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Problem Definition e
 Given:
® A 3D model of an object

® An image of the object

% Estimate:

@ The 3D pose of the object relative to the camera
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Perspective 3-Point Problem ##

*» How many degrees of freedom (parameters) are we estimating?

*» How many point correspondences between 3D object and 2D image do we need?
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Linear Algorithms =

¢ 3 x 4 camera projection matrix P

;;';S:K{R\t}ﬁwzpﬁw

Po Por P2 Pos P00-Xi + po1Yi + po2Z; + pos3

P=| p, pP. Pn D * p20X; + p21Y; + p22Z; + po3
_ proXi +puYi + pi12di + pis
Px P Prn Py Yi =

i _ P20X; + p21Yi + p2oZi + pos
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Linear Algonthms AT
T, = PooXi + po1Yi + po2Zi + pos
7, P20X; + p21Y; + p22Z; + po3
g — p10X; + p11Ys + p12Z; + p13

P20X; + p21Yi + paoZ; + pas

¢ As for estimation of 2D homographies, we can form a linear estimate of the
parameters p;; by multiplying through by the denominator, which yields

Poo
X Y Z 1 0 0 0 0 —xX -xYV -xZ —x} Dol [

0 0 0 0 X, Y Z 1 —-yX -yY. —-yZ -y,

P

** How many pairs of matching points do we need?

% Again, this estimate does not minimize the squared deviation but can be used as an
initial guess for an iterative solution.

¢ Solve using singular value decomposition (SVD).

MATLAB function svd(A)
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SVD Solution for Projection Matrix P =+~
A=UzV'
 In MATLAB: [U,S.V]=svd(A)
¢ The solution will be the last column of V
¢ This must then be reshaped into the 3 x 4 projection matrix P.

*» Note that P 1s determined only up to a scaling constant (positive or negative).
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Linear Algorithms ~ #%

¢ 3 x 4 camera projection matrix P

@:K[R\t}ﬁwzpﬁw

Po Poir Po Pos
P=| po, DPi Pn P
P Pn Prn Px

** Once P has been estimated, its constituents K, R and ¢ can be recovered.

¢ Recall that R is orthonormal and K is normally treated as upper triangular:

Jo 8 ¢z
K=| 0 f, ¢
0 0 1

fx and f,: encode focal length and pixel spacing,
which may be slightly different in x and y dimensions.

cx and ¢,: encode principal point (intersection of optic axis with sensor plane) - usually
very close to centre of image

s: encodes possible skew between sensor axes (usually close to 0).
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Linear Algorithms =

Pwo Por Po2 Pos fr 5 cCg
P=| po DPi Pn P K=10 f, ¢
0O O 1

] Py Pn Pxn Px | - ;

¢ Thus K and R can be recovered from the first 3 columns of P using RQ decomposition.

Complexity: O(MN ‘+N 3) for an M X N matrix (3X 3 in our case).

MATLAB function qr(A)
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Constraints on Projection Matrix P

LetA=P(,1:3)=KR

“ A=KR — |4] = |K||R|

% To be a pure rotation (no reflection), |[R| = 1.

» K is triangular with positive diagonal elements —|K| > 0 as well.
% Thus [4]>0

% Recall that P defined up to scale factor.

¢ Thus 1f |4| <0 we multiply P by -1 so that |4| > 0.
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RQ Decomposition of the Projection Matrix "
LetA=P(,1:3)=KR

** MATLAB has a QR function but no RQ function.

% To compute the RQ decomposition of A using the QR function:

et M =

_— O O

0
1
0

OO =

% (Observations:

Pre-multiplication of a matrix B by M reverses the rows of B and post-multiplication
reverses the columns.

MM = I, where I 1s the 1dentity matrix.
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Algorithm for Computing RQ from QR #+#+

1. Compute A = MA

2. Compute OR = A" using QR decomposition
3. Compute Q = MQ'

4.Compute R=MR'M

< MATLAB code:

[Q,R] = gr(flipud(A)");
Q = flipud(Q');
R = flipud(fliplr(R'));

& A=KR=RQ

\//
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ldentifying K, R and t
* A=RQO
¢ R and Q are not uniquely defined:
Let D be a diagonal 3 X 3 matrix with D, = %1, i € {1,2,3}
¢ How many distinct D matrices are there?
LetR"=RD and Q' = D"'Q
R’ is still upper diagonal and Q’ is still orthonormal.
Thus A= R’Q’ = (RD)(D'lQ) = RQ is also a solution.
¢ Which of the 8 decompositions do we choose?

¢ Constraint: all diagonal elements of R = K must be > 0.

— Set D;; = sign(R)
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Linear Algonthms AT

Pwo Por Po2 Pos . s cw
P=| p, Py Pn P K=10 f ¢
O 0 1

] P P Px»n Px | - ;

¢ Given a calibrated camera (K known), R and ¢ can be recovered with as few as 3 matched
points

7/

¢ Basic idea: visual angle between any pair of 2D points x; and x; in the image must be the
same as the visual angle between their corresponding 3D points p; and p;.
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Linear Algonthms AT

¢ Basic idea: visual angle between any pair of 2D points x; and x; in the image must be the
same as the visual angle between their corresponding 3D points p; and p;.

Let X, represent the unit vector pointing to image point x, from the camera centre ¢ :
%=N(K'%)=K'% /|K'%

the unknowns are the distances d; from the camera origin c to the 3D points p,, where

The cosine law for triangle A(c, p;, p;) gives us

fij(di,dj) = di + d5 — 2d;dje;; — d; = 0, D

where
Cz’j = COS ez'j = ZABZ . ZABj
and

di; = |p; — p;I*.

Thus any triplet of constraints f,.(d.,d. ), f, (d.,d,),f. |d.,d ) generates 3 equations in 3 unknowns.
y p ij P27 ik 27k Jjk J* "k
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End of Lecture
Nov 19, 2018
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Linear Algorithms ~ #%

% Two of the distances can be eliminated from the triplet of constraints to yield a quartic
equation ind.:

asds + asdS + asdi 4+ ards 4+ ag =0
n point correspondences generate (n—1)(n—2)/2 triplets.

pseudo-inverse can then be used to obtain estimates for (dfg ,df ,df ,df)

d; can then be estimated by averaging \/ d’/d’ ,\/ d’/d; ,\/ d'/d’ ,\/ d’.

Once the d; have been estimated, the 3D model can be aligned with the estimated 3D
points p; to estimate R and ¢.

R/
%

pi = ()(l) )/i)Zi: VVZ)

Pj
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Iterative Algorithms

¢ These minimal linear one-shot algorithms have limitations:

Noisy (few points)
Do not directly minimize error
¢ Given these limitations, they are most useful as a means to generate an initial guess
that can then be refined iteratively to minimize the reprojection error.
¢ Definition: Reprojection error

The deviation in the image between 2D 1mage points x; and their corresponding 3D points

pi, projected to the image.

h\ ® Computed 3D point

/| Q e  Point marked on the
| image

Reprojected point

Reprojection error

J. Elder
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lterative Algorithms =

% Let fnow represent projection to the image:
p proj g

** We now iteratively minimize a measure of the linearized reprojection error

of f
ENLP—ZP( AR—l— 8tAt+8—KAK_TZ>’

where r, = X, — X, is the current residual vector (2D error in predicted position)

and \ Sign reversed in textbook.

X, is the 2D image point.

X, 18 the current estimate of the projection of 3D point p, to the image.
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Iterative Algorithms SECHE

ENLP—ZQ( AR—I—afAt—F—fAK—TZ),

ot 0K

“* You can solve this minimization problem using

. MATLAB:
MATLAB Isgnonlin.

options.Algorithm = 'levenberg-marquardt';
p = Isqnonlin(fun,p0,[],[],options);

% If you compute the Jacobian analytically you can
supply 1t explicitly to Isqnonlin.

/7

% Otherwise, Isqnonlin will compute the Jacobian w = 0n

numerically. / \

Amount of rotation Axis of rotation

R/
X4

Rotation parameters can be represented in axis/

angle form MATLAB:
r = rotationMatrixToVector(R)

This 1s the classic way to calibrate a camera (i.e.,
to estimate K) in the lab.

R/
X4

** Check your solution by plotting the reprojected
points!
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MATLAB Implementation A

Additional parameters

MATLAB: ~ =

err = @(p) reprojerr(p,K,x,X);

options = optimoptions( ' lsgnonlin', 'Algorithm','levenberg-marquardt');
p = lsgnonlin(err,p,[]1,[],0ptions);

Initial guess

“* reprojerr is a user-supplied function that returns a column vector of signed deviations
(not squared).
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Calibration Pattern @ #50

To geometrically calibrate a camera, we employ a calibration rig with known 3D
dimensions.

R/
%®

R/
%®

If the r1g can be made large and placed distant from the camera, small variations in the
translation of the camera will have minor impact on the image, so only R and K need
to be estimated.

Y/
%?

However, in computer vision we commonly use smaller rigs and estimate ¢ as well.
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Standard Method (Zhang, 2000)

¢ In the standard approach, we capture multiple images of a planar rig from different

vantages, using the camera to be calibrated.

automatically or manually determined.

UUUUUUU

I TE

UUUUUUU

» Correspondences (x;, p;) between the 3D keypoints on the rig and 2D image points are

¢ For convenience, we employ a 3D world coordinate system anchored on the planar

rig, so that the homography mapping the 3D keypoints p; on the rig to 1image points x;

can be represented as

is:K[R‘t}Ew:PEw » izz

X

Yi
1

~ K ro T1 t]

X,
Y;
1

~ HZ_%

where rp and r; are the first two columns of R and ~ represents equality up to a scaling

factor.
<,

two-step process consisting of

Closed-form algebraic estimate

[terative minimization of geometric (maximum likelihood) solution
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¢ It can be shown (Zhang, 2000) that K can be recovered from two or more images in a
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Radial Distortion R

Y/

¢ Inradial distortion, points are displaced radially by an amount that
increases with their distance from the image centre

Barrel distortion: points are displaced away from the image centre

Barrel Distortion

Pincushion distortion: points are displaced towards the image centre

7/

¢ Radial distortion can be modelled by a 4th-order perturbation on
these coordinates:

Let (x¢, yc) be image coordinates after perspective projection but
before scaling by focal length and shifting by the optical centre.

T. = w(l+ /4:17"2 + /4:27“;4:)
?gc — yC(l =+ er? + /{27024:)7

2 _ .2 2
where 75 = 7 + y?

% Optimization of the radial distortion parameters x1 and k> can be
folded into the iterative phase of the standard nonlinear camera
calibration process.
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Self Calibration XORSAL

¢ Instead of using a known 3D calibration rig or known 3D object, can we use more
general regularities of our visual world to calibrate a camera?

¢ One 1dea 1s to use the preponderance of parallel lines present in many visual scenes.

Y/

% A strong form of this 1s the Manhattan World assumption

M -
Sl TR TR TR W TR\ ¥

k- B R R R RN
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3-Point Perspective S
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Vanishing Points and the Manhattan Frame

T Vertical vanishing
point

% (at infinit
Vanishing ( Y)
line
o= — ' — | ’
Vanis_hing Vanishing
point point _
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Vanishing Points SUCHE

¢ For convenience we assume a world coordinate frame aligned with the Manhattan
structure of the scene.

7/

 Now the 3D points we know are the back-projections of the three Manhattan vanishing
points, which lie at infinity along the three axes of the world frame.

¢ This allows us to drop the fourth column of the projection matrix P, as the [X, Y, Z]
components of the 3D world points p., dwarf the fourth augmented coordinate (1).

;‘izszK{R\t};—owzpﬁw el %= KRp,

where the p,, are simply the world axis directions (1, 0, 0), (0, 1, 0) and (0, O, 1).

74
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Self Calibration
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¢ The locations of Manhattan vanishing points in the images are determined by:

The camera rotation (3 dof)
The focal length (1 dof)

The principal point (2 dof)

fo s
0 fy
0 0

Cy
Cy
1

¢ If we assume a central principal point, zero skew and square pixels (fx = f,), then 2
vanishing points are in theory sufficient.

¢ If we have 3 vanishing points we can also estimate the principal point.

Scene

Manhattan Frame (3 dof)

I TY

Projection
>
Camera Image
Focal Length (1 dof) o .
Principal Point (2 dof) Vanishing Points (6 dof)

<€
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York Urban Database (2008) St

102 images of urban Toronto scenes

12,122 labelled Manhattan line segments

Estimates of ground truth Manhattan frame for each image (estimated accuracy ~1.5 deg)

EECS 4422/5323 Computer Vision

Denis, Elder & Estrada, ECCV 2008
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http://www.elderlab.yorku.ca/YorkUrbanDB

Application: Single-View 3D Reconstruction SR

- 5[X]

N

File Edit View Insert Tools Deskiop Window Help

‘ Load Image

Define Quadrilateral

Close
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Self-Calibration from Rotation @

*» Instead of assuming regularities in the world, we can take advantage of regularities in
the motion of the camera.

¢ In particular, suppose we take a series of images while the camera undergoes a pure
rotation about the optical centre (e.g., by spinning the camera on a tripod).

 Even though the scene is not planar, projection to the image 1s a 3x3 homography 1f
we centre the world frame at the optical centre of the camera, so that translation # 1s
always O:

i, =K| R|t|p,=Pp, == % =—KRp, = Hp,

¢ (From a purely rotational motion you have no way of knowing that the scene 1s not in
fact planar.)

% This means that points in any pair of frames (i, j) are also related by a homography:
ﬁij —= KzRZRj_lKj_l = KszjKj_l

where R is the inter-frame rotation.
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Self-Calibration from Rotation @

~

H;;=K,RR 'K, =K,R;K;"

** We can estimate each of these homographies by identifying at least four pairs of
matching points in each image.

¢ There are then various methods for estimating the intrinsic matrix K.

¢ For example, assuming that K is fixed, we observe that

~ ~ —T
R, ~K 'H;K and R;;’ ~K'H; K’

* and thus
T

~ ~ T ~ ~
R; =R, ——» K 'H;K~K H,; K' —— H,(KK")~(KK")H,,
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Self-Calibration from Rotation @

< Each pair of images (i, j) introduces a set of linear constraints on A = KK'

—T
iJ

H,;(KK")~(KK"H

/

* We first use SVD to solve the resulting over-constrained homogeneous system
Ma = 0, where a 1s a vector containing the six non-zero elements of A4.

R/

% We then solve for K using Cholesky decomposition.
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