6.1 2D Feature-Based Alignment

Outline

* Linear Alignment Problems
* Non-Linear Alignment Problems

Outline

* Linear Alignment Problems
* Non-Linear Alignment Problems

Global Parametric Spatial Transformations

* We assume a set of matched 2D points in two images of the same object or scene.
* How can we determine the global parametric spatial transformation \boldsymbol{f} that relates them?

$$
\boldsymbol{x}^{\prime}=\boldsymbol{f}(\boldsymbol{x} ; \boldsymbol{p})
$$

Least Squares

* If \boldsymbol{f} in fact captures the true relationship between the matched points aside from additive Gaussian iid noise, then the maximum likelihood solution is to minimize the sum of squared residuals:

$$
E_{\mathrm{LS}}=\sum_{i}\left\|\boldsymbol{r}_{i}\right\|^{2}=\sum_{i}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2}
$$

where

$$
\boldsymbol{r}_{i}=\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}=\hat{\boldsymbol{x}}_{i}^{\prime}-\tilde{\boldsymbol{x}}_{i}^{\prime}
$$

Linear Transformations

For some simple global transformations, the amount of motion $\Delta \boldsymbol{x}=\boldsymbol{x} \boldsymbol{-} \boldsymbol{x}$ is a linear function of the parameters \boldsymbol{p}, mediated by the Jacobian $\boldsymbol{J}(\boldsymbol{x})$ of the transformation \boldsymbol{f} with respect to the motion parameters \boldsymbol{p} :
$\Delta \boldsymbol{x}=\boldsymbol{x}^{\prime}-\boldsymbol{x}=\boldsymbol{J}(\boldsymbol{x}) \boldsymbol{p}$,

$$
\begin{aligned}
& \text { where } \\
& \boldsymbol{J}(x)=\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{p}}=\left[\begin{array}{cccc}
\frac{\partial x^{\prime}}{\partial p_{1}} & \frac{\partial x^{\prime}}{\partial p_{2}} & \cdots & \frac{\partial x^{\prime}}{\partial p_{n}} \\
\frac{\partial y^{\prime}}{\partial p_{1}} & \frac{\partial y^{\prime}}{\partial p_{2}} & \cdots & \frac{\partial y^{\prime}}{\partial p_{n}}
\end{array}\right]
\end{aligned}
$$

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Euclidean	$\left[\begin{array}{ccc}c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, \theta\right)$	$\left[\begin{array}{ccc}1 & 0 & -s_{\theta} x-c_{\theta} y \\ 0 & 1 & c_{\theta} x-s_{\theta} y\end{array}\right]$
similarity	$\left[\begin{array}{ccc}1+a & -b & t_{x} \\ b & 1+a & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a, b\right)$	$\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
affine	$\left[\begin{array}{ccc}1+a_{00} & a_{01} & t_{x} \\ a_{10} & 1+a_{11} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y\end{array}\right]$

End of Lecture Nov 12, 2018

Linear Regression Framework

$$
\begin{aligned}
E_{\mathrm{LLS}} & =\sum_{i}\left\|\boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \boldsymbol{p}-\Delta \boldsymbol{x}_{i}\right\|^{2} \\
& =\boldsymbol{p}^{T}\left[\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right)\right] \boldsymbol{p}-2 \boldsymbol{p}^{T}\left[\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \Delta \boldsymbol{x}_{i}\right]+\sum_{i}\left\|\Delta \boldsymbol{x}_{i}\right\|^{2} \\
& =\boldsymbol{p}^{T} \boldsymbol{A} \boldsymbol{p}-2 \boldsymbol{p}^{T} \boldsymbol{b}+c .
\end{aligned}
$$

* To minimize, we set the derivative with respect to the parameters \boldsymbol{p} to 0 , yielding

$$
A p=b
$$

where

$$
\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right)
$$

and

$$
\boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \Delta \boldsymbol{x}_{i}
$$

Linear Regression Framework

$$
A p=b
$$

where

$$
\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \Delta \boldsymbol{x}_{i}
$$

* Observations:
- \boldsymbol{A} is symmetric.
- \boldsymbol{A} is non-negative definite

Consider a non-zero parameter vector \boldsymbol{p}.
Note that each term $\boldsymbol{p}^{\top} \boldsymbol{A}_{\boldsymbol{i}} \boldsymbol{p}$ of $\boldsymbol{p}^{\top} \boldsymbol{A} \boldsymbol{p}$ is non-negative:
$\boldsymbol{p}^{\top} \boldsymbol{A}_{i} \boldsymbol{p}=\boldsymbol{p}^{\top} \boldsymbol{J}^{\top}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \boldsymbol{p}=\left\|\boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \boldsymbol{p}\right\|^{2}$

- Is \boldsymbol{A} positive definite?
$\boldsymbol{p}^{\top} \boldsymbol{A} \boldsymbol{p}>0$ as long as at least one term $\boldsymbol{p}^{\top} \boldsymbol{A}_{\boldsymbol{i}} \boldsymbol{p} \neq 0 \leftrightarrow \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \boldsymbol{p} \neq \boldsymbol{0}$.
Thus \boldsymbol{A} is positive definite as long as $\boldsymbol{J}\left(\boldsymbol{x}_{i}\right)$ has full rank for at least one point \boldsymbol{x}_{i}.

Rank of the Jacobian

\boldsymbol{A} is positive definite as long as $\boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ has full rank for at least one point \boldsymbol{x}_{i}.

$$
\boldsymbol{J}\left(x_{i}\right)=\frac{\partial \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)}{\partial \boldsymbol{p}}=\left[\begin{array}{cccc}
\frac{\partial x_{i}^{\prime}}{\partial p_{1}} & \frac{\partial x_{i}^{\prime}}{\partial p_{2}} & \cdots & \frac{\partial x_{i}^{\prime}}{\partial p_{n}} \\
\frac{\partial y_{i}^{\prime}}{\partial p_{1}} & \frac{\partial y_{i}^{\prime}}{\partial p_{2}} & \cdots & \frac{\partial y_{i}^{\prime}}{\partial p_{n}}
\end{array}\right]
$$

In other words, the influence of the parameters p_{j} on the point \boldsymbol{x}_{i} must be linearly independent.

* This will generally be true if:
- The parameters p_{j} are selected to control different aspects of the transformation
- A diversity of points $\boldsymbol{x}_{\mathrm{i}}$ are included

Linear Regression Framework: Solution

$$
A p=b
$$

where

$$
\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \Delta \boldsymbol{x}_{i}
$$

* A is symmetric and positive definite.
* Under these conditions, the best approach is usually Cholesky decomposition:
$\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top}$
where L is lower triangular with positive diagonal entries.
MATLAB function $\operatorname{chol}(\mathrm{A})$
- ~twice as fast as LU decomposition
- $O\left(n^{3}\right)$ to compute \boldsymbol{L}, where n is the size of \boldsymbol{A}.

Linear Regression Framework: Solution

$\begin{aligned} & A p=b \\ & A=\boldsymbol{L} \boldsymbol{L}^{\top}\end{aligned} \quad \boldsymbol{L} \boldsymbol{L}^{\top} \boldsymbol{p}=\boldsymbol{b} \quad \boldsymbol{L y}=\boldsymbol{b}$, where $\boldsymbol{y} \triangleq \boldsymbol{L}^{\top} \boldsymbol{p}$
where L is lower triangular with positive diagonal entries.

* First solve for y using forward substitution.
* Then solve for \boldsymbol{p} using backward substitution.
* $O(n)$, where n is the size of \boldsymbol{A}.

Linear Regression Framework: MATLAB ${ }^{\text {York }}$

$$
A p=b
$$

MATLAB mldivide: $\boldsymbol{p}=\boldsymbol{A} \backslash \boldsymbol{b}$

* mldivide is very smart
- It tests whether A is symmetric and positive definite.
- If it is, it uses a Cholesky solver.

Example

* Linear Alignment Problems
* Non-Linear Alignment Problems

Non-Linear Alignment Problems

* Often the displacement is not in fact linear in the parameters.
* Example: Rigid 2D transformation (translation + rotation):
- Note that the Jacobian is itself a function of the rotation parameter θ

Iterative Alignment

* Non-linear alignment problems can be solved iteratively.
* Suppose that we start with a guess at the parameters \boldsymbol{p}.
* We can now formulate an estimate of the error that would result if we took a step $\Delta \boldsymbol{p}$ from this initial guess:

$$
\begin{aligned}
E_{\mathrm{NLS}}(\Delta \boldsymbol{p}) & =\sum_{i}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}+\Delta \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2} \\
& \approx \sum_{i}\left\|\boldsymbol{J}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right) \Delta \boldsymbol{p}-\boldsymbol{r}_{i}\right\|^{2} \quad \text { where } \boldsymbol{r}_{i} \triangleq \boldsymbol{x}_{i}^{\prime}-f\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right) \\
& =\Delta \boldsymbol{p}^{T}\left[\sum_{i} \boldsymbol{J}^{T} \boldsymbol{J}\right] \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T}\left[\sum_{i} \boldsymbol{J}^{T} \boldsymbol{r}_{i}\right]+\sum_{i}\left\|\boldsymbol{r}_{i}\right\|^{2} \\
& =\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c,
\end{aligned}
$$

where again

$$
\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}
$$

Iterative Alignment - The Gauss-Newton Method
$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c, \quad \boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$

* Taking a first derivative with respect to $\Delta \boldsymbol{p}$ and setting it to zero, we obtain
$\boldsymbol{A} \Delta \boldsymbol{p}=b$
* This can again be solved by Cholesky decomposition (MATLAB \backslash).
* This is called the Gauss-Newton method.
* But since our linear approximation only applies locally, this $\Delta \boldsymbol{p}$ may step past the minimum and is thus not guaranteed to lower the error.
* Solution 1. reduce the step size

$$
\boldsymbol{p} \leftarrow \boldsymbol{p}+\alpha \Delta \boldsymbol{p}, \quad 0<\alpha \leq 1
$$

Iterative Alignment - Levenberg-Marquardt ${ }^{\text {YORK }}$

$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c, \quad \boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$

* Solution 2. Levenberg-Marquardt (damped Gauss-Newton)
- Add a diagonal damping term:

$$
(\boldsymbol{A}+\lambda \boldsymbol{I}) \Delta \boldsymbol{p}=b
$$

- L-M can be seen as a mixture of Gauss-Newton and gradient descent.
- λ adjusted according to how fast error is decreasing
- Slow: still far from minimum - increase λ (upweight gradient descent)
\downarrow Fast: getting close to minimum - reduce λ (upweight Gauss-Newton)

Iterative Alignment - Levenberg-Marquardt

$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c$,

$$
\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}
$$

* Solution 2. Levenberg-Marquardt (damped Gauss-Newton)

$$
(A+\lambda \boldsymbol{I}) \Delta \boldsymbol{p}=b
$$

* Consider the gradient descent term:

$$
\Delta \boldsymbol{p}=\frac{1}{\lambda} \sum_{i} \boldsymbol{J}^{\top}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}
$$

* This will shift the parameters in the direction that reduces the residual $\boldsymbol{r}_{\mathrm{i}}$.
* But the size of the shift depends on the magnitude of the gradient and the residual:
- A larger residual $\boldsymbol{r}_{\mathrm{i}}$ will result in a larger shift in the parameters \boldsymbol{p}.
© A larger gradient $\|\boldsymbol{J}\|$ will result in a larger shift in the parameters \boldsymbol{p}.
* This is not necessarily what we want.

Iterative Alignment - Levenberg-Marquardt ${ }^{\text {YORK }}$

$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c$,
$\boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right)$
$\boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$

* Gradient descent term:
$\Delta \boldsymbol{p}=\frac{1}{\lambda} \sum_{i} \boldsymbol{J}^{\top}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$
* Consider a simple transformation of the x coordinate with only one parameter p :
$\Delta p=\frac{1}{\lambda} \sum_{i} \frac{d x_{i}}{d p} \Delta x$
* We wish to select a value for λ that we predict will close the gap Δx :
$\lambda \propto \sum_{i} \frac{d x_{i} \Delta x}{d p \Delta p} \cong \sum_{i}\left(\frac{d x_{i}}{d p}\right)^{2}$

Iterative Alignment - Levenberg-Marquardt ${ }^{\text {YORK }}$

$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c, \quad \boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$
$\Delta p=\frac{1}{\lambda} \sum_{i} \frac{d x_{i}}{d p} \Delta x$
$\lambda \propto \sum_{i} \frac{d x_{i} \Delta x}{d p \Delta p} \cong \sum_{i}\left(\frac{d x_{i}}{d p}\right)^{2}$

* Generalizing to multiple dimensions:

$$
\lambda \propto \operatorname{diag}(\boldsymbol{A})=\left[\begin{array}{cccc}
\left(\frac{\partial x}{\partial p_{1}}\right)^{2}+\left(\frac{\partial y}{\partial p_{1}}\right)^{2} & 0 & \cdots & 0 \\
0 & \left(\frac{\partial x}{\partial p_{2}}\right)^{2}+\left(\frac{\partial y}{\partial p_{2}}\right)^{2} & 0 & 0 \\
\vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & \left(\frac{\partial x}{\partial p_{n}}\right)^{2}+\left(\frac{\partial y}{\partial p_{n}}\right)^{2}
\end{array}\right]
$$

Iterative Alignment - Levenberg-Marquardt ${ }^{\text {YORK }}$

$E_{\mathrm{NLS}}(\Delta \boldsymbol{p})=\Delta \boldsymbol{p}^{T} \boldsymbol{A} \Delta \boldsymbol{p}-2 \Delta \boldsymbol{p}^{T} \boldsymbol{b}+c, \quad \boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i}$

* This reasoning led Marquardt to replace the identity matrix with $\operatorname{diag}(\mathrm{A})$:

$$
(\boldsymbol{A}+\lambda \boldsymbol{I}) \Delta \boldsymbol{p}=b \longrightarrow(\boldsymbol{A}+\lambda \operatorname{diag}(\boldsymbol{A})) \Delta \boldsymbol{p}=b
$$

* The diag(A) term serves to scale the gradient descent step appropriately given the observed residual.

MATLAB:

options.Algorithm = 'levenberg-marquardt'; $\mathrm{p}=1$ 1sqnonlin(fun, $\mathrm{p} 0,[],[]$,options);

End of Lecture Nov 14, 2018

Example 1: Rigid 2D Transformation

Transformation
Parameters \boldsymbol{p}
Jacobian $J(x ; \theta)$
$\left[\begin{array}{ccc}c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y}\end{array}\right]$
$\left(t_{x}, t_{y}, \theta\right) \quad\left[\begin{array}{ccc}1 & 0 & -s_{\theta} x-c_{\theta} y \\ 0 & 1 & c_{\theta} x-s_{\theta} y\end{array}\right]$

* Initial guess - use linear similarity transform
$\left[\begin{array}{ccc}1+a & -b & t_{x} \\ b & 1+a & t_{y}\end{array}\right] \quad\left(t_{x}, t_{y}, a, b\right) \quad\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
* and now set $\theta=\arctan \frac{b}{1+a}$

Example 2. Projective 2D Transformation

* Consider two images taken of the same planar scene, but from different vantages
* A 3×4 camera projection matrix relates the image points to the scene points for each of the images.

Extrinsic (rotation + translation) matrix

Example 2. Projective 2D Transformation

$\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \boldsymbol{p}_{w}=\boldsymbol{P} \boldsymbol{p}_{w}$

* For convenience, we can align the 3D world coordinate frame with the scene plane, so that $\mathrm{Z}=0$ for all scene points.
* Under these conditions, projection to the image can be modelled by a 3×3 matrix $\tilde{\boldsymbol{H}}$ known as a homography:

$$
\tilde{\boldsymbol{x}}=\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\tilde{\boldsymbol{H}}\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

* This means that the transformation of points between the two images is also a homography.

In particular, if
$\tilde{\boldsymbol{H}}_{1}$ and $\tilde{\boldsymbol{H}}_{2}$ model projection of the scene plane to Image 1 and 2 , then

Example 2. Projective 2D Transformation

$$
\tilde{\boldsymbol{x}}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\tilde{\boldsymbol{H}}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

* Since this homography is a 3×3 matrix relating 2D image points in homogenous coordinates, it has 8 degrees of freedom.
$\left[\begin{array}{ccc}1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1\end{array}\right]$
* While linear in projective space, this transformation is nonlinear in Euclidean space.

$$
x^{\prime}=\frac{\left(1+h_{00}\right) x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+1} \text { and } y^{\prime}=\frac{h_{10} x+\left(1+h_{11}\right) y+h_{12}}{h_{20} x+h_{21} y+1} .
$$

* The Jacobian is

$$
J=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{p}}=\frac{1}{D}\left[\begin{array}{cccccccc}
x & y & 1 & 0 & 0 & 0 & -x^{\prime} x & -x^{\prime} y \\
0 & 0 & 0 & x & y & 1 & -y^{\prime} x & -y^{\prime} y
\end{array}\right]
$$

where $D=h_{20} x+h_{21} y+1$

Example 2. Projective 2D Transformation

$x^{\prime}=\frac{\left(1+h_{00}\right) x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+1}$ and $y^{\prime}=\frac{h_{10} x+\left(1+h_{11}\right) y+h_{12}}{h_{20} x+h_{21} y+1}$.

* If we multiply through by the denominators we get a pair of equations that are linear in the parameters h_{ij} :
$\left[\begin{array}{c}\hat{x}^{\prime}-x \\ \hat{y}^{\prime}-y\end{array}\right]=\left[\begin{array}{cccccccc}x & y & 1 & 0 & 0 & 0 & -\hat{x}^{\prime} x & -\hat{x}^{\prime} y \\ 0 & 0 & 0 & x & y & 1 & -\hat{y}^{\prime} x & -\hat{y}^{\prime} y\end{array}\right]\left[\begin{array}{c}h_{00} \\ \vdots \\ h_{21}\end{array}\right] \quad \Leftrightarrow \boldsymbol{b}=\boldsymbol{A} \boldsymbol{h}$
* If we have 4 pairs of matched points, a unique solution for the \boldsymbol{h} is defined.
- MATLAB \backslash will use LU solver
* If we have > 4 pairs of matched points, will generally be no exact solution, but we can find the \boldsymbol{h} minimizing $\|\boldsymbol{A} \boldsymbol{h}-\boldsymbol{b}\|$ using the Moore-Penrose pseudo-inverse:

$$
\boldsymbol{h}=\boldsymbol{A}^{\dagger} \boldsymbol{b} \quad \text { where } \boldsymbol{A}^{\dagger} \triangleq\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}
$$

MATLAB function lsqminnorm

* This is called the Direct Linear Transform (DLT) method.
* This solution does not minimize the squared error $E_{\mathrm{NLS}}(\Delta p)=\sum_{i}\left\|f\left(\boldsymbol{x}_{i} ; p+\Delta p\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2}$
* But it can be used to generate an initial guess at the parameters $\boldsymbol{p}=\left\{h_{\mathrm{ij}}\right\}$.

Example 2. Projective 2D Transformation

* Given this initial guess, we can now solve for the homography iteratively as we did for the 2D rigid transformation, using Levenberg-Marquardt:

$$
\begin{aligned}
& (\boldsymbol{A}+\lambda \operatorname{diag}(\boldsymbol{A})) \Delta \boldsymbol{p}=b \quad \text { where } \quad \boldsymbol{A}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \quad \text { and } \quad \boldsymbol{b}=\sum_{i} \boldsymbol{J}^{T}\left(\boldsymbol{x}_{i}\right) \boldsymbol{r}_{i} \\
& \boldsymbol{J}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{p}}=\frac{1}{D}\left[\begin{array}{llllllll}
x & y & 1 & 0 & 0 & 0 & -x^{\prime} x & -x^{\prime} y \\
0 & 0 & 0 & x & y & 1 & -y^{\prime} x & -y^{\prime} y
\end{array}\right] \quad \text { where } D=h_{20} x+h_{21} y+1
\end{aligned}
$$

Outline

* Linear Alignment Problems
* Non-Linear Alignment Problems

