scale, image-based reconstruction problems (Snavely, Seitz, and
Szeliski 2006).

We begin with a brief discussion of triangulation (Section 7.1), which is the problem of
estimating a point’s 3D location when it is seen from multiple cameras. Next, we look at the
two-frame structure from motion problem (Section 7.2), which involves the determination of
the epipolar geometry between two cameras and which can also be used to recover certain
information about the camera intrinsics using self-calibration (Section 7.2.2). Section 7.3
looks at factorization approaches to simultaneously estimating structure and motion from
large numbers of point tracks using orthographic approximations to the projection model.
We then develop a more general and useful approach to structure from motion, namely the
simultaneous bundle adjustment of all the camera and 3D structure parameters (Section 7.4).
We also look at special cases that arise when there are higher-level structures, such as lines
and planes, in the scene (Section 7.5).

7.1 Triangulation

The problem of determining a point’s 3D position from a set of corresponding image locations
and known camera positions is known as triangulation. This problem is the converse of the
pose estimation problem we studied in Section 6.2.

One of the simplest ways to solve this problem is to find the 3D point p that lies closest to
all of the 3D rays corresponding to the 2D matching feature locations {xj} observed by cam-
eras {P j = Kj [Rj |tj]}, where tj = �Rjcj and cj is the jth camera center (2.55–2.56).
As you can see in Figure 7.2, these rays originate at cj in a direction v̂j = N (R�1

j
K�1

j
xj).

The nearest point to p on this ray, which we denote as qj , minimizes the distance

kcj + dj v̂j � pk2, (7.1)

EECS 4422/5323 Computer Vision J. Elder

3D Deviations

!6

❖ Let qj represent the point on the jth ray lying closest to p:

❖ Observe that at qj,

❖ Thus

❖ and the squared deviation between p and qj is

❖ Minimizing the sum of squares over all cameras yields

7.1 Triangulation 345

In the previous chapter, we saw how 2D and 3D point sets could be aligned and how such
alignments could be used to estimate both a camera’s pose and its internal calibration parame-
ters. In this chapter, we look at the converse problem of estimating the locations of 3D points
from multiple images given only a sparse set of correspondences between image features.
While this process often involves simultaneously estimating both 3D geometry (structure)
and camera pose (motion), it is commonly known as structure from motion (Ullman 1979).

The topics of projective geometry and structure from motion are extremely rich and
some excellent textbooks and surveys have been written on them (Faugeras and Luong 2001;
Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen 2010). This chapter skips
over a lot of the richer material available in these books, such as the trifocal tensor and al-
gebraic techniques for full self-calibration, and concentrates instead on the basics that we
have found useful in large-scale, image-based reconstruction problems (Snavely, Seitz, and
Szeliski 2006).

We begin with a brief discussion of triangulation (Section 7.1), which is the problem of
estimating a point’s 3D location when it is seen from multiple cameras. Next, we look at the
two-frame structure from motion problem (Section 7.2), which involves the determination of
the epipolar geometry between two cameras and which can also be used to recover certain
information about the camera intrinsics using self-calibration (Section 7.2.2). Section 7.3
looks at factorization approaches to simultaneously estimating structure and motion from
large numbers of point tracks using orthographic approximations to the projection model.
We then develop a more general and useful approach to structure from motion, namely the
simultaneous bundle adjustment of all the camera and 3D structure parameters (Section 7.4).
We also look at special cases that arise when there are higher-level structures, such as lines
and planes, in the scene (Section 7.5).

7.1 Triangulation

The problem of determining a point’s 3D position from a set of corresponding image locations
and known camera positions is known as triangulation. This problem is the converse of the
pose estimation problem we studied in Section 6.2.

One of the simplest ways to solve this problem is to find the 3D point p that lies closest to
all of the 3D rays corresponding to the 2D matching feature locations {xj} observed by cam-
eras {P j = Kj [Rj |tj]}, where tj = �Rjcj and cj is the jth camera center (2.55–2.56).
As you can see in Figure 7.2, these rays originate at cj in a direction v̂j = N (R�1

j
K�1

j
xj).

The nearest point to p on this ray, which we denote as qj , minimizes the distance

kcj + dj v̂j � pk2, (7.1)

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

q j = c j + djv̂ j

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

where p − c j()||
 is the projection of p − c j onto v̂ j .

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Nov 28, 2018

!7

EECS 4422/5323 Computer Vision J. Elder

2D Deviations

!8

❖ Note that this solution minimizes deviation in 3D space, whereas the primary error is
introduced by mislocalization of the 2D points xj in the images.

❖ If this image localization error is modelled as zero-mean iid Gaussian, it is optimal to
minimize the residual between the image points and the reprojections of the estimated
3D points, given by

❖ where the pij are the parameters of the known projection matrices.

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

EECS 4422/5323 Computer Vision J. Elder

Homogenous Solution

!9

❖ Note that we have used homogeneous coordinates for the 3D point here: we seek to
estimate X, Y, Z, W.

❖ Multiplying through by the denominator, this becomes a homogeneous problem,
solvable through our two-stage method:

๏ DLT: Use SVD to obtain a linear algebraic solution as an initial guess

๏ Non-linear least squares: Iterative minimization of squared reprojection error using
Levenberg-Marquardt to obtain a maximum likelihood solution

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

EECS 4422/5323 Computer Vision J. Elder

Inhomogeneous Solution

!10

❖ We could instead have used augmented coordinates for the 3D world point (W = 1),
thus obtaining a regular linear least squares problem (Ap = b).

❖ However this system becomes poorly conditioned for distant objects.

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T

j
)(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j

= k(I � v̂j v̂
T

j
)(p� cj)k2

= k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j
and finding the optimal value of p,

p =

2

4
X

j

(I � v̂j v̂
T

j
)

3

5
�1 2

4
X

j

(I � v̂j v̂
T

j
)cj

3

5 . (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations

xj =
p(j)
00 X + p(j)

01 Y + p(j)
02 Z + p(j)

03 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
(7.5)

yj =
p(j)
10 X + p(j)

11 Y + p(j)
12 Z + p(j)

13 W

p(j)
20 X + p(j)

21 Y + p(j)
22 Z + p(j)

23 W
, (7.6)

where (xj , yj) are the measured 2D feature locations and {p(j)
00 . . . p(j)

23 } are the known entries
in camera matrix P j (Sutherland 1974).

As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted
into a linear least squares problem by multiplying both sides of the denominator. Note that if

EECS 4422/5323 Computer Vision J. Elder

Outline

!11

❖ Triangulation

❖ Two-Frame Structure from Motion

EECS 4422/5323 Computer Vision J. Elder

Structure from Motion (SLAM)

!12

❖ Pose Estimation and Geometric Camera Calibration:

๏ Given known 3D scene points and 2D correspondences in one image, compute the camera
pose and intrinsic parameters.

❖ Triangulation:

๏ Given 2D correspondences over multiple images and known camera pose, compute the
unknown 3D scene points

❖ Structure from Motion, aka Simultaneous Localization & Mapping (SLAM):

๏ Given 2D correspondences over multiple images, compute the unknown 3D scene points
and unknown camera pose (motion)

EECS 4422/5323 Computer Vision J. Elder

Two-Frame Structure from Motion

!13

❖ Consider a point p seen from two cameras (Camera 0 and Camera 1), related by a
rigid transformation (R, t).

❖ wlog, we can set c0 = 0 and R0 = I.

❖ In other words, we align the world frame with Camera 0.

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

Let p0 = d0x̂0 and p1 = d1x̂1 represent the location of 3D world point p
in the coordinate systems of Camera 0 and 1, respectively.

Here x̂0 = K
−1x0 and x̂1 = K

−1x1 are the ray direction vectors in their
respective camera coordinate systems.

EECS 4422/5323 Computer Vision J. Elder

The Epipolar Constraint

!14

❖ Then we have that

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

7.2 Two-frame structure from motion 347

we use homogeneous coordinates p = (X,Y, Z,W), the resulting set of equations is homo-
geneous and is best solved as a singular value decomposition (SVD) or eigenvalue problem
(looking for the smallest singular vector or eigenvector). If we set W = 1, we can use regular
linear least squares, but the resulting system may be singular or poorly conditioned, i.e., if all
of the viewing rays are parallel, as occurs for points far away from the camera.

For this reason, it is generally preferable to parameterize 3D points using homogeneous
coordinates, especially if we know that there are likely to be points at greatly varying dis-
tances from the cameras. Of course, minimizing the set of observations (7.5–7.6) using non-
linear least squares, as described in (6.14 and 6.23), is preferable to using linear least squares,
regardless of the representation chosen.

For the case of two observations, it turns out that the location of the point p that exactly
minimizes the true reprojection error (7.5–7.6) can be computed using the solution of degree
six equations (Hartley and Sturm 1997). Another problem to watch out for with triangulation
is the issue of chirality, i.e., ensuring that the reconstructed points lie in front of all the
cameras (Hartley 1998). While this cannot always be guaranteed, a useful heuristic is to take
the points that lie behind the cameras because their rays are diverging (imagine Figure 7.2
where the rays were pointing away from each other) and to place them on the plane at infinity
by setting their W values to 0.

7.2 Two-frame structure from motion
So far in our study of 3D reconstruction, we have always assumed that either the 3D point
positions or the 3D camera poses are known in advance. In this section, we take our first look
at structure from motion, which is the simultaneous recovery of 3D structure and pose from
image correspondences.

Consider Figure 7.3, which shows a 3D point p being viewed from two cameras whose
relative position can be encoded by a rotation R and a translation t. Since we do not know
anything about the camera positions, without loss of generality, we can set the first camera at
the origin c0 = 0 and at a canonical orientation R0 = I .

Now notice that the observed location of point p in the first image, p0 = d0x̂0 is mapped
into the second image by the transformation

d1x̂1 = p1 = Rp0 + t = R(d0x̂0) + t, (7.7)

where x̂j = K�1
j

xj are the (local) ray direction vectors. Taking the cross product of both
sides with t in order to annihilate it on the right hand side yields1

d1[t]⇥x̂1 = d0[t]⇥Rx̂0. (7.8)
1 The cross-product operator []⇥ was introduced in (2.32).

7.2 Two-frame structure from motion 347

we use homogeneous coordinates p = (X,Y, Z,W), the resulting set of equations is homo-
geneous and is best solved as a singular value decomposition (SVD) or eigenvalue problem
(looking for the smallest singular vector or eigenvector). If we set W = 1, we can use regular
linear least squares, but the resulting system may be singular or poorly conditioned, i.e., if all
of the viewing rays are parallel, as occurs for points far away from the camera.

For this reason, it is generally preferable to parameterize 3D points using homogeneous
coordinates, especially if we know that there are likely to be points at greatly varying dis-
tances from the cameras. Of course, minimizing the set of observations (7.5–7.6) using non-
linear least squares, as described in (6.14 and 6.23), is preferable to using linear least squares,
regardless of the representation chosen.

For the case of two observations, it turns out that the location of the point p that exactly
minimizes the true reprojection error (7.5–7.6) can be computed using the solution of degree
six equations (Hartley and Sturm 1997). Another problem to watch out for with triangulation
is the issue of chirality, i.e., ensuring that the reconstructed points lie in front of all the
cameras (Hartley 1998). While this cannot always be guaranteed, a useful heuristic is to take
the points that lie behind the cameras because their rays are diverging (imagine Figure 7.2
where the rays were pointing away from each other) and to place them on the plane at infinity
by setting their W values to 0.

7.2 Two-frame structure from motion
So far in our study of 3D reconstruction, we have always assumed that either the 3D point
positions or the 3D camera poses are known in advance. In this section, we take our first look
at structure from motion, which is the simultaneous recovery of 3D structure and pose from
image correspondences.

Consider Figure 7.3, which shows a 3D point p being viewed from two cameras whose
relative position can be encoded by a rotation R and a translation t. Since we do not know
anything about the camera positions, without loss of generality, we can set the first camera at
the origin c0 = 0 and at a canonical orientation R0 = I .

Now notice that the observed location of point p in the first image, p0 = d0x̂0 is mapped
into the second image by the transformation

d1x̂1 = p1 = Rp0 + t = R(d0x̂0) + t, (7.7)

where x̂j = K�1
j

xj are the (local) ray direction vectors. Taking the cross product of both
sides with t in order to annihilate it on the right hand side yields1

d1[t]⇥x̂1 = d0[t]⇥Rx̂0. (7.8)
1 The cross-product operator []⇥ was introduced in (2.32).

Taking the cross-product of both sides with t yields

Now taking the dot-product of both sides with x̂1 yields

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

EECS 4422/5323 Computer Vision J. Elder

The Epipolar Constraint

!15

❖ Perhaps more intuitively, note that the vector connecting the camera centres and the
rays connecting the camera centres to the observed 3D point p must be coplanar.

❖ For these three vectors to be coplanar, their triple product must be zero:

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

t j = −R jc j → c j = −R j
−1t j

Thus c1 − c0 = −R1
−1t1 = −R−1t

c1 − c0() ⋅ R1
−1x̂1()× R0

−1x̂0()()
= − R−1t() ⋅ R−1x̂1()× x̂0()
= −t ⋅ x̂1 × Rx̂0()
= x̂1 ⋅ t × Rx̂0()
= x̂1

⊤ t[]× R() x̂0 = 0

EECS 4422/5323 Computer Vision J. Elder

Epipolar Lines

!16

❖ These are the epipolar lines, defining the 1D subspaces in which correspondences
must lie.

❖ Note that l1 contain a point e1 which is the projection of c0 onto Image 1.

❖ Similarly, l0 contain a point e0 which is the projection of c1 onto Image 0.

❖ These are the epipoles.

x̂1
⊤Ex̂0 = 0

The essential matrix E maps a point x̂0 in Image 0 to a line l1 = Ex̂0 in Image 1, since x̂1
⊤l1 = 0.

By taking the transpose, we obtain a similar line l0 = E
⊤x̂1 in Image 0.

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 epipolar plane

p∞
p

(R,t)

c0 c1

epipolar
lines

x
0

e0 e1

x1

l1l0

Figure 7.3 Epipolar geometry: The vectors t = c1 � c0, p � c0 and p � c1 are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements x0 and
x1.

Taking the dot product of both sides with x̂1 yields

d0x̂
T

1 ([t]⇥R)x̂0 = d1x̂
T

1 [t]⇥x̂1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [t]⇥ is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

x̂T

1 E x̂0 = 0, (7.10)

where
E = [t]⇥R (7.11)

is called the essential matrix (Longuet-Higgins 1981).
An alternative way to derive the epipolar constraint is to notice that in order for the cam-

eras to be oriented so that the rays x̂0 and x̂1 intersect in 3D at point p, the vectors connecting
the two camera centers c1 � c0 = �R�1

1 t and the rays corresponding to pixels x0 and x1,
namely R�1

j
x̂j , must be co-planar. This requires that the triple product

(x̂0,R
�1x̂1,�R�1t) = (Rx̂0, x̂1,�t) = x̂1 · (t⇥Rx̂0) = x̂T

1 ([t]⇥R)x̂0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂0 in image 0 into a line l1 = Ex̂0

in image 1, since x̂T

1 l1 = 0 (Figure 7.3). All such lines must pass through the second
epipole e1, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these

EECS 4422/5323 Computer Vision J. Elder

Estimating the Essential Matrix

!17

❖ Thus each pair of corresponding image measurements in Image 0 and Image 1
generates a homogenous equation in the elements of E:

❖ Given at least 8 pairs of corresponding points, we can estimate E (up to a scale factor)
using SVD.

❖ Generally, >8 pairs of points will lead to more accurate results due to noise averaging.

❖ However, some of these terms will generally be overweighted, particularly the
bilinear terms, where one or both of the coordinates is large.

❖ Can reduce this effect by applying linear transforms T0 and T1 to shift and scale points
to have zero mean and unit variance:

x̂1
⊤Ex̂0 = 0→ x1

⊤Ex0 = 0
where x1 and x2 are the augmented representations of x1 and x2 .

7.2 Two-frame structure from motion 349

relationships gives us the epipolar line in the first image as l0 = ET x̂1 and e0 as the zero-
value right singular vector of E.

Given this fundamental relationship (7.10), how can we use it to recover the camera
motion encoded in the essential matrix E? If we have N corresponding measurements
{(xi0,xi1)}, we can form N homogeneous equations in the nine elements of E = {e00 . . . e22},

xi0xi1e00 + yi0xi1e01 + xi1e02 +

xi0yi1e00 + yi0yi1e11 + yi1e12 +

xi0e20 + yi0e21 + e22 = 0

(7.13)

where xij = (xij , yij , 1). This can be written more compactly as

[xi1 xT

i0]⌦E = Zi ⌦E = zi · f = 0, (7.14)

where ⌦ indicates an element-wise multiplication and summation of matrix elements, and zi

and f are the rasterized (vector) forms of the Zi = x̂i1x̂
T

i0 and E matrices.2 Given N � 8

such equations, we can compute an estimate (up to scale) for the entries in E using an SVD.
In the presence of noisy measurements, how close is this estimate to being statistically

optimal? If you look at the entries in (7.13), you can see that some entries are the products
of image measurements such as xi0yi1 and others are direct image measurements (or even
the identity). If the measurements have comparable noise, the terms that are products of
measurements have their noise amplified by the other element in the product, which can lead
to very poor scaling, e.g., an inordinately large influence of points with large coordinates (far
away from the image center).

In order to counteract this trend, Hartley (1997a) suggests that the point coordinates
should be translated and scaled so that their centroid lies at the origin and their variance
is unity, i.e.,

x̃i = s(xi � µx) (7.15)

ỹi = s(xi � µy) (7.16)

such that
P

i
x̃i =

P
i
ỹi = 0 and

P
i
x̃2

i
+

P
i
ỹ2

i
= 2n, where n is the number of points.3

Once the essential matrix Ẽ has been computed from the transformed coordinates
{(x̃i0, x̃i1)}, where x̃ij = T jx̂ij , the original essential matrix E can be recovered as

E = T 1ẼT 0. (7.17)

2 We use f instead of e to denote the rasterized form of E to avoid confusion with the epipoles ej .
3 More precisely, Hartley (1997a) suggests scaling the points “so that the average distance from the origin is equal

to
p

2” but the heuristic of unit variance is faster to compute (does not require per-point square roots) and should
yield comparable improvements.

!xi0 = T0x̂i0 and !xi1 = T1x̂i1 such that E !xij⎡⎣ ⎤⎦ = 0 and E xij
2⎡⎣ ⎤⎦ +E yij

2⎡⎣ ⎤⎦ = 2

Now after solving for the essential matrix !E corresponding to these transformed points,
we can recover the essential matrix E for the original points: E = T1

⊤ !ET0

EECS 4422/5323 Computer Vision J. Elder

Estimating the Translation

!18

❖ The absolute distance between the two cameras can never be recovered from image
measurements alone.

❖ However, we can recover the direction of the translation.

❖ Observe that the essential matrix is singular:

E = t⎡⎣ ⎤⎦× R()

t⊤E = 0

Thus t̂ is the last column of the U matrix in an SVD decomposition of E:
E = UΣV⊤

t̂

EECS 4422/5323 Computer Vision J. Elder

Estimating the Rotation

!19

❖ Using this expression together with an SVD decomposition of the essential matrix E yields

❖ from which we can conclude that S = U.

❖ We only know E and t up to a sign.

❖ Thus we have to consider 4 possible candidates for R given by:

where t̂ = s0 × s1

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

Since E is singular but in general of Rank 2, Σ = Z, and thus

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

EECS 4422/5323 Computer Vision J. Elder

Chirality

!20

❖ First we can restrict our attention to the two solutions (chiralities) for which |R| = 1
(and thus for which R represents a valid rotation).

❖ To select between these remaining two solutions, we pair with the two possible
translation vectors ±t, and use triangulation to reconstruct the 3D locations of the
points given the hypothesized rotation and translation.

❖ Now we select the hypothesized (R, t) pair that generates the largest number of 3D
points lying in front of both cameras.

7.2 Two-frame structure from motion 351

Once t̂ has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [t̂]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include t̂, zeros out the t̂ component, and rotates the other two by 90

�,

[t̂]⇥ = SZR90�S
T

=

h
s0 s1 t̂

i
2

64
1

1

0

3

75

2

64
0 �1

1 0

1

3

75

2

64
sT
0

sT
1

t̂
T

3

75 , (7.21)

where t̂ = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [t̂]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and t̂ up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT

±90�V
T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±t̂ and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

EECS 4422/5323 Computer Vision J. Elder

Building Rome in a Day

!21

Agarwal et al, 2009

EECS 4422/5323 Computer Vision J. Elder

Outline

!22

❖ Triangulation

❖ Two-Frame Structure from Motion

