7.1-7.2 3D - Motion

Outline

* Triangulation
* Two-Frame Structure from Motion

Outline

* Triangulation
* Two-Frame Structure from Motion

Structure from Motion

* Pose Estimation and Geometric Camera Calibration:
- Given known 3D scene points and 2D correspondences in one image, compute the camera pose and intrinsic parameters.
* Triangulation:
- Given 2D correspondences over multiple images and known camera pose, compute the unknown 3D scene points

Triangulation

* Definition. The identification of a 3D point from a set of corresponding 2D image locations, from known camera poses.
* Consider multiple cameras with projection matrices $\boldsymbol{P}_{j}: \boldsymbol{P}_{j}=\boldsymbol{K}_{j}\left[\boldsymbol{R}_{j} \mid \boldsymbol{t}_{j}\right]$
* Let \boldsymbol{c}_{j} represent the 3D camera centre for camera j, in world coordinates.
* Observe that $\boldsymbol{t}_{j}=-\boldsymbol{R}_{j} \boldsymbol{c}_{j}$
* Now consider a 3D point \boldsymbol{p} that projects to 2D image points \boldsymbol{x}_{j} in each of the cameras.
* To recover the point \boldsymbol{p}, we seek the 3D point that comes closest to the set of rays passing through each camera centre \boldsymbol{c}_{j} and each 2D image projection \boldsymbol{x}_{j}.
* In other words, we seek the \boldsymbol{p} that minimizes

$$
\left\|\boldsymbol{c}_{j}+d_{j} \hat{\boldsymbol{v}}_{j}-\boldsymbol{p}\right\|^{2}
$$

where $\hat{\boldsymbol{v}}_{j}=\mathcal{N}\left(\boldsymbol{R}_{j}^{-1} \boldsymbol{K}_{j}^{-1} \boldsymbol{x}_{j}\right)$

$$
\left\|\boldsymbol{c}_{j}+d_{j} \hat{\boldsymbol{v}}_{j}-\boldsymbol{p}\right\|^{2}
$$

* Let \boldsymbol{q}_{j} represent the point on the j th ray lying closest to $\boldsymbol{p}: \boldsymbol{q}_{j}=\boldsymbol{c}_{j}+d_{j} \hat{\boldsymbol{v}}_{j}$
* Observe that at $\boldsymbol{q}_{j}, d_{j}=\hat{\boldsymbol{v}}_{j} \cdot\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)$.
* Thus $\boldsymbol{q}_{j}=\boldsymbol{c}_{j}+\left(\hat{\boldsymbol{v}}_{j} \hat{\boldsymbol{v}}_{j}^{T}\right)\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)=\boldsymbol{c}_{j}+\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)_{\|}$,
where $\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)_{\|}$is the projection of $\boldsymbol{p}-\boldsymbol{c}_{j}$ onto $\hat{\boldsymbol{v}}_{j}$.
* and the squared deviation between \boldsymbol{p} and $\boldsymbol{q}_{\mathrm{j}}$ is

$$
r_{j}^{2}=\left\|\left(\boldsymbol{I}-\hat{\boldsymbol{v}}_{j} \hat{\boldsymbol{v}}_{j}^{T}\right)\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)\right\|^{2}=\left\|\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)_{\perp}\right\|^{2} .
$$

* Minimizing the sum of squares over all cameras yields

$$
\boldsymbol{p}=\left[\sum_{j}\left(\boldsymbol{I}-\hat{\boldsymbol{v}}_{j} \hat{\boldsymbol{v}}_{j}^{T}\right)\right]^{-1}\left[\sum_{j}\left(\boldsymbol{I}-\hat{\boldsymbol{v}}_{j} \hat{\boldsymbol{v}}_{j}^{T}\right) \boldsymbol{c}_{j}\right]
$$

End of Lecture Nov 28, 2018

2D Deviations

$r_{j}^{2}=\left\|\left(\boldsymbol{I}-\hat{\boldsymbol{v}}_{j} \hat{\boldsymbol{v}}_{j}^{T}\right)\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)\right\|^{2}=\left\|\left(\boldsymbol{p}-\boldsymbol{c}_{j}\right)_{\perp}\right\|^{2}$.

* Note that this solution minimizes deviation in 3D space, whereas the primary error is introduced by mislocalization of the 2 D points \boldsymbol{x}_{j} in the images.
* If this image localization error is modelled as zero-mean iid Gaussian, it is optimal to minimize the residual between the image points and the reprojections of the estimated 3D points, given by

$$
\begin{aligned}
& x_{j}=\frac{p_{00}^{(j)} X+p_{01}^{(j)} Y+p_{02}^{(j)} Z+p_{03}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W} \\
& y_{j}=\frac{p_{10}^{(j)} X+p_{11}^{(j)} Y+p_{12}^{(j)} Z+p_{13}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W}
\end{aligned}
$$

* where the $p_{i j}$ are the parameters of the known projection matrices.

Homogenous Solution

$$
\begin{aligned}
x_{j} & =\frac{p_{00}^{(j)} X+p_{01}^{(j)} Y+p_{02}^{(j)} Z+p_{03}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W} \\
y_{j} & =\frac{p_{10}^{(j)} X+p_{11}^{(j)} Y+p_{12}^{(j)} Z+p_{13}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W}
\end{aligned}
$$

* Note that we have used homogeneous coordinates for the 3D point here: we seek to estimate X, Y, Z, W.
* Multiplying through by the denominator, this becomes a homogeneous problem, solvable through our two-stage method:
- DLT: Use SVD to obtain a linear algebraic solution as an initial guess
- Non-linear least squares: Iterative minimization of squared reprojection error using Levenberg-Marquardt to obtain a maximum likelihood solution

Inhomogeneous Solution

$x_{j}=\frac{p_{00}^{(j)} X+p_{01}^{(j)} Y+p_{02}^{(j)} Z+p_{03}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W}$
$y_{j}=\frac{p_{10}^{(j)} X+p_{11}^{(j)} Y+p_{12}^{(j)} Z+p_{13}^{(j)} W}{p_{20}^{(j)} X+p_{21}^{(j)} Y+p_{22}^{(j)} Z+p_{23}^{(j)} W}$

* We could instead have used augmented coordinates for the 3 D world point $(\mathrm{W}=1)$, thus obtaining a regular linear least squares problem $(\boldsymbol{A p}=\boldsymbol{b})$.
* However this system becomes poorly conditioned for distant objects.

* Triangulation
* Two-Frame Structure from Motion

Structure from Motion (SLAM)

* Pose Estimation and Geometric Camera Calibration:
- Given known 3D scene points and 2D correspondences in one image, compute the camera pose and intrinsic parameters.
* Triangulation:
- Given 2D correspondences over multiple images and known camera pose, compute the unknown 3D scene points
* Structure from Motion, aka Simultaneous Localization \& Mapping (SLAM):
- Given 2D correspondences over multiple images, compute the unknown 3D scene points and unknown camera pose (motion)

Two-Frame Structure from Motion

* Consider a point \boldsymbol{p} seen from two cameras (Camera 0 and Camera 1), related by a rigid transformation $(\boldsymbol{R}, \boldsymbol{t})$.
* wlog, we can set $\boldsymbol{c}_{0}=0$ and $\boldsymbol{R}_{0}=\boldsymbol{I}$.
* In other words, we align the world frame with Camera 0.

Let $\boldsymbol{p}_{0}=d_{0} \hat{\boldsymbol{x}}_{0}$ and $\boldsymbol{p}_{1}=d_{1} \hat{\boldsymbol{x}}_{1}$ represent the location of 3 D world point \boldsymbol{p} in the coordinate systems of Camera 0 and 1 , respectively.

Here $\hat{\boldsymbol{x}}_{0}=\boldsymbol{K}^{-1} \boldsymbol{x}_{0}$ and $\hat{\boldsymbol{x}}_{1}=\boldsymbol{K}^{-1} \boldsymbol{x}_{1}$ are the ray direction vectors in their respective camera coordinate systems.

The Epipolar Constraint

* Then we have that
$d_{1} \hat{\boldsymbol{x}}_{1}=\boldsymbol{p}_{1}=\boldsymbol{R} \boldsymbol{p}_{0}+\boldsymbol{t}=\boldsymbol{R}\left(d_{0} \hat{\boldsymbol{x}}_{0}\right)+\boldsymbol{t}$
Taking the cross-product of both sides with \boldsymbol{t} yields
$d_{1}[\boldsymbol{t}]_{\times} \hat{\boldsymbol{x}}_{1}=d_{0}[\boldsymbol{t}]_{\times} \boldsymbol{R} \hat{\boldsymbol{x}}_{0}$
Now taking the dot-product of both sides with $\hat{\boldsymbol{x}}_{1}$ yields
$d_{0} \hat{\boldsymbol{x}}_{1}^{T}\left([\boldsymbol{t}]_{\times} \boldsymbol{R}\right) \hat{\boldsymbol{x}}_{0}=d_{1} \hat{\boldsymbol{x}}_{1}^{T}[\boldsymbol{t}]_{\times} \hat{\boldsymbol{x}}_{1}=0$

We therefore arrive at the basic epipolar constraint

$$
\hat{\boldsymbol{x}}_{1}^{T} \boldsymbol{E} \hat{\boldsymbol{x}}_{0}=0,
$$

where

$$
\boldsymbol{E}=[\boldsymbol{t}]_{\times} \boldsymbol{R}
$$

is called the essential matrix (Longuet-Higgins 1981).

The Epipolar Constraint

* Perhaps more intuitively, note that the vector connecting the camera centres and the rays connecting the camera centres to the observed 3D point \boldsymbol{p} must be coplanar.
$\boldsymbol{t}_{j}=-\boldsymbol{R}_{j} \boldsymbol{c}_{j} \rightarrow \boldsymbol{c}_{j}=-\boldsymbol{R}_{j}^{-1} \boldsymbol{t}_{j}$
Thus $\boldsymbol{c}_{1}-\boldsymbol{c}_{0}=-\boldsymbol{R}_{1}^{-1} \boldsymbol{t}_{1}=-\boldsymbol{R}^{-1} \boldsymbol{t}$
* For these three vectors to be coplanar, their triple product must be zero:

$$
\begin{aligned}
& \left(\boldsymbol{c}_{1}-\boldsymbol{c}_{0}\right) \cdot\left(\left(\boldsymbol{R}_{1}^{-1} \hat{\boldsymbol{x}}_{1}\right) \times\left(\boldsymbol{R}_{0}^{-1} \hat{\boldsymbol{x}}_{0}\right)\right) \\
= & -\left(\boldsymbol{R}^{-1} \boldsymbol{t}\right) \cdot\left(\left(\boldsymbol{R}^{-1} \hat{\boldsymbol{x}}_{1}\right) \times \hat{\boldsymbol{x}}_{0}\right) \\
= & -\boldsymbol{t} \cdot\left(\hat{\boldsymbol{x}}_{1} \times \boldsymbol{R} \hat{\boldsymbol{x}}_{0}\right) \\
= & \hat{\boldsymbol{x}}_{1} \cdot\left(\boldsymbol{t} \times \boldsymbol{R} \hat{\boldsymbol{x}}_{0}\right) \\
= & \hat{\boldsymbol{x}}_{1}^{\top}\left([\boldsymbol{t}]_{\times} \boldsymbol{R}\right) \hat{\boldsymbol{x}}_{0}=0
\end{aligned}
$$

Epipolar Lines

$\hat{\boldsymbol{x}}_{1}^{\top} \boldsymbol{E} \hat{\boldsymbol{x}}_{0}=0$
The essential matrix \boldsymbol{E} maps a point $\hat{\boldsymbol{x}}_{0}$ in Image 0 to a line $\boldsymbol{l}_{1}=\boldsymbol{E} \hat{\boldsymbol{x}}_{0}$ in Image 1 , since $\hat{\boldsymbol{x}}_{1}^{\top} \boldsymbol{l}_{1}=0$. By taking the transpose, we obtain a similar line $\boldsymbol{l}_{0}=\boldsymbol{E}^{\top} \hat{\boldsymbol{x}}_{1}$ in Image 0 .

* These are the epipolar lines, defining the 1D subspaces in which correspondences must lie.
* Note that \boldsymbol{l}_{l} contain a point \boldsymbol{e}_{l} which is the projection of \boldsymbol{c}_{0} onto Image 1.
* Similarly, $\boldsymbol{l}_{\boldsymbol{l}}$ contain a point $\boldsymbol{e}_{\boldsymbol{0}}$ which is the projection of $\boldsymbol{c}_{\boldsymbol{l}}$ onto Image 0 .
* These are the epipoles.

Estimating the Essential Matrix

$\hat{\boldsymbol{x}}_{1}^{\top} \boldsymbol{E} \hat{\boldsymbol{x}}_{0}=0 \rightarrow \overline{\boldsymbol{x}}_{1}^{\top} \boldsymbol{E} \overline{\boldsymbol{x}}_{0}=0$
where $\overline{\boldsymbol{x}}_{1}$ and $\overline{\boldsymbol{x}}_{2}$ are the augmented representations of \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.

* Thus each pair of corresponding image measurements in Image 0 and Image 1 generates a homogenous equation in the elements of \boldsymbol{E} :

$x_{i 0} x_{i 1} e_{00}$	$+$	$y_{i 0} x_{i 1} e_{01}$	$+$	$x_{i 1} e_{02}$	$+$
$x_{i 0} y_{i 1} e_{00}$	$+$	$y_{i 0} y_{i 1} e_{11}$	$+$	$y_{i 1} e_{12}$	
$x_{i 0} e_{20}$	$+$	$y_{i 0} e_{21}$	$+$	e_{22}	

* Given at least 8 pairs of corresponding points, we can estimate \boldsymbol{E} (up to a scale factor) using SVD.
* Generally, >8 pairs of points will lead to more accurate results due to noise averaging.
* However, some of these terms will generally be overweighted, particularly the bilinear terms, where one or both of the coordinates is large.
* Can reduce this effect by applying linear transforms \boldsymbol{T}_{0} and \boldsymbol{T}_{1} to shift and scale points to have zero mean and unit variance:
$\tilde{\boldsymbol{x}}_{i 0}=\boldsymbol{T}_{0} \hat{\boldsymbol{x}}_{i 0}$ and $\tilde{\boldsymbol{x}}_{i 1}=\boldsymbol{T}_{1} \hat{\boldsymbol{x}}_{i 1}$ such that $\mathbb{E}\left[\tilde{\boldsymbol{x}}_{i j}\right]=\boldsymbol{0}$ and $\mathbb{E}\left[x_{i j}^{2}\right]+\mathbb{E}\left[y_{i j}^{2}\right]=2$
Now after solving for the essential matrix $\tilde{\boldsymbol{E}}$ corresponding to these transformed points, we can recover the essential matrix \boldsymbol{E} for the original points: $\boldsymbol{E}=\boldsymbol{T}_{1}^{\top} \tilde{\boldsymbol{E}} \boldsymbol{T}_{0}$

Estimating the Translation

$\boldsymbol{E}=\left([\boldsymbol{t}]_{x} \boldsymbol{R}\right)$

* The absolute distance between the two cameras can never be recovered from image measurements alone.
* However, we can recover the direction $\hat{\boldsymbol{t}}$ of the translation.
* Observe that the essential matrix is singular:

$$
\boldsymbol{t}^{\top} \boldsymbol{E}=0
$$

Thus $\hat{\boldsymbol{t}}$ is the last column of the \boldsymbol{U} matrix in an SVD decomposition of \boldsymbol{E} :
$\boldsymbol{E}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$

Estimating the Rotation

Recall that the cross-product operator $[\hat{\boldsymbol{t}}]_{\times}$(2.32) projects a vector onto a set of orthogonal basis vectors that include $\hat{\boldsymbol{t}}$, zeros out the $\hat{\boldsymbol{t}}$ component, and rotates the other two by 90°,

$$
[\hat{\boldsymbol{t}}]_{\times}=\boldsymbol{S} \boldsymbol{Z} \boldsymbol{R}_{90^{\circ}} \boldsymbol{S}^{T}=\left[\begin{array}{lll}
\boldsymbol{s}_{0} & \boldsymbol{s}_{1} & \hat{\boldsymbol{t}}
\end{array}\right]\left[\begin{array}{ccc}
1 & & \tag{7.21}\\
& 1 & \\
& & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & \\
1 & 0 & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{s}_{0}^{T} \\
\boldsymbol{s}_{1}^{T} \\
\hat{\boldsymbol{t}}^{T}
\end{array}\right]
$$

where $\hat{\boldsymbol{t}}=\boldsymbol{s}_{0} \times \boldsymbol{s}_{1}$

* Using this expression together with an SVD decomposition of the essential matrix \boldsymbol{E} yields $\boldsymbol{E}=[\hat{t}]_{\times} \boldsymbol{R}=\boldsymbol{S} \boldsymbol{Z} \boldsymbol{R}_{90^{\circ}} \boldsymbol{S}^{T} \boldsymbol{R}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$
* from which we can conclude that $\boldsymbol{S}=\boldsymbol{U}$.

Since \boldsymbol{E} is singular but in general of Rank $2, \Sigma=\boldsymbol{Z}$, and thus

$$
\boldsymbol{R}_{90^{\circ}} \boldsymbol{U}^{T} \boldsymbol{R}=\boldsymbol{V}^{T} \longmapsto \boldsymbol{R}=\boldsymbol{U} \boldsymbol{R}_{90^{\circ}}^{T} \boldsymbol{V}^{T}
$$

* We only know \boldsymbol{E} and \boldsymbol{t} up to a sign.
* Thus we have to consider 4 possible candidates for \boldsymbol{R} given by:

$$
\boldsymbol{R}= \pm \boldsymbol{U} \boldsymbol{R}_{ \pm 90^{\circ}}^{T} \boldsymbol{V}^{T}
$$

Chirality

$\boldsymbol{R}= \pm \boldsymbol{U} \boldsymbol{R}_{ \pm 90^{\circ}}^{T} \boldsymbol{V}^{T}$

* First we can restrict our attention to the two solutions (chiralities) for which $|\boldsymbol{R}|=1$ (and thus for which \boldsymbol{R} represents a valid rotation).
* To select between these remaining two solutions, we pair with the two possible translation vectors $\pm \boldsymbol{t}$, and use triangulation to reconstruct the 3D locations of the points given the hypothesized rotation and translation.
* Now we select the hypothesized ($\boldsymbol{R}, \boldsymbol{t})$ pair that generates the largest number of 3D points lying in front of both cameras.

Building Rome in a Day

Agarwal et al, 2009

Outline

* Triangulation
* Two-Frame Structure from Motion

