UNIVERSITE
||||||||||

6.1 2D Feature-Based Alignment
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¢ Linear Alignment Problems
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¢ Non-Linear Alignment Problems
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Global Parametric Spatial Transformations “

% We assume a set of matched 2D points in two images of the same object or scene.

“* How can we determine the global parametric spatial transformation fthat relates them?
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Least Squares = e

¢ If f1in fact captures the true relationship between the matched points aside from
additive Gaussian 11d noise, then the maximum likelithood solution is to minimize the
sum of squared residuals:

Bis =3 lIrill* = > I f (@i p) — i

where

ri=f(esp) — @) = &) — &
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Linear Transformations

¢ For some simple global transformations, the amount of motion Ax = x’ - x 1s a linear
function of the parameters p, mediated by the Jacobian J(x) of the transformation f
with respect to the motion parameters p:

Ax =a —x = J(x)p,

where dx”  dx’ dx’
J(0)= df(x) | 9dp, 9p, ap,
ap dy’ 9y dy’
dp, 9p, Jap,
Transform Matrix Parameters p Jacobian J
1 0 t, 1 0
translation 0 1 ¢t (tasty) 0 1
co —Sp Ut 1 0 —sgz— cpy
Euclidean Sp  cp Uy (tz, by, 0) 0 1 cox— spy
l+a —=b t, 1 0 =z —y
similarity b l+a t, (tz,ty,a,b) 01 vy =
1—|—a00 ani [ _1 0 =z y 0 O
affine aio 1+ann ty (tz,ty, aco, @o1, aio, a11) 0O 1 0 0 x y
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End of Lecture
Nov 12, 2018
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Linear Regression Framework —  ##

Eris = ZHJ(%)P—A%HQ

T ZJT(:Bi)J(

= plAp—-2p'b+ec.

ZJT ;) Ax;

ﬂLZ\IAwZII2

/

% To minimize, we set the derivative with respect to the parameters p to 0, yielding

where

A= ZJT(:BZ-)J x

and

b=2]T(x Ax
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where

A= "JN @) (@) b=YJ (x)Ax,
«* QObservations:

A 1s symmetric.

A 1s non-negative definite

Consider a non-zero parameter vector p.

Note that each term p' A.p of p' Ap is non-negative:
p Ap=pJ (x)J(x)p=|lJ(x)p|
Is A positive definite?

p' Ap>0 aslong as at least one term p' A.p # 0 <> J(xl. )p #0.

Thus A 1s positive definite as long as J (xl.) has full rank for at least one point x;.

EECS 4422/5323 Computer Vision 9 J. Elder



A 1s positive definite as long as J (xl.) has full rank for at least one point x;.

)= aj;(;ci):

In other words, the influence of the parameters p; on the point x; must be linearly independent.

¢ This will generally be true if:

The parameters pj are selected to control different aspects of the transformation

dx;  dx]
dp, dp,
dy;  9y;
dp, dp,

ox;
ap,
9y

ap,

A diversity of points x; are included
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where

A= Z J'(x)J(x;) b= ZJT (x,)Ax,

¢ A 1s symmetric and positive definite.

¢ Under these conditions, the best approach is usually Cholesky decomposition:

A=LL'
MATLAB function chol(A)

where L 1s lower triangular with positive diagonal entries.

~twice as fast as LU decomposition

O(n?) to compute L, where # 1s the size of A.
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Linear Regression Framework: Solution “*

Ap=0>b
» LLTp:b * Ly=»b, WhereyéLTp

A=LL'

where L is lower triangular with positive diagonal entries.

¢ First solve for y using forward substitution.

¢ Then solve for p using backward substitution.

¢ O(n), where n 1s the size of A.
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Linear Regression Framework: MATLAB

Ap=0>b
MATLAB mlidivide: p=A\b

* mldivide 1s very smart

It tests whether A 1s symmetric and positive definite.

If 1t 1s, 1t uses a Cholesky solver.
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¢ Linear Alignment Problems
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* Non-Linear Alignment Problems
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Non-Linear Alignment Problems i

¢ Often the displacement is not in fact linear in the parameters.

*» Example: Rigid 2D transformation (translation + rotation):

@ Note that the Jacobian is itself a function of the rotation parameter 6

Transform Matrix Parameters p Jacobian J

—S9T — CoyY
Euclidean S Cp Y (tz, by, 0) 0 1 cox— spy

similarity (te,ty,a,b) 0 1 y
1+ apo ani tw I 1 r vy 0 O
affine aio L+air 1y (tz,ty, aco, @o1, @10, a11) 0O 1 0 0 x y

You are first.
No, you are first.

@ ¢
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lterative A||gnment ERC

¢ Non-linear alignment problems can be solved iteratively.

/

** Suppose that we start with a guess at the parameters p.

¢ We can now formulate an estimate of the error that would result if we took a step Ap
from this 1nitial guess:

Enus(Ap) = ZHf(wz';P‘FAP)—iE;W

Q

Z |J(zi;p)Ap —rilI°  where r, £ x] - f(x;; p)

ZJTJ ZJTm +Z|mll2

= AplAAp —2Ap'b + ¢,

= Ap! Ap — 2Apt

where again

A=D T () (x:) b= J'(@)r:
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Iterative Alignment - The Gauss-Newton Method

ENLS (Ap) = ApTAAp — QApr + C, A= Z JT(wz)J(wz) b = Z JT(CEZ')’I"i
¢ Taking a first derivative with respect to Ap and setting it to zero, we obtain

AAp=>b

¢ This can again be solved by Cholesky decomposition (MATLAB\).
** This 1s called the Gauss-Newton method.

¢ But since our linear approximation only applies locally, this Ap may step past the
minimum and is thus not guaranteed to lower the error.

¢ Solution 1. reduce the step size

p—p+alAp, 0O0<a<l
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Iterative Alignment - Levenberg-Marquardt
Enis(Ap) = Apt AAp —2Ap' b + ¢, A = Z T () (x) b= Z T ()
¢ Solution 2. Levenberg-Marquardt (damped Gauss-Newton)

Add a diagonal damping term:
(A+AI)Ap=>b
L-M can be seen as a mixture of Gauss-Newton and gradient descent.

A adjusted according to how fast error is decreasing
4 Slow: still far from minimum - increase A (upweight gradient descent)

4 Fast: getting close to minimum - reduce A (upweight Gauss-Newton)
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Iterative Alignment - Levenberg-Marquardt =~

Faxis(Ap) = ApTAAp—2ApTb+c, A= Z J" () J (z;) b=3"J"(@)r,

¢ Solution 2. Levenberg-Marquardt (damped Gauss-Newton)
(A+AI)Ap=>b

¢ Consider the gradient descent term:

Optimal solution

Keypoint location x .

|

Parameter pj

Ap = 3T (%)

% This will shift the parameters in the direction that reduces the residual #;.

% But the size of the shift depends on the magnitude of the gradient and the residual:

A larger residual r; will result in a larger shift in the parameters p.

A larger gradient ||J]| will result in a larger shift in the parameters p.

¢ This 1s not necessarily what we want.
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Iterative Alignment - Levenberg-Marquardt =~

Faxis(Ap) = ApTAAp—2ApTb+c, A= Z J" () J (z;) b= J%(xi)r

+* (QGradient descent term:

Ap = %ZJT ()7

¢ Consider a simple transformation of the
x coordinate with only one parameter p:

| « dx
Apz—zd—;’m

i

* We wish to select a value for A that we
predict will close the gap Ax:

deAx  f dy, )
/loczdpAp zz(dpj

i i

Optimal solution

|

Parameter p.
<—JAp —>

Keypoint location x .
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Iterative Alignment - Levenberg-Marquardt

Ents (Ap) = ApTAAp — QApr + C,
l « dx.
Ap =— l
) Z dp
2
dx,Ax dx,
. dpAp T\ dp

% Generalizing to multiple dimensions:

2 2
EB_XJ +(8_y]
apl apl

0

A o< diag(A)=
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apz

22

0

)

dy
apz

J

b= Z JT(CEZ')’I"i
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Iterative Alignment - Levenberg-Marquardt "
Exus(Ap) = Ap"AAp—-2Ap'b+ec, A= ZJT(wf@)J(wi) bZZJT(a:Z-)m

¢ This reasoning led Marquardt to replace the 1dentity matrix with diag(A):
(A+AI)Ap=b wele- (A + Adiag(A))Ap =5

¢ The diag(A) term serves to scale the gradient descent step appropriately given the
observed residual.

MATLAB:

options.Algorithm = 'levenberg-marquardt’;
p = Isqnonlin(fun,pO0,[],[],options);
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Example 1: Rigid 2D Transformation =

Transformation Parameters p Jacobian J(x;0)

co —Sgp tg 1 0 —spxr—coy

Sg Cop Ty (te,ty,0) 0 1 cox— spy

¢ Initial guess - use linear similarity transform

1+a -0 t, 1 0 =z —y

b 1+a ty (tﬂcatwaab) 0 1 y T
. b
% and now set 6= arctan
I+a
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Example 2. Projective 2D Transformation *

¢ Consider two 1images taken of the same planar scene, but from different vantages

Y/

A 3x4 camera projection matrix relates the image points to the scene points for each
of the images.

R‘t pw—Ppw

2D 1 t1
image projection / 3D worl d point
Intrinsic (calibration) matrix Projection matrix

Extrinsic (rotation + translation) matrix

Plane in
world

Camera
plane 2

Camera
plane 1

_~Optical Optical
¢ center ] center 2
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Example 2. Projective 2D Transformation
js:K{ R‘t }pw:Ppw

/

¢ For convenience, we can align the 3D world coordinate frame with the scene plane, so that
Z = 0 for all scene points.

/

< Under these conditions, projection to the image can be modelled by a 3 x 3 matrix H
known as a homography:

=
||
<

X
—H| Y
1

R/

¢ This means that the transformation of points between the two 1images 1s also a homography.

In particular , if P‘lj(r)lfl(;n
H, and H, model projection of the scene plane to Image 1 and 2, then
H o = ﬁzfl . ' models projection from Image 1 to Image 2. Caners Camera

.~ Optical Optical ™,
o  center 1 center 2\,
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¢ Since this homography is a 3 x 3 matrix relating 2D 1mage points in homogenous
coordinates, it has 8 degrees of freedom.

[ 1+ hgo ho1 ho2
hio 1+ hi1 Ao

| Do ho1 1
¢ While linear in projective space, this transformation is nonlinear in Euclidean space.
o (14 hoo)x + hory + hoo and 3 — hiox 4+ (1 + h11)y + hi2
haox + ho1y + 1 hoox + ho1y + 1 '
< The Jacobian is wond

7 of 1|z y 1 0 0 0 -2’z —a'y ) )
— A T T~ amera amera
8p D O O O i y 1 - y/ X — y/ y plane 1 ' plane 2
',/'6ptical Optica\l\‘\\
WhGI’G D — hzox + h21y + 1 o  center 1 center 2
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Example 2. Projective 2D Transformation

, (14 hoo)x + hory + hoz ,  hior + (1 + hi1)y + hio
xr = and ¢y = :
hoox + ho1y + 1 hoox + ho1y + 1
» If we multiply through by the denominators we get a pair of equations that are linear

in the parameters A;j:

' —x X 1 0 0 0 —2'2z -2/
g _ Y Y ; & b=Ah
Y —y 0O 0 0 = v 1 —vyz —yvy

*» If we have 4 pairs of matched points, a unique solution for the 4 is defined.
MATLAB \ will use LU solver

¢ If we have > 4 pairs of matched points, will generally be no exact solution, but we can
find the A minimizing ||4hA - b|| using the Moore-Penrose pseudo-inverse:

h=A'p whereA' = (ATA)_1 A' ‘MATLAB function Isqminnorm

¢ This 1s called the Direct Linear Transform (DLT) method.
% This solution does not minimize the squared error Exts(Ap) = > | f(zi;p+ Ap) — )|’

¢ But 1t can be used to generate an 1nitial guess at the parameters p = {A;;}.
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Example 2. Projective 2D Transformation

¢ Given this 1nitial guess, we can now solve for the homography iteratively as we did
for the 2D rigid transformation, using Levenberg-Marquardt:

(A+Adiag(A))Ap=b  where A=) J'(z)J(x;)) and b= J(z)r;

—x'x —x'y

—y'r —y'y

8 O
_ O

where D =h,x+h, y+1

< O

Plane in
world

Camera
plane 1

_~Optical Optical
s center 1 center 2
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¢ Linear Alignment Problems
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¢ Non-Linear Alignment Problems
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