
EECS 4422/5323 Computer Vision J. Elder

6.2 Pose Estimation & Calibration

!1

EECS 4422/5323 Computer Vision J. Elder

Outline

!2

❖ Object Pose Estimation

❖ Calibrating Cameras in the Lab

❖ Self-Calibration

EECS 4422/5323 Computer Vision J. Elder

Outline

!3

❖ Object Pose Estimation

❖ Calibrating Cameras in the Lab

❖ Self-Calibration

EECS 4422/5323 Computer Vision J. Elder

Problem Definition

!4

❖ Given:

๏ A 3D model of an object

๏ An image of the object

❖ Estimate:

๏ The 3D pose of the object relative to the camera

EECS 4422/5323 Computer Vision J. Elder

Perspective 3-Point Problem

!5

❖ How many degrees of freedom (parameters) are we estimating?

❖ How many point correspondences between 3D object and 2D image do we need?

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!6

❖ 3 x 4 camera projection matrix P

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

322 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(6.33)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
, (6.34)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.9 The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P , at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21–6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33–6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 ⇥ 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).10

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57–2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!7

322 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(6.33)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
, (6.34)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.9 The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P , at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21–6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33–6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 ⇥ 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).10

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57–2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

❖ As for estimation of 2D homographies, we can form a linear estimate of the
parameters pij by multiplying through by the denominator, which yields

Xi Yi Zi 1 0 0 0 0 −xiXi −xiYi −xiZi −xi
0 0 0 0 Xi Yi Zi 1 −yiXi −yiYi −yiZi −yi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p00
p01
!
p23

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0
0

⎡

⎣
⎢

⎤

⎦
⎥

❖ How many pairs of matching points do we need?

❖ Again, this estimate does not minimize the squared deviation but can be used as an
initial guess for an iterative solution.

❖ Solve using singular value decomposition (SVD).

MATLAB function svd(A)

EECS 4422/5323 Computer Vision J. Elder

SVD Solution for Projection Matrix P

!8

❖ In MATLAB: [U,S,V] = svd(A)

❖ The solution will be the last column of V

❖ This must then be reshaped into the 3 x 4 projection matrix P.

❖ Note that P is determined only up to a scaling constant (positive or negative).

A =UΣV⊤

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!9

❖ 3 x 4 camera projection matrix P

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Once P has been estimated, its constituents K, R and t can be recovered.

❖ Recall that R is orthonormal and K is normally treated as upper triangular:

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

fx and fy: encode focal length and pixel spacing,
which may be slightly different in x and y dimensions.

cx and cy: encode principal point (intersection of optic axis with sensor plane) - usually
very close to centre of image

s: encodes possible skew between sensor axes (usually close to 0).

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!10

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Thus K and R can be recovered from the first 3 columns of P using RQ decomposition.

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

Complexity: O MN 2 + N 3() for an M × N matrix (3× 3 in our case).

MATLAB function qr(A)

EECS 4422/5323 Computer Vision J. Elder

Constraints on Projection Matrix P

!11

❖ A = KR → |A| = |K||R|

❖ To be a pure rotation (no reflection), |R| = 1.

❖ K is triangular with positive diagonal elements →|K| > 0 as well.

❖ Thus |A| > 0

❖ Recall that P defined up to scale factor.

❖ Thus if |A| < 0 we multiply P by -1 so that |A| > 0.

Let A = P(:,1 : 3) = KR

EECS 4422/5323 Computer Vision J. Elder

❖ MATLAB has a QR function but no RQ function.

❖ To compute the RQ decomposition of A using the QR function:

❖ Observations:

๏ Pre-multiplication of a matrix B by M reverses the rows of B and post-multiplication
reverses the columns.

๏ MM = I, where I is the identity matrix.

RQ Decomposition of the Projection Matrix

!12

Let A = P(:,1 : 3) = KR

Let M !
0 0 1
0 1 0
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

EECS 4422/5323 Computer Vision J. Elder

Algorithm for Computing RQ from QR

!13

❖ MATLAB code:

❖ A = KR = RQ

1. Compute !A = MA

2. Compute !Q !R = !A⊤ using QR decomposition

3. Compute Q = M !Q⊤

4. Compute R = M !R⊤M

[Q,R] = qr(flipud(A)');
Q = flipud(Q');
R = flipud(fliplr(R'));

EECS 4422/5323 Computer Vision J. Elder

Identifying K, R and t

!14

❖ A = RQ

❖ R and Q are not uniquely defined:

❖ How many distinct D matrices are there?

❖ Which of the 8 decompositions do we choose?

❖ Constraint: all diagonal elements of R = K must be > 0.

๏ → Set Dii = sign(Rii)

Let D be a diagonal 3× 3 matrix with Dii = ±1, i ∈{1,2,3}

Let ′R = RD and ′Q = D-1Q

′R is still upper diagonal and ′Q is still orthonormal.

Thus A = ′R ′Q = RD() D-1Q() = RQ is also a solution.

A = KR = RQ

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!15

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

P =
p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Given a calibrated camera (K known), R and t can be recovered with as few as 3 matched
points

❖ Basic idea: visual angle between any pair of 2D points xi and xj in the image must be the
same as the visual angle between their corresponding 3D points pi and pj.

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!16

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Basic idea: visual angle between any pair of 2D points xi and xj in the image must be the
same as the visual angle between their corresponding 3D points pi and pj.

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

Thus any triplet of constraints fij di ,dj(), fik di ,dk(), f jk d j ,dk() generates 3 equations in 3 unknowns.

Let x̂i represent the unit vector pointing to image point xi from the camera centre c :

x̂i = N K−1 !xi() = K−1 !xi / K
−1 !xi

EECS 4422/5323 Computer Vision J. Elder

End of Lecture
Nov 19, 2018

!17

EECS 4422/5323 Computer Vision J. Elder

Linear Algorithms

!18

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

❖ Two of the distances can be eliminated from the triplet of constraints to yield a quartic
equation in

❖ Once the di have been estimated, the 3D model can be aligned with the estimated 3D
points pi to estimate R and t.

di
2:

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
θij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i,pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K�1xi) = K�1xi/kK�1xik, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle �(c,pi,pj) gives us

fij(di, dj) = d2
i

+ d2
j
� 2didjcij � d2

ij
= 0, (6.38)

where
cij = cos ✓ij = x̂i · x̂j (6.39)

and
d2

ij
= kpi � pjk2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i
,

gijk(d2
i
) = a4d

8
i

+ a3d
6
i

+ a2d
4
i

+ a1d
2
i

+ a0 = 0. (6.41)

Given five or more correspondences, we can generate (n�1)(n�2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i
, d6

i
, d4

i
, d2

i
) (Quan and Lan 1999). Estimates for

n point correspondences generate (n −1)(n − 2) / 2 triplets.

pseudo-inverse can then be used to obtain estimates for di
8 ,di

6 ,di
4 ,di

2()
di can then be estimated by averaging di

8 / di
6 , di

6 / di
4 , di

4 / di
2 , di

2 .

EECS 4422/5323 Computer Vision J. Elder

Iterative Algorithms

!19

❖ These minimal linear one-shot algorithms have limitations:

๏ Noisy (few points)

๏ Do not directly minimize error

❖ Given these limitations, they are most useful as a means to generate an initial guess
that can then be refined iteratively to minimize the reprojection error.

❖ Definition: Reprojection error

๏ The deviation in the image between 2D image points xi and their corresponding 3D points
pi, projected to the image.

EECS 4422/5323 Computer Vision J. Elder

Iterative Algorithms

!20

❖ Let f now represent projection to the image:

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d2
i

can computed as ratios of successive d2n+2
i

/d2n

i
estimates and these can be averaged to

obtain a final estimate of d2
i

(and hence di).
Once the individual estimates of the di distances have been computed, we can generate

a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi;R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =

X

i

⇢

✓
@f

@R
�R +

@f

@t
�t +

@f

@K
�K � ri

◆
, (6.43)

where ri = x̃i � x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

❖ We now iteratively minimize a measure of the linearized reprojection error

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d2
i

can computed as ratios of successive d2n+2
i

/d2n

i
estimates and these can be averaged to

obtain a final estimate of d2
i

(and hence di).
Once the individual estimates of the di distances have been computed, we can generate

a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi;R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =

X

i

⇢

✓
@f

@R
�R +

@f

@t
�t +

@f

@K
�K � ri

◆
, (6.43)

where ri = x̃i � x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

!xi is the current estimate of the projection of 3D point pi to the image.

x̂i is the 2D image point.

and

where ri = x̂i − !xi is the current residual vector (2D error in predicted position)

Sign reversed in textbook.

EECS 4422/5323 Computer Vision J. Elder

Iterative Algorithms

!21

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d2
i

can computed as ratios of successive d2n+2
i

/d2n

i
estimates and these can be averaged to

obtain a final estimate of d2
i

(and hence di).
Once the individual estimates of the di distances have been computed, we can generate

a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi;R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =

X

i

⇢

✓
@f

@R
�R +

@f

@t
�t +

@f

@K
�K � ri

◆
, (6.43)

where ri = x̃i � x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

❖ You can solve this minimization problem using
MATLAB lsqnonlin.

❖ If you compute the Jacobian analytically you can
supply it explicitly to lsqnonlin.

❖ Otherwise, lsqnonlin will compute the Jacobian
numerically.

❖ Rotation parameters can be represented in axis/
angle form

❖ This is the classic way to calibrate a camera (i.e.,
to estimate K) in the lab.

❖ Check your solution by plotting the reprojected
points!

MATLAB:
options.Algorithm = 'levenberg-marquardt';
p = lsqnonlin(fun,p0,[],[],options);

MATLAB:
r = rotationMatrixToVector(R)

2.1 Geometric primitives and transformations 41

v

v┴

n̂

v×

v║ v××
u┴

u

θ

Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T
)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T
)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

Axis of rotationAmount of rotation

EECS 4422/5323 Computer Vision J. Elder

MATLAB Implementation

!22

❖ reprojerr is a user-supplied function that returns a column vector of signed deviations
(not squared).

MATLAB:
err = @(p) reprojerr(p,K,x,X);
options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
p = lsqnonlin(err,p,[],[],options);

Initial guess

Additional parameters

}

EECS 4422/5323 Computer Vision J. Elder

Outline

!23

❖ Object Pose Estimation

❖ Calibrating Cameras in the Lab

❖ Self-Calibration

EECS 4422/5323 Computer Vision J. Elder

Calibration Pattern

!24

❖ To geometrically calibrate a camera, we employ a calibration rig with known 3D
dimensions.

❖ If the rig can be made large and placed distant from the camera, small variations in the
translation of the camera will have minor impact on the image, so only R and K need
to be estimated.

❖ However, in computer vision we commonly use smaller rigs and estimate t as well.
6.3 Geometric intrinsic calibration 329

(a) (b)

Figure 6.8 Calibration patterns: (a) a three-dimensional target (Quan and Lan 1999) c� 1999
IEEE; (b) a two-dimensional target (Zhang 2000) c� 2000 IEEE. Note that radial distortion
needs to be removed from such images before the feature points can be used for calibration.

by the calibration matrix K and non-linear effects such as radial distortion (Section 6.3.5).
A less cumbersome but also less accurate calibration can be obtained by waving a pla-

nar calibration pattern in front of a camera (Figure 6.8b). In this case, the pattern’s pose
has (in principle) to be recovered in conjunction with the intrinsics. In this technique, each
input image is used to compute a separate homography (6.19–6.23) H̃ mapping the plane’s
calibration points (Xi, Yi, 0) into image coordinates (xi, yi),

xi =

2

64
xi

yi

1

3

75 ⇠K
h

r0 r1 t
i
2

64
Xi

Yi

1

3

75 ⇠ H̃pi, (6.49)

where the ri are the first two columns of R and ⇠ indicates equality up to scale. From
these, Zhang (2000) shows how to form linear constraints on the nine entries in the B =

K�T K�1 matrix, from which the calibration matrix K can be recovered using a matrix
square root and inversion. (The matrix B is known as the image of the absolute conic (IAC)
in projective geometry and is commonly used for camera calibration (Hartley and Zisserman
2004, Section 7.5).) If only the focal length is being recovered, the even simpler approach of
using vanishing points can be used instead.

6.3.2 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at
a man-made scene with strong extended rectahedral objects such as boxes or room walls. In
this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
vanishing points, as described in Section 4.3.3, and use these to determine the intrinsic and
extrinsic calibration parameters (Caprile and Torre 1990; Becker and Bove 1995; Liebowitz

EECS 4422/5323 Computer Vision J. Elder

Standard Method (Zhang, 2000)

!25

❖ In the standard approach, we capture multiple images of a planar rig from different
vantages, using the camera to be calibrated.

❖ Correspondences (xi, pi) between the 3D keypoints on the rig and 2D image points are
automatically or manually determined.

❖ For convenience, we employ a 3D world coordinate system anchored on the planar
rig, so that the homography mapping the 3D keypoints pi on the rig to image points xi
can be represented as

where r0 and r1 are the first two columns of R and ~ represents equality up to a scaling
factor.

❖ It can be shown (Zhang, 2000) that K can be recovered from two or more images in a
two-step process consisting of

๏ Closed-form algebraic estimate

๏ Iterative minimization of geometric (maximum likelihood) solution

6.3 Geometric intrinsic calibration 329

(a) (b)

Figure 6.8 Calibration patterns: (a) a three-dimensional target (Quan and Lan 1999) c� 1999
IEEE; (b) a two-dimensional target (Zhang 2000) c� 2000 IEEE. Note that radial distortion
needs to be removed from such images before the feature points can be used for calibration.

by the calibration matrix K and non-linear effects such as radial distortion (Section 6.3.5).
A less cumbersome but also less accurate calibration can be obtained by waving a pla-

nar calibration pattern in front of a camera (Figure 6.8b). In this case, the pattern’s pose
has (in principle) to be recovered in conjunction with the intrinsics. In this technique, each
input image is used to compute a separate homography (6.19–6.23) H̃ mapping the plane’s
calibration points (Xi, Yi, 0) into image coordinates (xi, yi),

xi =

2

64
xi

yi

1

3

75 ⇠K
h

r0 r1 t
i
2

64
Xi

Yi

1

3

75 ⇠ H̃pi, (6.49)

where the ri are the first two columns of R and ⇠ indicates equality up to scale. From
these, Zhang (2000) shows how to form linear constraints on the nine entries in the B =

K�T K�1 matrix, from which the calibration matrix K can be recovered using a matrix
square root and inversion. (The matrix B is known as the image of the absolute conic (IAC)
in projective geometry and is commonly used for camera calibration (Hartley and Zisserman
2004, Section 7.5).) If only the focal length is being recovered, the even simpler approach of
using vanishing points can be used instead.

6.3.2 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at
a man-made scene with strong extended rectahedral objects such as boxes or room walls. In
this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
vanishing points, as described in Section 4.3.3, and use these to determine the intrinsic and
extrinsic calibration parameters (Caprile and Torre 1990; Becker and Bove 1995; Liebowitz

_ _

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

__

EECS 4422/5323 Computer Vision J. Elder

Radial Distortion

!26

❖ In radial distortion, points are displaced radially by an amount that
increases with their distance from the image centre

๏ Barrel distortion: points are displaced away from the image centre

๏ Pincushion distortion: points are displaced towards the image centre

❖ Radial distortion can be modelled by a 4th-order perturbation on
these coordinates:

๏ Let (xc, yc) be image coordinates after perspective projection but
before scaling by focal length and shifting by the optical centre.

❖ Optimization of the radial distortion parameters 𝜅1 and 𝜅2 can be
folded into the iterative phase of the standard nonlinear camera
calibration process.

58 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

are known). The inverse distance ⌘z is now mostly decoupled from the estimates of s and
can be estimated from the amount of foreshortening as the object rotates. Furthermore, as
the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to
replace a perspective imaging model with an orthographic one, since the same equation can
be used, with ⌘z ! 0 (as opposed to f and tz both going to infinity). This allows us to form
a natural link between orthographic reconstruction techniques such as factorization and their
projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where
straight lines in the world result in straight lines in the image. (This follows as a natural
consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as
a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed
discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into
account, it becomes impossible to create highly accurate photorealistic reconstructions. For
example, image mosaics constructed without taking radial distortion into account will often
exhibit blurring due to the mis-registration of corresponding features before pixel blending
(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most
lenses, a simple quartic model of distortion can produce good results. Let (xc, yc) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and
shifting by the optical center (cx, cy), i.e.,

xc =
rx · p + tx
rz · p + tz

yc =
ry · p + ty
rz · p + tz

. (2.77)

The radial distortion model says that coordinates in the observed images are displaced away
(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a–b).3 The simplest radial distortion models use
low-order polynomials, e.g.,

x̂c = xc(1 + 1r
2
c

+ 2r
4
c
)

ŷc = yc(1 + 1r
2
c

+ 2r
4
c
), (2.78)

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non-square pixels.

2.1 Geometric primitives and transformations 59

(a) (b) (c)

Figure 2.13 Radial lens distortions: (a) barrel, (b) pincushion, and (c) fisheye. The fisheye
image spans almost 180

� from side-to-side.

where r2
c

= x2
c

+ y2
c

and 1 and 2 are called the radial distortion parameters.4 After the
radial distortion step, the final pixel coordinates can be computed using

xs = fx0
c
+ cx

ys = fy0
c
+ cy. (2.79)

A variety of techniques can be used to estimate the radial distortion parameters for a given
lens, as discussed in Section 6.3.5.

Sometimes the above simplified model does not model the true distortions produced by
complex lenses accurately enough (especially at very wide angles). A more complete ana-
lytic model also includes tangential distortions and decentering distortions (Slama 1980), but
these distortions are not covered in this book.

Fisheye lenses (Figure 2.13c) require a model that differs from traditional polynomial
models of radial distortion. Fisheye lenses behave, to a first approximation, as equi-distance
projectors of angles away from the optical axis (Xiong and Turkowski 1997), which is the
same as the polar projection described by Equations (9.22–9.24). Xiong and Turkowski
(1997) describe how this model can be extended with the addition of an extra quadratic cor-
rection in � and how the unknown parameters (center of projection, scaling factor s, etc.)
can be estimated from a set of overlapping fisheye images using a direct (intensity-based)
non-linear minimization algorithm.

For even larger, less regular distortions, a parametric distortion model using splines may
be necessary (Goshtasby 1989). If the lens does not have a single center of projection, it

4 Sometimes the relationship between xc and x̂c is expressed the other way around, i.e., xc = x̂c(1 + 1r̂2
c +

2r̂4
c). This is convenient if we map image pixels into (warped) rays by dividing through by f . We can then undistort

the rays and have true 3D rays in space.

EECS 4422/5323 Computer Vision J. Elder

Outline

!27

❖ Object Pose Estimation

❖ Calibrating Cameras in the Lab

❖ Self-Calibration

EECS 4422/5323 Computer Vision J. Elder

Self Calibration

!28

❖ Instead of using a known 3D calibration rig or known 3D object, can we use more
general regularities of our visual world to calibrate a camera?

❖ One idea is to use the preponderance of parallel lines present in many visual scenes.

❖ A strong form of this is the Manhattan World assumption

EECS 4422/5323 Computer Vision J. Elder

3-Point Perspective

!29

EECS 4422/5323 Computer Vision J. Elder

Vanishing Points and the Manhattan Frame

!30

EECS 4422/5323 Computer Vision J. Elder

Vanishing Points

!31

❖ For convenience we assume a world coordinate frame aligned with the Manhattan
structure of the scene.

❖ Now the 3D points we know are the back-projections of the three Manhattan vanishing
points, which lie at infinity along the three axes of the world frame.

❖ This allows us to drop the fourth column of the projection matrix P, as the [X, Y, Z]
components of the 3D world points pw dwarf the fourth augmented coordinate (1).

where the pw are simply the world axis directions (1, 0, 0), (0, 1, 0) and (0, 0, 1).

_

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

_
!xs = KRpw

EECS 4422/5323 Computer Vision J. Elder

Self Calibration

!32

❖ The locations of Manhattan vanishing points in the images are determined by:

๏ The camera rotation (3 dof)

๏ The focal length (1 dof)

๏ The principal point (2 dof)

❖ If we assume a central principal point, zero skew and square pixels (fx = fy), then 2
vanishing points are in theory sufficient.

❖ If we have 3 vanishing points we can also estimate the principal point.

ImageScene Camera

Manhattan Frame (3 dof) Focal Length (1 dof)
Principal Point (2 dof) Vanishing Points (6 dof)

Projection

Inverse Inference

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

zcxc

0
ycxs

ys

W-1

H-1

(cx,cy)0 f

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(cx, cy). The image width and height are W and H .

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

K =

2

64
fx s cx

0 fy cy

0 0 1

3

75 , (2.57)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (cx, cy) denotes the optical center expressed in pixel
coordinates. Another possibility is

K =

2

64
f s cx

0 af cy

0 0 1

3

75 , (2.58)

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1

and s = 0,

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.59)

Often, setting the origin at roughly the center of the image, e.g., (cx, cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f .

EECS 4422/5323 Computer Vision J. Elder

York Urban Database (2008)

!33

❖ www.elderlab.yorku.ca/YorkUrbanDB
๏ 102 images of urban Toronto scenes

๏ 12,122 labelled Manhattan line segments

๏ Estimates of ground truth Manhattan frame for each image (estimated accuracy ~1.5 deg)

Patrick Denis

Denis, Elder & Estrada, ECCV 2008

http://www.elderlab.yorku.ca/YorkUrbanDB

EECS 4422/5323 Computer Vision J. Elder

Application: Single-View 3D Reconstruction

!34

Patrick Denis

Denis, Elder & Estrada, ECCV 2008

EECS 4422/5323 Computer Vision J. Elder

Self-Calibration from Rotation

!35

❖ Instead of assuming regularities in the world, we can take advantage of regularities in
the motion of the camera.

❖ In particular, suppose we take a series of images while the camera undergoes a pure
rotation about the optical centre (e.g., by spinning the camera on a tripod).

❖ Even though the scene is not planar, projection to the image is a 3x3 homography if
we centre the world frame at the optical centre of the camera, so that translation t is
always 0:

❖ (From a purely rotational motion you have no way of knowing that the scene is not in
fact planar.)

❖ This means that points in any pair of frames (i, j) are also related by a homography:

2.1 Geometric primitives and transformations 51

The matrix M s is parameterized by eight unknowns: the three parameters describing
the rotation Rs, the three parameters describing the translation cs, and the two scale factors
(sx, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M s with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
so most practitioners assume a general 3⇥ 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point pc is
given by an unknown scaling s, p = spc. We can therefore write the complete projection
between pc and a homogeneous version of the pixel address x̃s as

x̃s = ↵M�1
s

pc = Kpc. (2.54)

The 3 ⇥ 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3⇥3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of
measurements,

x̃s = K
h

R t
i
pw = Ppw, (2.55)

where pw are known 3D world coordinates and

P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R1 and pre-multiply [R|t] by RT

1 , and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3⇥ 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

_
!xs = KRpw = !Hpw

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

where Rij is the inter-frame rotation.

EECS 4422/5323 Computer Vision J. Elder

Self-Calibration from Rotation

!36

❖ We can estimate each of these homographies by identifying at least four pairs of
matching points in each image.

❖ There are then various methods for estimating the intrinsic matrix K.

❖ For example, assuming that K is fixed, we observe that

❖ and thus

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

and

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

EECS 4422/5323 Computer Vision J. Elder

Self-Calibration from Rotation

!37

❖ Each pair of images (i, j) introduces a set of linear constraints on

❖ We first use SVD to solve the resulting over-constrained homogeneous system
Ma = 0, where a is a vector containing the six non-zero elements of A.

❖ We then solve for K using Cholesky decomposition.

6.3 Geometric intrinsic calibration 333

Ki and Kj ,
H̃ij = KiRiR

�1
j

K�1
j

= KiRijK
�1
j

. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (x, y) = (0, 0) at the center of the image.) We can then rewrite
Equation (6.52) as

R10 ⇠K�1
1 H̃10K0 ⇠

2

64
h00 h01 f�1

0 h02

h10 h11 f�1
0 h12

f1h20 f1h21 f�1
0 f1h22

3

75 , (6.53)

where hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

h2
00 + h2

01 + f�2
0 h2

02 = h2
10 + h2

11 + f�2
0 h2

12 (6.54)

and
h00h10 + h01h11 + f�2

0 h02h12 = 0. (6.55)

From this, we can compute estimates for f0 of

f2
0 =

h2
12 � h2

02

h2
00 + h2

01 � h2
10 � h2

11

if h
2
00 + h

2
01 6= h

2
10 + h

2
11 (6.56)

or
f2
0 = � h02h12

h00h10 + h01h11
if h00h10 6= �h01h11. (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f1 as well, by analyzing the columns of H̃10. If the focal
length is the same for both images, we can take the geometric mean of f0 and f1 as the
estimated focal length f =

p
f1f0. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.
A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-

parameter camera Ki = K using the technique of Hartley (1997b). Observe from (6.52)
that Rij ⇠ K�1H̃ijK and R�T

ij
⇠ KT H̃

�T

ij
K�T . Equating Rij = R�T

ij
we obtain

K�1H̃ijK ⇠KT H̃
�T

ij
K�T , from which we get

H̃ij(KKT
) ⇠ (KKT

)H̃
�T

ij
. (6.58)

A ! KK⊤

EECS 4422/5323 Computer Vision J. Elder

Outline

!38

❖ Object Pose Estimation

❖ Calibrating Cameras in the Lab

❖ Self-Calibration

