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6.2 Pose Estimation
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Problem Definition e
 Given:
® A 3D model of an object

® An image of the object

% Estimate:

@ The 3D pose of the object relative to the camera
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Perspective 3-Point Problem ##

*» How many degrees of freedom (parameters) are we estimating?

*» How many point correspondences between 3D object and 2D image do we need?
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Linear Algorithms =

¢ 3 x 4 camera projection matrix P

;;';S:K{R\t}ﬁwzpﬁw

Po Por P2 Pos P00-Xi + po1Yi + po2Z; + pos3

P=| p, pP. Pn D * p20X; + p21Y; + p22Z; + po3
_ proXi +puYi + pi12di + pis
Px P Prn Py Yi =

i _ P20X; + p21Yi + p2oZi + pos
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Linear Algorithms ~ #%

Po0Xi + po1Yi + po2Z; + po3
P20X; + p21Y; + paoZ; + po3
P10Xs + p11Ys + p12Z; + P13
p20X; + p21Y; + D22 Z; + a3

Yi =

¢ As for estimation of 2D homographies, we can form a linear estimate of the
parameters pi; by multiplying through by the denominator, which yields

3

Poo
0O 0 0 —-xX -—-xY -xZ —x.} Por [

i

1 O
0 0 0 0 X, Y Z 1 —-yX -yY. —-yZ -y,

4

P

7/

** How many pairs of matching points do we need?

o%

% Again, this estimate does not minimized the squared deviation but can be used as an
initial guess for an iterative solution.
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Linear Algorithms ~ #%

¢ 3 x 4 camera projection matrix P

@:K[R\t}ﬁwzpﬁw

Po Poir Po Pos
P=| po, DPi Pn P
P Pn Prn Px

** Once P has been estimated, its constituents K, R and ¢ can be recovered.

¢ Recall that R is orthonormal and K is normally treated as upper triangular:

Jo 8 ¢z
K=| 0 f, ¢
0 0 1

fx and f,: encode focal length and pixel spacing,
which may be slightly different in x and y dimensions.

cx and ¢,: encode principal point (intersection of optic axis with sensor plane) - usually
very close to centre of image

s: encodes possible skew between sensor axes (usually close to 0).
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Linear Algorithms =

Pwo Por Po2 Pos fr 5 cCg
P=| po DPi Pn P K=10 f, ¢
0O O 1

] Py Pn Pxn Px | - ;

¢ Thus K and R can be recovered from the first 3 columns of P using QR decomposition.

Complexity: O(MN *+N 3) for an M X N matrix (3X 4 in our case).

MATLAB function qr(A)
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Pwo Por Po2 Pos . s cw
P=| p, Py Pn P K=10 f ¢
O 0 1

] P P Px»n Px | - ;

¢ Given a calibrated camera (K known), R and ¢ can be recovered with as few as 3 matched
points

7/

¢ Basic idea: visual angle between any pair of 2D points xi and x; in the image must be the
same as the visual angle between their corresponding 3D points p; and p;.
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Linear Algonthms AT

¢ Basic idea: visual angle between any pair of 2D points x;i and x;j in the image must be the
same as the visual angle between their corresponding 3D points p; and p;.

Let X, represent the unit vector pointing to image point x, from the camera centre ¢ :
B =N(K '2i) = K o /| Ky

the unknowns are the distances d; from the camera origin c to the 3D points p,, where

The cosine law for triangle A(c, p;, p;) gives us

fij(di,dj) = di + d5 — 2d;dje;; — d; = 0, D

where
Cz’j = COS ez'j = ZABZ . ZABj
and

di; = |p; — p;I*.

Thus any triplet of constraints f,.(d.,d. ), f, (d.,d,),f. |d.,d ) generates 3 equations in 3 unknowns.
y p ij P27 ik 27k Jjk J* "k
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Iterative Algorithms

¢ These minimal linear one-shot algorithms have limitations:

Noisy (few points)
Do not directly minimize error
¢ Given these limitations, they are most useful as a means to generate an initial guess
that can then be refined iteratively to minimize the reprojection error.
¢ Definition: Reprojection error

The deviation in the image between 2D 1mage points x; and their corresponding 3D points

pi, projected to the image.

h\ ® Computed 3D point

/| Q e  Point marked on the
| image

Reprojected point

Reprojection error
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lterative Algorithms =

% Let fnow represent projection to the image:
p proj g

** We now iteratively minimize a measure of the linearized reprojection error

of f
ENLP—ZP( AR—l— 8tAt+8—KAK_TZ>’

where r, = X, — X, is the current residual vector (2D error in predicted position)

and \ Sign reversed in textbook.

X, is the 2D image point.

X, 18 the current estimate of the projection of 3D point p, to the image.
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