
EECS 4422/5323 Computer Vision J. Elder

6.1 2D Feature-Based Alignment

!1

EECS 4422/5323 Computer Vision J. Elder

Outline

!2

❖ Linear Alignment Problems

❖ Non-Linear Alignment Problems

EECS 4422/5323 Computer Vision J. Elder

Outline

!3

❖ Linear Alignment Problems

❖ Non-Linear Alignment Problems

EECS 4422/5323 Computer Vision J. Elder

Global Parametric Spatial Transformations

!4

❖ We assume a set of matched 2D points in two images of the same object or scene.

❖ How can we determine the global parametric spatial transformation f that relates them?

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

4.1 Points and patches 221

Figure 4.15 Maximally stable extremal regions (MSERs) extracted and matched from a
number of images (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier.

Figure 4.16 Feature matching: how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish correct correspon-
dences?

are therefore invariant to both affine geometric and photometric (linear bias-gain or smooth
monotonic) transformations (Figure 4.15). If desired, an affine coordinate frame can be fit to
each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-
ery year at major computer vision conferences (Xiao and Shah 2003; Koethe 2003; Carneiro
and Jepson 2005; Kenney, Zuliani, and Manjunath 2005; Bay, Tuytelaars, and Van Gool 2006;
Platel, Balmachnova, Florack et al. 2006; Rosten and Drummond 2006). Mikolajczyk, Tuyte-
laars, Schmid et al. (2005) survey a number of popular affine region detectors and provide
experimental comparisons of their invariance to common image transformations such as scal-
ing, rotations, noise, and blur. These experimental results, code, and pointers to the surveyed
papers can be found on their Web site at http://www.robots.ox.ac.uk/⇠vgg/research/affine/.

Of course, keypoints are not the only features that can be used for registering images.
Zoghlami, Faugeras, and Deriche (1997) use line segments as well as point-like features to
estimate homographies between pairs of images, whereas Bartoli, Coquerelle, and Sturm
(2004) use line segments with local correspondences along the edges to extract 3D structure
and motion. Tuytelaars and Van Gool (2004) use affine invariant regions to detect corre-
spondences for wide baseline stereo matching, whereas Kadir, Zisserman, and Brady (2004)
detect salient regions where patch entropy and its rate of change with scale are locally max-
imal. Corso and Hager (2005) use a related technique to fit 2D oriented Gaussian kernels
to homogeneous regions. More details on techniques for finding and matching curves, lines,
and regions can be found later in this chapter.

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

EECS 4422/5323 Computer Vision J. Elder

Least Squares

!5

❖ If f in fact captures the true relationship between the matched points aside from
additive Gaussian iid noise, then the maximum likelihood solution is to minimize the
sum of squared residuals:

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

EECS 4422/5323 Computer Vision J. Elder

Linear Transformations

!6

❖ For some simple global transformations, the amount of motion Δx = x’ - x is a linear
function of the parameters p, mediated by the Jacobian J(x) of the transformation f
with respect to the motion parameters p:

J(x) = ∂ f (x)
∂p

=

∂ ′x
∂p1

∂ ′x
∂p2

!
∂ ′x
∂pn

∂ ′y
∂p1

∂ ′y
∂p2

!
∂ ′y
∂pn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

where

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

Operate on augmented vector x

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Nov 12, 2018

!7

EECS 4422/5323 Computer Vision J. Elder

Linear Regression Framework

!8

❖ To minimize, we set the derivative with respect to the parameters p to 0, yielding

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

and

b = JT xi()Δxi
i
∑

EECS 4422/5323 Computer Vision J. Elder

Linear Regression Framework

!9

❖ Observations:

๏ A is symmetric.

๏ A is non-negative definite

๏ Is A positive definite?

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

b = JT xi()Δxi
i
∑

Consider a non-zero parameter vector p.

Note that each term p⊤Ai p of p⊤Ap is non-negative:

p⊤Ai p = p
⊤J⊤ xi()J xi() p = J xi() p 2

p⊤Ap > 0 as long as at least one term p⊤Ai p ≠ 0↔ J xi() p ≠ 0.
Thus A is positive definite as long as J xi() has full rank for at least one point xi .

EECS 4422/5323 Computer Vision J. Elder

Rank of the Jacobian

!10

❖ This will generally be true if:

๏ The parameters pj are selected to control different aspects of the transformation

๏ A diversity of points xi are included

A is positive definite as long as J xi() has full rank for at least one point xi .

J(xi) =
∂ f (xi)
∂p

=

∂ ′xi
∂p1

∂ ′xi
∂p2

!
∂ ′xi
∂pn

∂ ′yi
∂p1

∂ ′yi
∂p2

!
∂ ′yi
∂pn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

In other words, the influence of the parameters pj on the point xi must be linearly independent.

EECS 4422/5323 Computer Vision J. Elder

Linear Regression Framework: Solution

!11

❖ A is symmetric and positive definite.

❖ Under these conditions, the best approach is usually Cholesky decomposition:

๏ ~twice as fast as LU decomposition

๏ O(n3) to compute L, where n is the size of A.

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

b = JT xi()Δxi
i
∑

A = LL⊤

where L is lower triangular with positive diagonal entries.
MATLAB function chol(A)

EECS 4422/5323 Computer Vision J. Elder

Linear Regression Framework: Solution

!12

❖ First solve for y using forward substitution.

❖ Then solve for p using backward substitution.

❖ O(n), where n is the size of A.

where L is lower triangular with positive diagonal entries.

A = LL⊤
Ap = b

LL⊤p = b Ly = b, where y ! L⊤p

EECS 4422/5323 Computer Vision J. Elder

Linear Regression Framework: MATLAB

!13

❖ mldivide is very smart

๏ It tests whether A is symmetric and positive definite.

๏ If it is, it uses a Cholesky solver.

Ap = b

MATLAB mldivide: p = A \ b

EECS 4422/5323 Computer Vision J. Elder

Example

!14

314 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 6.3 A simple panograph consisting of three images automatically aligned with a
translational model and then averaged together.

�2
n

(8.44). Weighting each squared residual by its inverse covariance ⌃
�1
i

= ��2
n

Ai (which
is called the information matrix), we obtain

ECWLS =

X

i

krik2
⌃�1

i

=

X

i

rT

i
⌃
�1
i

ri =

X

i

��2
n

rT

i
Airi. (6.11)

6.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and
scaled before being blended with simple averaging (Figure 6.3). This process mimics the
photographic collages created by artist David Hockney, although his compositions use an
opaque overlay model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic
effect.4 However, it is also possible to use feature matching and alignment techniques to
perform the registration automatically (Nomura, Zhang, and Nayar 2007; Zelnik-Manor and
Perona 2007).

Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible. Let tj be the location of the jth image coordinate frame
in the global composite frame and xij be the location of the ith matched feature in the jth
image. In order to align the images, we wish to minimize the least squares error

EPLS =

X

ij

k(tj + xij)� xik2, (6.12)

4 http://www.flickr.com/groups/panography/.

EECS 4422/5323 Computer Vision J. Elder

Outline

!15

❖ Linear Alignment Problems

❖ Non-Linear Alignment Problems

EECS 4422/5323 Computer Vision J. Elder

Non-Linear Alignment Problems

!16

❖ Often the displacement is not in fact linear in the parameters.

❖ Example: Rigid 2D transformation (translation + rotation):

๏ Note that the Jacobian is itself a function of the rotation parameter 𝜃

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment

!17

❖ Non-linear alignment problems can be solved iteratively.

❖ Suppose that we start with a guess at the parameters p.

❖ We can now formulate an estimate of the error that would result if we took a step Δp
from this initial guess:

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

where again

where ri ! ′xi − f xi; p()

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - The Gauss-Newton Method

!18

❖ Taking a first derivative with respect to Δp and setting it to zero, we obtain

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

AΔp = b

❖ This can again be solved by Cholesky decomposition (MATLAB \).

❖ This is called the Gauss-Newton method.

❖ But since our linear approximation only applies locally, this Δp may step past the
minimum and is thus not guaranteed to lower the error.

❖ Solution 1. reduce the step size

746 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

The more general case where each individual measurement component can have different
noise level, as is the case in estimating essential and fundamental matrices (Section 7.2), is
called the heteroscedastic errors-in-variable (HEIV) model and is discussed by Matei and
Meer (2006).

A.3 Non-linear least squares
In many vision problems, such as structure from motion, the least squares problem formulated
in (A.23) involves functions f(xi;p) that are not linear in the unknown parameters p. This
problem is known as non-linear least squares or non-linear regression (Björck 1996; Madsen,
Nielsen, and Tingleff 2004; Nocedal and Wright 2006). It is usually solved by iteratively re-
linearizing (A.23) around the current estimate of p using the gradient derivative (Jacobian)
J = @f/@p and computing an incremental improvement �p.

As shown in Equations (6.13–6.17), this results in

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (A.45)

⇡
X

i

kJ(xi;p)�p� rik2, (A.46)

where the Jacobians J(xi;p) and residual vectors ri play the same role in forming the normal
equations as ai and bi in (A.28).

Because the above approximation only holds near a local minimum or for small values
of �p, the update p p + �p may not always decrease the summed square residual error
(A.45). One way to mitigate this problem is to take a smaller step,

p p + ↵�p, 0 < ↵  1. (A.47)

A simple way to determine a reasonable value of ↵ is to start with 1 and successively halve
the value, which is a simple form of line search (Al-Baali and Fletcher. 1986; Björck 1996;
Nocedal and Wright 2006).

Another approach to ensuring a downhill step in error is to add a diagonal damping term
to the approximate Hessian

C =

X

i

JT
(xi)J(xi), (A.48)

i.e., to solve
[C + � diag(C)]�p = d, (A.49)

where
d =

X

i

JT
(xi)ri, (A.50)

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - Levenberg-Marquardt

!19

❖ Solution 2. Levenberg-Marquardt (damped Gauss-Newton)

๏ Add a diagonal damping term:

๏ L-M can be seen as a mixture of Gauss-Newton and gradient descent.

๏ 𝜆 adjusted according to how fast error is decreasing

✦ Slow: still far from minimum - increase 𝜆 (upweight gradient descent)

✦ Fast: getting close to minimum - reduce 𝜆 (upweight Gauss-Newton)

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).A+ λI()Δp = b

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - Levenberg-Marquardt

!20

❖ Solution 2. Levenberg-Marquardt (damped Gauss-Newton)

❖ Consider the gradient descent term:

❖ This will shift the parameters in the direction that reduces the residual ri.

❖ But the size of the shift depends on the magnitude of the gradient and the residual:

๏ A larger residual ri will result in a larger shift in the parameters p.

๏ A larger gradient ||J|| will result in a larger shift in the parameters p.

❖ This is not necessarily what we want.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

A+ λI()Δp = b

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

Δp = 1
λ

J⊤ xi()ri
i
∑

Parameter pj

Ke
yp

oi
nt

 lo
ca

tio
n

x i

Optimal solution

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - Levenberg-Marquardt

!21

❖ Gradient descent term:

❖ Consider a simple transformation of the
x coordinate with only one parameter p:

❖ We wish to select a value for 𝜆 that we
predict will close the gap 𝛥x:

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

Δp = 1
λ

J⊤ xi()ri
i
∑

Δp = 1
λ

dxi
dp

Δx
i
∑

λ ∝ dxiΔx
dpΔpi

∑ ≅ dxi
dp

⎛
⎝⎜

⎞
⎠⎟

2

i
∑

Parameter pj

Ke
yp

oi
nt

 lo
ca

tio
n

x i

𝛥x

𝛥p

Optimal solution

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - Levenberg-Marquardt

!22

❖ Generalizing to multiple dimensions:

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

λ ∝ dxiΔx
dpΔpi

∑ ≅ dxi
dp

⎛
⎝⎜

⎞
⎠⎟

2

i
∑

λ ∝ diag A() =

∂x
∂p1

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂y
∂p1

⎛
⎝⎜

⎞
⎠⎟

2

0 ! 0

0 ∂x
∂p2

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂y
∂p2

⎛
⎝⎜

⎞
⎠⎟

2

0 0

! " # !

0 0 "
∂x
∂pn

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂y
∂pn

⎛
⎝⎜

⎞
⎠⎟

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Δp = 1
λ

dxi
dp

Δx
i
∑

EECS 4422/5323 Computer Vision J. Elder

Iterative Alignment - Levenberg-Marquardt

!23

❖ This reasoning led Marquardt to replace the identity matrix with diag(A):

❖ The diag(A) term serves to scale the gradient descent step appropriately given the
observed residual.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

A+ λI()Δp = b

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

A+ λdiag(A)()Δp = b

MATLAB:
options.Algorithm = 'levenberg-marquardt';
p = lsqnonlin(fun,p0,[],[],options);

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Nov 14, 2018

!24

EECS 4422/5323 Computer Vision J. Elder

Example 1: Rigid 2D Transformation

!25

❖ Initial guess - use linear similarity transform

❖ and now set

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

Transformation Parameters p Jacobian J(x;𝜃)

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

θ = arctan b
1+ a

EECS 4422/5323 Computer Vision J. Elder

Example 2. Projective 2D Transformation

!26

❖ Consider two images taken of the same planar scene, but from different vantages

❖ A 3x4 camera projection matrix relates the image points to the scene points for each
of the images.

408 15 Models for transformations

Figure 15.12 Transformations be-
tween images. Two cameras view
the same planar scene. The relations
between the 2D points on this plane
and the two images are captured by
the 3 ⇥ 3 transformation matrices
T1 and T2, respectively. It follows
that the transformation from the
first image to the points on the plane
is given by T�1. We can compute
the transformation T3 from the
first image to the second image by
transforming from the first image to
the plane and then transforming from
the plane to the second image, giving
the final result T3 = T2T

�1
1 .

Optical
center 1

Camera
plane 1

Camera
plane 2

Optical
center 2

PLANE
Plane in
world

�

2

4
x1

y1

1

3

5 =

2

4
�11 �12 �13

�21 �22 �23

�31 �32 �33

3

5

2

4
x2

y2

1

3

5 . (15.54)

The homogeneous coordinates represent 2D points as directions or rays in a 3D
space (figure 14.11). When we apply a homography to a set of 2D points, we can
think of this as applying a linear transformation (rotation, scaling, and shearing)
to a bundle of rays in 3D. The positions where the transformed rays strike the
plane at w = 1 determine the final 2D positions.

We could yield the same results by keeping the rays fixed and applying the
inverse transformation to the plane so that it cuts the rays in a di↵erent way.
Since any plane can be mapped to any other plane by a linear transformation, it
follows that the images created by cutting a ray bundle with di↵erent planes are
all related to one another by homographies (figure 15.13). In other words, the
images seen by di↵erent cameras with the pinhole in the same place are related
by homographies. So, for example, if a camera zooms (the focal length increases),
then the images before and after the zoom are related by a homography.

This relationship encompasses an important special case (figure 15.14). If the
Problem 15.10
Problem 15.11 camera rotates but does not translate, then the image plane still intersects the

same set of rays. It follows that the projected points x1 before the rotation and
the projected points x2 after the rotation are related by a homography. It can be
shown that the homography � mapping from image 1 to image 2 is given by

� = ⇤⌦2⇤
�1

, (15.55)

where ⇤ is the intrinsic matrix and ⌦2 is the rotation matrix that maps the co-
ordinate system of the second camera to the first. This relationship is exploited
when we stitch together images to form panoramas (section 15.7.2).

In conclusion, the homography maps between:

• points on a plane in the world and their positions in an image,

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

2D image projection

Intrinsic (calibration) matrix

Extrinsic (rotation + translation) matrix

Projection matrix

3D world point

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

EECS 4422/5323 Computer Vision J. Elder

Example 2. Projective 2D Transformation

!27

❖ For convenience, we can align the 3D world coordinate frame with the scene plane, so that
Z = 0 for all scene points.

❖ Under these conditions, projection to the image can be modelled by a 3 x 3 matrix
known as a homography:

❖ This means that the transformation of points between the two images is also a homography.408 15 Models for transformations

Figure 15.12 Transformations be-
tween images. Two cameras view
the same planar scene. The relations
between the 2D points on this plane
and the two images are captured by
the 3 ⇥ 3 transformation matrices
T1 and T2, respectively. It follows
that the transformation from the
first image to the points on the plane
is given by T�1. We can compute
the transformation T3 from the
first image to the second image by
transforming from the first image to
the plane and then transforming from
the plane to the second image, giving
the final result T3 = T2T

�1
1 .

Optical
center 1

Camera
plane 1

Camera
plane 2

Optical
center 2

PLANE
Plane in
world

�

2

4
x1

y1

1

3

5 =

2

4
�11 �12 �13

�21 �22 �23

�31 �32 �33

3

5

2

4
x2

y2

1

3

5 . (15.54)

The homogeneous coordinates represent 2D points as directions or rays in a 3D
space (figure 14.11). When we apply a homography to a set of 2D points, we can
think of this as applying a linear transformation (rotation, scaling, and shearing)
to a bundle of rays in 3D. The positions where the transformed rays strike the
plane at w = 1 determine the final 2D positions.

We could yield the same results by keeping the rays fixed and applying the
inverse transformation to the plane so that it cuts the rays in a di↵erent way.
Since any plane can be mapped to any other plane by a linear transformation, it
follows that the images created by cutting a ray bundle with di↵erent planes are
all related to one another by homographies (figure 15.13). In other words, the
images seen by di↵erent cameras with the pinhole in the same place are related
by homographies. So, for example, if a camera zooms (the focal length increases),
then the images before and after the zoom are related by a homography.

This relationship encompasses an important special case (figure 15.14). If the
Problem 15.10
Problem 15.11 camera rotates but does not translate, then the image plane still intersects the

same set of rays. It follows that the projected points x1 before the rotation and
the projected points x2 after the rotation are related by a homography. It can be
shown that the homography � mapping from image 1 to image 2 is given by

� = ⇤⌦2⇤
�1

, (15.55)

where ⇤ is the intrinsic matrix and ⌦2 is the rotation matrix that maps the co-
ordinate system of the second camera to the first. This relationship is exploited
when we stitch together images to form panoramas (section 15.7.2).

In conclusion, the homography maps between:

• points on a plane in the world and their positions in an image,

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR!x =

x
y
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= !H

X
Y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!H

In particular, if
!H1 and !H2 model projection of the scene plane to Image 1 and 2, then
!H21 = !H2

!H1
−1 models projection from Image 1 to Image 2.

EECS 4422/5323 Computer Vision J. Elder

Example 2. Projective 2D Transformation

!28

❖ Since this homography is a 3 x 3 matrix relating 2D image points in homogenous
coordinates, it has 8 degrees of freedom.

❖ While linear in projective space, this transformation is nonlinear in Euclidean space.

❖ The Jacobian is

408 15 Models for transformations

Figure 15.12 Transformations be-
tween images. Two cameras view
the same planar scene. The relations
between the 2D points on this plane
and the two images are captured by
the 3 ⇥ 3 transformation matrices
T1 and T2, respectively. It follows
that the transformation from the
first image to the points on the plane
is given by T�1. We can compute
the transformation T3 from the
first image to the second image by
transforming from the first image to
the plane and then transforming from
the plane to the second image, giving
the final result T3 = T2T

�1
1 .

Optical
center 1

Camera
plane 1

Camera
plane 2

Optical
center 2

PLANE
Plane in
world

�

2

4
x1

y1

1

3

5 =

2

4
�11 �12 �13

�21 �22 �23

�31 �32 �33

3

5

2

4
x2

y2

1

3

5 . (15.54)

The homogeneous coordinates represent 2D points as directions or rays in a 3D
space (figure 14.11). When we apply a homography to a set of 2D points, we can
think of this as applying a linear transformation (rotation, scaling, and shearing)
to a bundle of rays in 3D. The positions where the transformed rays strike the
plane at w = 1 determine the final 2D positions.

We could yield the same results by keeping the rays fixed and applying the
inverse transformation to the plane so that it cuts the rays in a di↵erent way.
Since any plane can be mapped to any other plane by a linear transformation, it
follows that the images created by cutting a ray bundle with di↵erent planes are
all related to one another by homographies (figure 15.13). In other words, the
images seen by di↵erent cameras with the pinhole in the same place are related
by homographies. So, for example, if a camera zooms (the focal length increases),
then the images before and after the zoom are related by a homography.

This relationship encompasses an important special case (figure 15.14). If the
Problem 15.10
Problem 15.11 camera rotates but does not translate, then the image plane still intersects the

same set of rays. It follows that the projected points x1 before the rotation and
the projected points x2 after the rotation are related by a homography. It can be
shown that the homography � mapping from image 1 to image 2 is given by

� = ⇤⌦2⇤
�1

, (15.55)

where ⇤ is the intrinsic matrix and ⌦2 is the rotation matrix that maps the co-
ordinate system of the second camera to the first. This relationship is exploited
when we stitch together images to form panoramas (section 15.7.2).

In conclusion, the homography maps between:

• points on a plane in the world and their positions in an image,

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

!′x =
′x
′y
′w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= !H

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J

translation

"
1 0 tx
0 1 ty

#

(tx, ty)

"
1 0

0 1

#

Euclidean

"
c✓ �s✓ tx
s✓ c✓ ty

#

(tx, ty, ✓)

"
1 0 �s✓x� c✓y

0 1 c✓x� s✓y

#

similarity

"
1 + a �b tx

b 1 + a ty

#

(tx, ty, a, b)

"
1 0 x �y

0 1 y x

#

affine

"
1 + a00 a01 tx

a10 1 + a11 ty

#

(tx, ty, a00, a01, a10, a11)

"
1 0 x y 0 0

0 1 0 0 x y

#

projective

2

64
1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

3

75
(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x0
= f(x;p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi,x0
i
)} and a planar parametric transformation1 of

the form

x0
= f(x;p), (6.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =

X

i

krik2
=

X

i

kf(xi;p)� x0
i
k2, (6.2)

where

ri = f(xi;p)� x0
i
= x̂0

i
� x̃0

i
(6.3)

is the residual between the measured location x̂0
i

and its corresponding current predicted
location x̃0

i
= f(xi;p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for �p using

(A + �diag(A))�p = b, (6.18)

and update the parameter vector p p + �p accordingly. The parameter � is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3⇥3 set of normal equations
in the unknowns (�tx, �ty, �✓). An initial guess for (tx, ty, ✓) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting ✓ = tan

�1
(s/c). An

alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x0 =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y0 =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
@f

@p
=

1

D

"
x y 1 0 0 0 �x0x �x0y

0 0 0 x y 1 �y0x �y0y

#
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x0 and y0).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

"
x̂0 � x

ŷ0 � y

#
=

"
x y 1 0 0 0 �x̂0x �x̂0y

0 0 0 x y 1 �ŷ0x �ŷ0y

#
2

664

h00

...
h21

3

775 . (6.21)

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for �p using

(A + �diag(A))�p = b, (6.18)

and update the parameter vector p p + �p accordingly. The parameter � is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3⇥3 set of normal equations
in the unknowns (�tx, �ty, �✓). An initial guess for (tx, ty, ✓) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting ✓ = tan

�1
(s/c). An

alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x0 =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y0 =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
@f

@p
=

1

D

"
x y 1 0 0 0 �x0x �x0y

0 0 0 x y 1 �y0x �y0y

#
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x0 and y0).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

"
x̂0 � x

ŷ0 � y

#
=

"
x y 1 0 0 0 �x̂0x �x̂0y

0 0 0 x y 1 �ŷ0x �ŷ0y

#
2

664

h00

...
h21

3

775 . (6.21)

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

where D = h20x + h21y +1

EECS 4422/5323 Computer Vision J. Elder

Example 2. Projective 2D Transformation

!29

❖ If we multiply through by the denominators we get a pair of equations that are linear
in the parameters hij:

❖ If we have 4 pairs of matched points, a unique solution for the h is defined.

๏ MATLAB \ will use LU solver

❖ If we have > 4 pairs of matched points, will generally be no exact solution, but we can
find the h minimizing ||Ah - b|| using the Moore-Penrose pseudo-inverse:

❖ This is called the Direct Linear Transform (DLT) method.

❖ This solution does not minimize the squared error

❖ But it can be used to generate an initial guess at the parameters p = {hij}.

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for �p using

(A + �diag(A))�p = b, (6.18)

and update the parameter vector p p + �p accordingly. The parameter � is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3⇥3 set of normal equations
in the unknowns (�tx, �ty, �✓). An initial guess for (tx, ty, ✓) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting ✓ = tan

�1
(s/c). An

alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x0 =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y0 =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
@f

@p
=

1

D

"
x y 1 0 0 0 �x0x �x0y

0 0 0 x y 1 �y0x �y0y

#
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x0 and y0).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

"
x̂0 � x

ŷ0 � y

#
=

"
x y 1 0 0 0 �x̂0x �x̂0y

0 0 0 x y 1 �ŷ0x �ŷ0y

#
2

664

h00

...
h21

3

775 . (6.21)

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for �p using

(A + �diag(A))�p = b, (6.18)

and update the parameter vector p p + �p accordingly. The parameter � is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3⇥3 set of normal equations
in the unknowns (�tx, �ty, �✓). An initial guess for (tx, ty, ✓) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting ✓ = tan

�1
(s/c). An

alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x0 =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y0 =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
@f

@p
=

1

D

"
x y 1 0 0 0 �x0x �x0y

0 0 0 x y 1 �y0x �y0y

#
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x0 and y0).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

"
x̂0 � x

ŷ0 � y

#
=

"
x y 1 0 0 0 �x̂0x �x̂0y

0 0 0 x y 1 �ŷ0x �ŷ0y

#
2

664

h00

...
h21

3

775 . (6.21)

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

⇔ b = Ah

where A† ! A⊤A()−1
A⊤h = A†b MATLAB function lsqminnorm

EECS 4422/5323 Computer Vision J. Elder

Example 2. Projective 2D Transformation

!30

❖ Given this initial guess, we can now solve for the homography iteratively as we did
for the 2D rigid transformation, using Levenberg-Marquardt:

408 15 Models for transformations

Figure 15.12 Transformations be-
tween images. Two cameras view
the same planar scene. The relations
between the 2D points on this plane
and the two images are captured by
the 3 ⇥ 3 transformation matrices
T1 and T2, respectively. It follows
that the transformation from the
first image to the points on the plane
is given by T�1. We can compute
the transformation T3 from the
first image to the second image by
transforming from the first image to
the plane and then transforming from
the plane to the second image, giving
the final result T3 = T2T

�1
1 .

Optical
center 1

Camera
plane 1

Camera
plane 2

Optical
center 2

PLANE
Plane in
world

�

2

4
x1

y1

1

3

5 =

2

4
�11 �12 �13

�21 �22 �23

�31 �32 �33

3

5

2

4
x2

y2

1

3

5 . (15.54)

The homogeneous coordinates represent 2D points as directions or rays in a 3D
space (figure 14.11). When we apply a homography to a set of 2D points, we can
think of this as applying a linear transformation (rotation, scaling, and shearing)
to a bundle of rays in 3D. The positions where the transformed rays strike the
plane at w = 1 determine the final 2D positions.

We could yield the same results by keeping the rays fixed and applying the
inverse transformation to the plane so that it cuts the rays in a di↵erent way.
Since any plane can be mapped to any other plane by a linear transformation, it
follows that the images created by cutting a ray bundle with di↵erent planes are
all related to one another by homographies (figure 15.13). In other words, the
images seen by di↵erent cameras with the pinhole in the same place are related
by homographies. So, for example, if a camera zooms (the focal length increases),
then the images before and after the zoom are related by a homography.

This relationship encompasses an important special case (figure 15.14). If the
Problem 15.10
Problem 15.11 camera rotates but does not translate, then the image plane still intersects the

same set of rays. It follows that the projected points x1 before the rotation and
the projected points x2 after the rotation are related by a homography. It can be
shown that the homography � mapping from image 1 to image 2 is given by

� = ⇤⌦2⇤
�1

, (15.55)

where ⇤ is the intrinsic matrix and ⌦2 is the rotation matrix that maps the co-
ordinate system of the second camera to the first. This relationship is exploited
when we stitch together images to form panoramas (section 15.7.2).

In conclusion, the homography maps between:

• points on a plane in the world and their positions in an image,

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

A+ λdiag(A)()Δp = b

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion �x = x0�x

and the unknown parameters p,

�x = x0 � x = J(x)p, (6.4)

where J = @f/@p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =

X

i

kJ(xi)p��xik2 (6.5)

= pT

"
X

i

JT
(xi)J(xi)

#
p� 2pT

"
X

i

JT
(xi)�xi

#
+

X

i

k�xik2 (6.6)

= pT Ap� 2pT b + c. (6.7)

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

X

i

JT
(xi)J(xi) (6.9)

is called the Hessian and b =
P

i
JT

(xi)�xi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate �2

i
with

each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =

X

i

��2
i
krik2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

�xi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

6.1 2D and 3D feature-based alignment 315

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle ✓, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of ✓. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update �p to the
current parameter estimate p by minimizing

ENLS(�p) =

X

i

kf(xi;p + �p)� x0
i
k2 (6.13)

⇡
X

i

kJ(xi;p)�p� rik2 (6.14)

= �pT

"
X

i

JT J

#
�p� 2�pT

"
X

i

JT ri

#
+

X

i

krik2 (6.15)

= �pT A�p� 2�pT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =

X

i

JT
(xi)ri (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + �p).

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for �p using

(A + �diag(A))�p = b, (6.18)

and update the parameter vector p p + �p accordingly. The parameter � is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3⇥3 set of normal equations
in the unknowns (�tx, �ty, �✓). An initial guess for (tx, ty, ✓) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting ✓ = tan

�1
(s/c). An

alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x0 =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y0 =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
@f

@p
=

1

D

"
x y 1 0 0 0 �x0x �x0y

0 0 0 x y 1 �y0x �y0y

#
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x0 and y0).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

"
x̂0 � x

ŷ0 � y

#
=

"
x y 1 0 0 0 �x̂0x �x̂0y

0 0 0 x y 1 �ŷ0x �ŷ0y

#
2

664

h00

...
h21

3

775 . (6.21)

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

where D = h20x + h21y +1

where and

EECS 4422/5323 Computer Vision J. Elder

Outline

!31

❖ Linear Alignment Problems

❖ Non-Linear Alignment Problems

