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7.1-7.2 3D - Motion
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¢ Triangulation

* Two-Frame Structure from Motion
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Structure from Motion e

+* Pose Estimation and Geometric Camera Calibration:

Given known 3D scene points and 2D correspondences in one image, compute the camera
pose and intrinsic parameters.

¢ Triangulation:

Given 2D correspondences over multiple images and known camera pose, compute the
unknown 3D scene points
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Triangulation @

¢ Definition. The 1dentification of a 3D point from a set of corresponding 2D image
locations, from known camera poses.

< Consider multiple cameras with projection matrices P;: P, = K, [R 1t j]
¢ Let ¢j represent the 3D camera centre for camera j, in world coordinates.

«* Observe that t = —R.c.

JJ

% Now consider a 3D point p that projects to 2D 1mage points x; in each of the cameras.

¢ To recover the point p, we seek the 3D point that comes closest to the set of rays
passing through each camera centre ¢; and each 2D 1mage projection x;.

¢ In other words, we seek the p that minimizes
A 2
lej +djv; — pl|

% where v, :N(Rj_lKj_lmj)
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lej +djo; — plf?

< Let gj represent the point on the jth ray lying closestto p: q. =c,+d v,

< Observe thatat g, d; = v; - (p — ¢;).

«* Thus q; = Cj + (@3’5?)(2? — cj) = Cj T+ (p - cj)||7

where ( p-c; )” is the projection of p—¢; onto .

¢ and the squared deviation between p and g; 1s

2

ry =11 =997 )(p — ¢;)II” =

I(p—ej)Ll®

% Minimizing the sum of squares over all cameras yields

p= [Z(I - ’ﬁjﬁ;‘-ﬁ)} [Z(I - @j@?)cj}

J
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End of Lecture
Nov 28, 2018
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2D Deviations = nEE

2= (I —9;90)(p—¢)|> = (P —¢)L|*

¢ Note that this solution minimizes deviation in 3D space, whereas the primary error 1s
introduced by mislocalization of the 2D points x; in the images.

¢ If this image localization error 1s modelled as zero-mean 11d Gaussian, it is optimal to
minimize the residual between the image points and the reprojections of the estimated
3D points, given by
v - pgjo)X —l—p(j)Y _|_p(J)Z_|_p(J)W
i =
P50 X +p5)Y + piy Z + W

ZL’j —

/

*» where the p;; are the parameters of the known projection matrices.

EECS 4422/5323 Computer Vision 8 J. Elder



UUUUU

RSITE

Homogenous Solution ¢

poy X + Y + pih Z + pil W
Py X +pSY + i Z + pSw
P X + Y + il 2 + pi W

y;j = -
: pSo X +pS)Y + i Z + pSw

7/

¢ Note that we have used homogeneous coordinates for the 3D point here: we seek to
esttmate X, Y, Z, W.

7/

% Multiplying through by the denominator, this becomes a homogeneous problem,
solvable through our two-stage method:

DLT: Use SVD to obtain a linear algebraic solution as an initial guess

Non-linear least squares: Iterative minimization of squared reprojection error using
Levenberg-Marquardt to obtain a maximum likelithood solution
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Inhomogeneous Solution =

poy X + Y + pih Z + pil W
Py X +pSY + i Z + pSw
P X + Y + il 2 + pi W

y; = -
: pSo X +pS)Y + i Z + pSw

/

** We could instead have used augmented coordinates for the 3D world point (W = 1),
thus obtaining a regular linear least squares problem (Ap = b).

R/

 However this system becomes poorly conditioned for distant objects.
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¢ Triangulation

< Two-Frame Structure from Motion
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Structure from Motion (SLAM) B

+* Pose Estimation and Geometric Camera Calibration:

Given known 3D scene points and 2D correspondences in one image, compute the camera
pose and intrinsic parameters.

¢ Triangulation:

Given 2D correspondences over multiple images and known camera pose, compute the
unknown 3D scene points

R/

% Structure from Motion, aka Simultaneous Localization & Mapping (SLAM):

Given 2D correspondences over multiple images, compute the unknown 3D scene points
and unknown camera pose (motion)
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Two-Frame Structure from Motion T

¢ Consider a point p seen from two cameras (Camera 0 and Camera 1), related by a
rigid transformation (R, 7).

** wlog, we can set co=0 and Rp=1.

¢ In other words, we align the world frame with Camera 0.

Let p, =d,x, and p, = d,x, represent the location of 3D world point p

in the coordinate systems of Camera O and 1, respectively.

Here x, = K™'x, and x, = K™ 'x, are the ray direction vectors in their

respective camera coordinate systems. a P

epipolar plane

- | epipolar fv: RN

(R.7)
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The Epipolar Constraint =

** Then we have that
dix; = p, = Rp,+t= R(doio) +t

Taking the cross-product of both sides with ¢ yields

Now taking the dot-product of both sides with ¥, yields
doi ([t]x R)&o = di&] [t]x @1 = 0

We therefore arrive at the basic epipolar constraint

/\T A
x1 Exy=0,

where
1s called the essential matrix (Longuet-Higgins 1981). X XK
A4 < epipolar f’; \ ll \
y lines N
Co . €0 ] / = Ci
~ v

(R.?)
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The Epipolar Constraint b

¢ Perhaps more intuitively, note that the vector connecting the camera centres and the
rays connecting the camera centres to the observed 3D point p must be coplanar.

t.=—Rc,—>c,=-Rt
Thus¢,—c,=—R't, =—R't
¢ For these three vectors to be coplanar, their triple product must be zero:
(C1 _co)'(( flﬁl)X(Ro_l'%o))
——(R0) (R %)<,

=—t-(%, X Rx,)

X, -(£X Rx,) AP
& ([1], R)%, =0 o

epip@i&r plane \
0 lines - N
Coy” N _\€o M
T

(R.?)
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Epipolar Lines @

x, Ex,=0
The essential matrix E maps a point X, in Image O to a line [, = Ex, in Image 1, since x, [, = 0.

By taking the transpose, we obtain a similar line I, = E' X, in Image 0.

¢ These are the epipolar lines, defining the 1D subspaces in which correspondences
must lie.

¢ Note that /; contain a point e; which is the projection of ¢y onto Image 1.

R/

¢ Similarly, /p contain a point ey which 1s the projection of ¢; onto Image 0.

*» These are the epipoles.

epipolar plane -\ ‘»

4 X . epipolar f; l1
y- lines AN
Cofe° . NE ) / A1

(R.7)
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Estimating the Essential Matrix

x, Ex,=0—>X,Ex,=0

where X, and x, are the augmented representations of x, and x, .

¢ Thus each pair of corresponding image measurements in Image 0 and Image 1
generates a homogenous equation in the elements of E:

Ti0T;1€00 T YioT;1€01 T  Ti1€o2 +
TioYi1t€o0o T YioYil€11 T+  Yi1€i2 T+
Tip€20 + Yiot21 + e = 0

¢ Given at least 8 pairs of corresponding points, we can estimate E (up to a scale factor)
using SVD.

¢ Generally, >8 pairs of points will lead to more accurate results due to noise averaging.

* However, some of these terms will generally be overweighted, particularly the
bilinear terms, where one or both of the coordinates 1s large.

¢ Can reduce this effect by applying linear transforms 7Ty and T to shift and scale points
to have zero mean and unit variance:

%,=T%, and ¥, =T,%, such that | ¥, |=0 and E| x; |+E| y; |=2
Now after solving for the essential matrix E corresponding to these transformed points,

we can recover the essential matrix E for the original points: E =T, ET,
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Estimating the Translation =

E:([t]XR)

¢ The absolute distance between the two cameras can never be recovered from image
measurements alone.

** However, we can recover the direction ¢ of the translation.

R/

% Observe that the essential matrix 1s singular:
t'E=0

Thus ¢ is the last column of the U matrix in an SVD decomposition of E:
E =UxvV'
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Estimating the Rotation @ =

Recall that the cross-product operator [ﬂ « (2.32) projects a vector onto a set of orthogonal
basis vectors that include £, zeros out the £ component, and rotates the other two by 90°,

1 0 -1 st
[ﬂx:SZRgooST:[SO s t‘} 1 10 sT |, 721
~T
0 1| |

where t = s, X §,

 Using this expression together with an SVD decomposition of the essential matrix E yields
E=[{|lyR=8SZRypS"R=UXZV?’
% from which we can conclude that § = U.

Since E 1s singular but in general of Rank 2, > = Z, and thus
Ry UTR = V7 welii R — UR! .V’

* We only know E and ¢ up to a sign.

¢ Thus we have to consider 4 possible candidates for R given by:

R=+URL, .V’
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Chlrallty suivensine

R=+UR., .V’
¢ First we can restrict our attention to the two solutions (chiralities) for which |[R| =1
(and thus for which R represents a valid rotation).

/

 To select between these remaining two solutions, we pair with the two possible
translation vectors ¢, and use triangulation to reconstruct the 3D locations of the
points given the hypothesized rotation and translation.

* Now we select the hypothesized (R, ) pair that generates the largest number of 3D
points lying in front of both cameras.
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Building Rome in a Day
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Agarwal et al, 2009
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¢ Triangulation

* Two-Frame Structure from Motion
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