
EECS 4422/5323 Computer Vision J. Elder

6.2 Pose Estimation

!1

EECS 4422/5323 Computer Vision J. Elder

Problem Definition

!2

❖ Given:

๏ A 3D model of an object

๏ An image of the object

❖ Estimate:

๏ The 3D pose of the object relative to the camera

EECS 4422/5323 Computer Vision J. Elder

Perspective 3-Point Problem

!3

❖ How many degrees of freedom (parameters) are we estimating?

❖ How many point correspondences between 3D object and 2D image do we need?

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!4

❖ 3 x 4 camera projection matrix P

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

322 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(6.33)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
, (6.34)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.9 The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P , at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21–6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33–6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 ⇥ 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).10

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57–2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!5

322 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(6.33)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
, (6.34)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.9 The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P , at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21–6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33–6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 ⇥ 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).10

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57–2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

❖ As for estimation of 2D homographies, we can form a linear estimate of the
parameters pij by multiplying through by the denominator, which yields

Xi Yi Zi 1 0 0 0 0 −xiXi −xiYi −xiZi −xi
0 0 0 0 Xi Yi Zi 1 −yiXi −yiYi −yiZi −yi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p00
p01
!
p23

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0
0

⎡

⎣
⎢

⎤

⎦
⎥

❖ How many pairs of matching points do we need?

❖ Again, this estimate does not minimized the squared deviation but can be used as an
initial guess for an iterative solution.

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!6

❖ 3 x 4 camera projection matrix P

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Once P has been estimated, its constituents K, R and t can be recovered.

❖ Recall that R is orthonormal and K is normally treated as upper triangular:

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

fx and fy: encode focal length and pixel spacing,
which may be slightly different in x and y dimensions.

cx and cy: encode principal point (intersection of optic axis with sensor plane) - usually
very close to centre of image

s: encodes possible skew between sensor axes (usually close to 0).

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!7

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Thus K and R can be recovered from the first 3 columns of P using QR decomposition.

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

Complexity: O MN 2 + N 3() for an M × N matrix (3× 4 in our case).

MATLAB function qr(A)

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!8

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Given a calibrated camera (K known), R and t can be recovered with as few as 3 matched
points

❖ Basic idea: visual angle between any pair of 2D points xi and xj in the image must be the
same as the visual angle between their corresponding 3D points pi and pj.

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!9

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Basic idea: visual angle between any pair of 2D points xi and xj in the image must be the
same as the visual angle between their corresponding 3D points pi and pj.

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

Thus any triplet of constraints fij di ,dj(), fik di ,dk(), f jk d j ,dk() generates 3 equations in 3 unknowns.

Let x̂i represent the unit vector pointing to image point xi from the camera centre c :

EECS 4422/5323 Computer Vision J. Elder

Iterative Algorithms

!10

❖ These minimal linear one-shot algorithms have limitations:

๏ Noisy (few points)

๏ Do not directly minimize error

❖ Given these limitations, they are most useful as a means to generate an initial guess
that can then be refined iteratively to minimize the reprojection error.

❖ Definition: Reprojection error

๏ The deviation in the image between 2D image points xi and their corresponding 3D points
pi, projected to the image.

EECS 4422/5323 Computer Vision J. Elder

Iterative Algorithms

!11

❖ Let f now represent projection to the image:

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d2
i

can computed as ratios of successive d2n+2
i

/d2n

i
estimates and these can be averaged to

obtain a final estimate of d2
i

(and hence di).
Once the individual estimates of the di distances have been computed, we can generate

a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi;R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =

X

i

⇢

✓
@f

@R
�R +

@f

@t
�t +

@f

@K
�K � ri

◆
, (6.43)

where ri = x̃i � x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

❖ We now iteratively minimize a measure of the linearized reprojection error

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d2
i

can computed as ratios of successive d2n+2
i

/d2n

i
estimates and these can be averaged to

obtain a final estimate of d2
i

(and hence di).
Once the individual estimates of the di distances have been computed, we can generate

a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi;R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =

X

i

⇢

✓
@f

@R
�R +

@f

@t
�t +

@f

@K
�K � ri

◆
, (6.43)

where ri = x̃i � x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

!xi is the current estimate of the projection of 3D point pi to the image.

x̂i is the 2D image point.

and

where ri = x̂i − !xi is the current residual vector (2D error in predicted position)

Sign reversed in textbook.

