6.2 Pose Estimation

Problem Definition

* Given:
- A 3D model of an object
- An image of the object
* Estimate:
- The 3D pose of the object relative to the camera

Perspective 3-Point Problem

* How many degrees of freedom (parameters) are we estimating?
* How many point correspondences between 3D object and 2D image do we need?

Linear Algorithms

* 3×4 camera projection matrix \boldsymbol{P}

$$
\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w}
$$

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23}
\end{array}\right]
$$

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

Linear Algorithms

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

* As for estimation of 2D homographies, we can form a linear estimate of the parameters p_{ij} by multiplying through by the denominator, which yields

$$
\left[\begin{array}{cccccccccccc}
X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & -x_{i} X_{i} & -x_{i} Y_{i} & -x_{i} Z_{i} & -x_{i} \\
0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -y_{i} X_{i} & -y_{i} Y_{i} & -y_{i} Z_{i} & -y_{i}
\end{array}\right]\left[\begin{array}{c}
p_{00} \\
p_{01} \\
\vdots \\
p_{23}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

* How many pairs of matching points do we need?
* Again, this estimate does not minimized the squared deviation but can be used as an initial guess for an iterative solution.

Linear Algorithms

* 3×4 camera projection matrix \boldsymbol{P}

$$
\begin{aligned}
& \tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w} \\
& \boldsymbol{P}=\left[\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23}
\end{array}\right]
\end{aligned}
$$

* Once \boldsymbol{P} has been estimated, its constituents $\boldsymbol{K}, \boldsymbol{R}$ and \boldsymbol{t} can be recovered.
* Recall that \boldsymbol{R} is orthonormal and \boldsymbol{K} is normally treated as upper triangular:

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

f_{x} and f_{y} : encode focal length and pixel spacing, which may be slightly different in x and y dimensions.
c_{x} and c_{y} : encode principal point (intersection of optic axis with sensor plane) - usually very close to centre of image
s : encodes possible skew between sensor axes (usually close to 0).

Linear Algorithms

* Thus \boldsymbol{K} and \boldsymbol{R} can be recovered from the first 3 columns of \boldsymbol{P} using QR decomposition.

Complexity: $O\left(M N^{2}+N^{3}\right)$ for an $M \times N$ matrix (3×4 in our case).

MATLAB function $\mathrm{qr}(\mathrm{A})$

Linear Algorithms

* Given a calibrated camera (\boldsymbol{K} known), \boldsymbol{R} and \boldsymbol{t} can be recovered with as few as 3 matched points
* Basic idea: visual angle between any pair of 2D points $\boldsymbol{x}_{\mathrm{i}}$ and $\boldsymbol{x}_{\mathrm{j}}$ in the image must be the same as the visual angle between their corresponding 3D points $\boldsymbol{p}_{\mathrm{i}}$ and $\boldsymbol{p}_{\mathrm{j}}$.

Linear Algorithms

* Basic idea: visual angle between any pair of 2D points $\boldsymbol{x}_{\mathrm{i}}$ and $\boldsymbol{x}_{\mathrm{j}}$ in the image must be the same as the visual angle between their corresponding 3D points $\boldsymbol{p}_{\mathrm{i}}$ and $\boldsymbol{p}_{\mathrm{j}}$.
Let $\hat{\boldsymbol{x}}_{i}$ represent the unit vector pointing to image point \boldsymbol{x}_{i} from the camera centre \boldsymbol{c} :
$\hat{\boldsymbol{x}}_{i}=\mathcal{N}\left(\boldsymbol{K}^{-1} \boldsymbol{x}_{i}\right)=\boldsymbol{K}^{-1} \boldsymbol{x}_{i} /\left\|\boldsymbol{K}^{-1} \boldsymbol{x}_{i}\right\|$
the unknowns are the distances d_{i} from the camera origin \boldsymbol{c} to the 3D points \boldsymbol{p}_{i}, where

$$
\boldsymbol{p}_{i}=d_{i} \hat{\boldsymbol{x}}_{i}+\boldsymbol{c}
$$

The cosine law for triangle $\Delta\left(\boldsymbol{c}, \boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$ gives us

$$
f_{i j}\left(d_{i}, d_{j}\right)=d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} c_{i j}-d_{i j}^{2}=0,
$$

where

$$
c_{i j}=\cos \theta_{i j}=\hat{\boldsymbol{x}}_{i} \cdot \hat{\boldsymbol{x}}_{j}
$$

and

$$
d_{i j}^{2}=\left\|\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right\|^{2} .
$$

Thus any triplet of constraints $f_{i j}\left(d_{i}, d_{j}\right), f_{i k}\left(d_{i}, d_{k}\right), f_{j k}\left(d_{j}, d_{k}\right)$ generates 3 equations in 3 unknowns.

Iterative Algorithms

* These minimal linear one-shot algorithms have limitations:
- Noisy (few points)
- Do not directly minimize error
* Given these limitations, they are most useful as a means to generate an initial guess that can then be refined iteratively to minimize the reprojection error.
* Definition: Reprojection error
- The deviation in the image between 2D image points \boldsymbol{x}_{i} and their corresponding 3D points \boldsymbol{p}_{i}, projected to the image.

Iterative Algorithms

* Let \boldsymbol{f} now represent projection to the image:
$\boldsymbol{x}_{i}=\boldsymbol{f}\left(\boldsymbol{p}_{i} ; \boldsymbol{R}, \boldsymbol{t}, \boldsymbol{K}\right)$
* We now iteratively minimize a measure of the linearized reprojection error $E_{\mathrm{NLP}}=\sum_{i} \rho\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{R}} \Delta \boldsymbol{R}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{t}} \Delta \boldsymbol{t}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{K}} \Delta \boldsymbol{K}-\boldsymbol{r}_{i}\right)$,
where $\boldsymbol{r}_{i}=\hat{\boldsymbol{x}}_{i}-\tilde{\boldsymbol{x}}_{i}$ is the current residual vector (2D error in predicted position) and Sign reversed in textbook.
$\hat{\boldsymbol{x}}_{i}$ is the 2D image point.
$\tilde{\boldsymbol{x}}_{i}$ is the current estimate of the projection of 3 D point \boldsymbol{p}_{i} to the image.

