6.2 Pose Estimation \& Calibration

Outline

* Object Pose Estimation
* Calibrating Cameras in the Lab
* Self-Calibration

Outline

* Object Pose Estimation
* Calibrating Cameras in the Lab
* Self-Calibration

Problem Definition

* Given:
- A 3D model of an object
- An image of the object
* Estimate:
- The 3D pose of the object relative to the camera

Perspective 3-Point Problem

* How many degrees of freedom (parameters) are we estimating?
* How many point correspondences between 3D object and 2D image do we need?

Linear Algorithms

* 3×4 camera projection matrix \boldsymbol{P}

$$
\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w}
$$

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23}
\end{array}\right]
$$

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

Linear Algorithms

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

* As for estimation of 2D homographies, we can form a linear estimate of the parameters $p_{i j}$ by multiplying through by the denominator, which yields

$$
\left[\begin{array}{cccccccccccc}
X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & -x_{i} X_{i} & -x_{i} Y_{i} & -x_{i} Z_{i} & -x_{i} \\
0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -y_{i} X_{i} & -y_{i} Y_{i} & -y_{i} Z_{i} & -y_{i}
\end{array}\right]\left[\begin{array}{c}
p_{00} \\
p_{01} \\
\vdots \\
p_{23}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

* How many pairs of matching points do we need?
* Again, this estimate does not minimize the squared deviation but can be used as an initial guess for an iterative solution.
* Solve using singular value decomposition (SVD).

MATLAB function $\operatorname{svd}(\mathrm{A})$

SVD Solution for Projection Matrix P

$\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$

* In MATLAB: $[\boldsymbol{U}, \boldsymbol{S}, \boldsymbol{V}]=\operatorname{svd}(\boldsymbol{A})$
* The solution will be the last column of \boldsymbol{V}
* This must then be reshaped into the 3×4 projection matrix \boldsymbol{P}.
* Note that \boldsymbol{P} is determined only up to a scaling constant (positive or negative).

Linear Algorithms

* 3×4 camera projection matrix \boldsymbol{P}

$$
\begin{aligned}
& \tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w} \\
& \boldsymbol{P}=\left[\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23}
\end{array}\right]
\end{aligned}
$$

* Once \boldsymbol{P} has been estimated, its constituents $\boldsymbol{K}, \boldsymbol{R}$ and \boldsymbol{t} can be recovered.
* Recall that \boldsymbol{R} is orthonormal and \boldsymbol{K} is normally treated as upper triangular:

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

f_{x} and f_{y} : encode focal length and pixel spacing, which may be slightly different in x and y dimensions.
c_{x} and c_{y} : encode principal point (intersection of optic axis with sensor plane) - usually very close to centre of image
s : encodes possible skew between sensor axes (usually close to 0).

Linear Algorithms

* Thus \boldsymbol{K} and \boldsymbol{R} can be recovered from the first 3 columns of \boldsymbol{P} using RQ decomposition.

Complexity: $O\left(M N^{2}+N^{3}\right)$ for an $M \times N$ matrix (3×3 in our case).

MATLAB function $\mathrm{qr}(\mathrm{A})$

Constraints on Projection Matrix P

Let $\boldsymbol{A}=\boldsymbol{P}(:, 1: 3)=\boldsymbol{K} \boldsymbol{R}$

* $\boldsymbol{A}=\boldsymbol{K} \boldsymbol{R} \rightarrow|\boldsymbol{A}|=|\boldsymbol{K}||\boldsymbol{R}|$
* To be a pure rotation (no reflection), $|\boldsymbol{R}|=1$.
* K is triangular with positive diagonal elements $\rightarrow|\boldsymbol{K}|>0$ as well.
* Thus $|\boldsymbol{A}|>0$
* Recall that \boldsymbol{P} defined up to scale factor.
* Thus if $|\boldsymbol{A}|<0$ we multiply \boldsymbol{P} by -1 so that $|\boldsymbol{A}|>0$.

Let $\boldsymbol{A}=\boldsymbol{P}(:, 1: 3)=\boldsymbol{K} \boldsymbol{R}$

* MATLAB has a QR function but no RQ function.
* To compute the RQ decomposition of \boldsymbol{A} using the QR function:

Let $M \triangleq\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

* Observations:
- Pre-multiplication of a matrix \boldsymbol{B} by \boldsymbol{M} reverses the rows of \boldsymbol{B} and post-multiplication reverses the columns.
- $\boldsymbol{M M}=\boldsymbol{I}$, where \boldsymbol{I} is the identity matrix.

Algorithm for Computing RQ from QR

1. Compute $\tilde{\boldsymbol{A}}=\boldsymbol{M A}$
2. Compute $\tilde{\boldsymbol{Q}} \tilde{\boldsymbol{R}}=\tilde{\boldsymbol{A}}^{\top}$ using QR decomposition
3. Compute $\boldsymbol{Q}=\boldsymbol{M} \tilde{\boldsymbol{Q}}^{\top}$
4. Compute $\boldsymbol{R}=\boldsymbol{M} \tilde{\boldsymbol{R}}^{\top} \boldsymbol{M}$

- MATLAB code:

$$
\begin{aligned}
& {[Q, R]=q r\left(f l i p u d(A)^{\prime}\right) ;} \\
& Q=f l i p u d\left(Q^{\prime}\right) ; \\
& R=f l i p u d\left(f l i p l r\left(R^{\prime}\right)\right) ;
\end{aligned}
$$

* $A=K R=R Q$

Identifying $\boldsymbol{K}, \boldsymbol{R}$ and \boldsymbol{t}

- $A=\boldsymbol{R} \boldsymbol{Q}$
* \boldsymbol{R} and \boldsymbol{Q} are not uniquely defined:

Let \boldsymbol{D} be a diagonal 3×3 matrix with $D_{i i}= \pm 1, i \in\{1,2,3\}$

* How many distinct \boldsymbol{D} matrices are there?

Let $\boldsymbol{R}^{\prime}=\boldsymbol{R D}$ and $\boldsymbol{Q}^{\prime}=\boldsymbol{D}^{-1} \boldsymbol{Q}$
\boldsymbol{R}^{\prime} is still upper diagonal and \boldsymbol{Q}^{\prime} is still orthonormal.

$$
A=K R=R Q
$$

Thus $\boldsymbol{A}=\boldsymbol{R}^{\prime} \boldsymbol{Q}^{\prime}=(\boldsymbol{R} \boldsymbol{D})\left(\boldsymbol{D}^{-1} \boldsymbol{Q}\right)=\boldsymbol{R} \boldsymbol{Q}$ is also a solution.

* Which of the 8 decompositions do we choose?
* Constraint: all diagonal elements of $\boldsymbol{R}=\boldsymbol{K}$ must be >0.
- \rightarrow Set $\boldsymbol{D}_{i i}=\operatorname{sign}\left(\boldsymbol{R}_{i i}\right)$

Linear Algorithms

* Given a calibrated camera (\boldsymbol{K} known), \boldsymbol{R} and \boldsymbol{t} can be recovered with as few as 3 matched points
* Basic idea: visual angle between any pair of 2D points \boldsymbol{x}_{i} and \boldsymbol{x}_{j} in the image must be the same as the visual angle between their corresponding 3D points \boldsymbol{p}_{i} and \boldsymbol{p}_{j}.

Linear Algorithms

* Basic idea: visual angle between any pair of 2D points \boldsymbol{x}_{i} and \boldsymbol{x}_{j} in the image must be the same as the visual angle between their corresponding 3D points \boldsymbol{p}_{i} and \boldsymbol{p}_{j}.
Let $\hat{\boldsymbol{x}}_{i}$ represent the unit vector pointing to image point \boldsymbol{x}_{i} from the camera centre \boldsymbol{c} :
$\hat{x}_{i}=\mathcal{N}\left(\boldsymbol{K}^{-1} \tilde{\boldsymbol{x}}_{i}\right)=\boldsymbol{K}^{-1} \tilde{\boldsymbol{x}}_{i} /\left\|\boldsymbol{K}^{-1} \tilde{\boldsymbol{x}}_{i}\right\|$
the unknowns are the distances d_{i} from the camera origin \boldsymbol{c} to the 3D points \boldsymbol{p}_{i}, where

$$
\boldsymbol{p}_{i}=d_{i} \hat{\boldsymbol{x}}_{i}+\boldsymbol{c}
$$

The cosine law for triangle $\Delta\left(\boldsymbol{c}, \boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$ gives us

$$
f_{i j}\left(d_{i}, d_{j}\right)=d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} c_{i j}-d_{i j}^{2}=0,
$$

where

$$
c_{i j}=\cos \theta_{i j}=\hat{\boldsymbol{x}}_{i} \cdot \hat{\boldsymbol{x}}_{j}
$$

and

$$
d_{i j}^{2}=\left\|\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right\|^{2} .
$$

Thus any triplet of constraints $f_{i j}\left(d_{i}, d_{j}\right), f_{i k}\left(d_{i}, d_{k}\right), f_{j k}\left(d_{j}, d_{k}\right)$ generates 3 equations in 3 unknowns.

End of Lecture
 Nov 19, 2018

Linear Algorithms

* Two of the distances can be eliminated from the triplet of constraints to yield a quartic equation in d_{i}^{2} :

$$
a_{4} d_{i}^{8}+a_{3} d_{i}^{6}+a_{2} d_{i}^{4}+a_{1} d_{i}^{2}+a_{0}=0
$$

n point correspondences generate $(n-1)(n-2) / 2$ triplets. pseudo-inverse can then be used to obtain estimates for $\left(\mathrm{d}_{i}^{8}, \mathrm{~d}_{i}^{6}, \mathrm{~d}_{i}^{4}, \mathrm{~d}_{i}^{2}\right)$
d_{i} can then be estimated by averaging $\sqrt{d_{i}^{8} / d_{i}^{6}}, \sqrt{d_{i}^{6} / d_{i}^{4}}, \sqrt{d_{i}^{4} / d_{i}^{2}}, \sqrt{d_{i}^{2}}$.

* Once the d_{i} have been estimated, the 3D model can be aligned with the estimated 3D points \boldsymbol{p}_{i} to estimate \boldsymbol{R} and \boldsymbol{t}.

Iterative Algorithms

* These minimal linear one-shot algorithms have limitations:
- Noisy (few points)
- Do not directly minimize error
* Given these limitations, they are most useful as a means to generate an initial guess that can then be refined iteratively to minimize the reprojection error.
* Definition: Reprojection error
- The deviation in the image between 2D image points \boldsymbol{x}_{i} and their corresponding 3D points \boldsymbol{p}_{i}, projected to the image.

Iterative Algorithms

* Let \boldsymbol{f} now represent projection to the image:
$\boldsymbol{x}_{i}=\boldsymbol{f}\left(\boldsymbol{p}_{i} ; \boldsymbol{R}, \boldsymbol{t}, \boldsymbol{K}\right)$
* We now iteratively minimize a measure of the linearized reprojection error $E_{\mathrm{NLP}}=\sum_{i} \rho\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{R}} \Delta \boldsymbol{R}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{t}} \Delta \boldsymbol{t}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{K}} \Delta \boldsymbol{K}-\boldsymbol{r}_{i}\right)$,
where $\boldsymbol{r}_{i}=\hat{\boldsymbol{x}}_{i}-\tilde{\boldsymbol{x}}_{i}$ is the current residual vector (2D error in predicted position) and Sign reversed in textbook.
$\hat{\boldsymbol{x}}_{i}$ is the 2D image point.
$\tilde{\boldsymbol{x}}_{i}$ is the current estimate of the projection of 3 D point \boldsymbol{p}_{i} to the image.

Iterative Algorithms

$E_{\mathrm{NLP}}=\sum_{i} \rho\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{R}} \Delta \boldsymbol{R}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{t}} \Delta \boldsymbol{t}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{K}} \Delta \boldsymbol{K}-\boldsymbol{r}_{i}\right)$,

* You can solve this minimization problem using MATLAB Isqnonlin.

MATLAB:

options.Algorithm = 'levenberg-marquardt'; p = 1sqnonlin(fun,p0,[],[],options);

* If you compute the Jacobian analytically you can supply it explicitly to lsqnonlin.
* Otherwise, lsqnonlin will compute the Jacobian numerically.
* Rotation parameters can be represented in axis/ angle form

MATLAB:
$\mathrm{r}=\operatorname{rotationMatrixToVector}(\mathrm{R})$

* This is the classic way to calibrate a camera (i.e., to estimate \boldsymbol{K}) in the lab.
* Check your solution by plotting the reprojected points!

MATLAB Implementation

* reprojerr is a user-supplied function that returns a column vector of signed deviations (not squared).

Outline

* Object Pose Estimation
* Calibrating Cameras in the Lab
* Self-Calibration

Calibration Pattern

* To geometrically calibrate a camera, we employ a calibration rig with known 3D dimensions.
* If the rig can be made large and placed distant from the camera, small variations in the translation of the camera will have minor impact on the image, so only \boldsymbol{R} and \boldsymbol{K} need to be estimated.
* However, in computer vision we commonly use smaller rigs and estimate \boldsymbol{t} as well.

Standard Method (Zhang, 2000)

* In the standard approach, we capture multiple images of a planar rig from different vantages, using the camera to be calibrated.
* Correspondences $\left(\boldsymbol{x}_{i}, \boldsymbol{p}_{i}\right)$ between the 3D keypoints on the rig and 2D image points are automatically or manually determined.
* For convenience, we employ a 3D world coordinate system anchored on the planar rig, so that the homography mapping the 3D keypoints $\boldsymbol{p}_{\mathrm{i}}$ on the rig to image points $\boldsymbol{x}_{\mathrm{i}}$ can be represented as
$\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w} \longrightarrow \overline{\boldsymbol{x}}_{i}=\left[\begin{array}{c}x_{i} \\ y_{i} \\ 1\end{array}\right] \sim \boldsymbol{K}\left[\begin{array}{lll}\boldsymbol{r}_{0} & \boldsymbol{r}_{1} & \boldsymbol{t}\end{array}\right]\left[\begin{array}{c}X_{i} \\ Y_{i} \\ 1\end{array}\right] \sim \tilde{\boldsymbol{H}} \overline{\boldsymbol{p}}_{i}$
where \boldsymbol{r}_{0} and \boldsymbol{r}_{1} are the first two columns of \boldsymbol{R} and \sim represents equality up to a scaling factor.
* It can be shown (Zhang, 2000) that K can be recovered from two or more images in a two-step process consisting of
- Closed-form algebraic estimate
- Iterative minimization of geometric (maximum likelihood) solution

Radial Distortion

* In radial distortion, points are displaced radially by an amount that increases with their distance from the image centre
- Barrel distortion: points are displaced away from the image centre
- Pincushion distortion: points are displaced towards the image centre
* Radial distortion can be modelled by a 4th-order perturbation on these coordinates:
- Let $\left(x_{c}, y_{c}\right)$ be image coordinates after perspective projection but before scaling by focal length and shifting by the optical centre.

$$
\begin{aligned}
\hat{x}_{c} & =x_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right) \\
\hat{y}_{c} & =y_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right),
\end{aligned}
$$

where $r_{c}^{2}=x_{c}^{2}+y_{c}^{2}$

* Optimization of the radial distortion parameters κ_{1} and κ_{2} can be
 folded into the iterative phase of the standard nonlinear camera calibration process.

Outline

* Object Pose Estimation
* Calibrating Cameras in the Lab
* Self-Calibration

Self Calibration

* Instead of using a known 3D calibration rig or known 3D object, can we use more general regularities of our visual world to calibrate a camera?
* One idea is to use the preponderance of parallel lines present in many visual scenes.
* A strong form of this is the Manhattan World assumption

3-Point Perspective

Vanishing Points and the Manhattan Frame

Vanishing Points

* For convenience we assume a world coordinate frame aligned with the Manhattan structure of the scene.
* Now the 3D points we know are the back-projections of the three Manhattan vanishing points, which lie at infinity along the three axes of the world frame.
* This allows us to drop the fourth column of the projection matrix \boldsymbol{P}, as the $[X, Y, Z]$ components of the 3D world points \boldsymbol{p}_{w} dwarf the fourth augmented coordinate (1).

$$
\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \overline{\boldsymbol{p}}_{w} \longrightarrow \tilde{\boldsymbol{x}}_{s}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{p}_{w}
$$

where the \boldsymbol{p}_{w} are simply the world axis directions $(1,0,0),(0,1,0)$ and $(0,0,1)$.

Self Calibration

* The locations of Manhattan vanishing points in the images are determined by:
- The camera rotation (3 dof)
- The focal length (1 dof)
- The principal point (2 dof)

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

* If we assume a central principal point, zero skew and square pixels $\left(f_{x}=f_{y}\right)$, then 2 vanishing points are in theory sufficient.
* If we have 3 vanishing points we can also estimate the principal point.

Projection

Inverse Inference

York Urban Database (2008)

www.elderlab.yorku.ca/YorkUrbanDB

- 102 images of urban Toronto scenes
- 12,122 labelled Manhattan line segments
- Estimates of ground truth Manhattan frame for each image (estimated accuracy $\sim 1.5 \mathrm{deg}$)

Denis, Elder \& Estrada, ECCV 2008

Application: Single-View 3D Reconstruction

Patrick Denis

Self-Calibration from Rotation

* Instead of assuming regularities in the world, we can take advantage of regularities in the motion of the camera.
* In particular, suppose we take a series of images while the camera undergoes a pure rotation about the optical centre (e.g., by spinning the camera on a tripod).
* Even though the scene is not planar, projection to the image is a 3×3 homography if we centre the world frame at the optical centre of the camera, so that translation \boldsymbol{t} is always 0 :

$$
\tilde{\boldsymbol{x}}_{s}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}] \overline{\boldsymbol{p}}_{w}=\boldsymbol{P} \boldsymbol{p}_{w} \longrightarrow \tilde{\boldsymbol{x}}_{s}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{p}_{w}=\tilde{\boldsymbol{H}} \boldsymbol{p}_{w}
$$

* (From a purely rotational motion you have no way of knowing that the scene is not in fact planar.)
* This means that points in any pair of frames (i, j) are also related by a homography:
$\tilde{\boldsymbol{H}}_{i j}=\boldsymbol{K}_{i} \boldsymbol{R}_{i} \boldsymbol{R}_{j}^{-1} \boldsymbol{K}_{j}^{-1}=\boldsymbol{K}_{i} \boldsymbol{R}_{i j} \boldsymbol{K}_{j}^{-1}$
where $\boldsymbol{R}_{i j}$ is the inter-frame rotation.

Self-Calibration from Rotation

$$
\tilde{\boldsymbol{H}}_{i j}=\boldsymbol{K}_{i} \boldsymbol{R}_{i} \boldsymbol{R}_{j}^{-1} \boldsymbol{K}_{j}^{-1}=\boldsymbol{K}_{i} \boldsymbol{R}_{i j} \boldsymbol{K}_{j}^{-1}
$$

* We can estimate each of these homographies by identifying at least four pairs of matching points in each image.
* There are then various methods for estimating the intrinsic matrix \boldsymbol{K}.
* For example, assuming that \boldsymbol{K} is fixed, we observe that

$$
\boldsymbol{R}_{i j} \sim \boldsymbol{K}^{-1} \tilde{\boldsymbol{H}}_{i j} \boldsymbol{K} \quad \text { and } \quad \boldsymbol{R}_{i j}^{-T} \sim \boldsymbol{K}^{T} \tilde{\boldsymbol{H}}_{i j}^{-T} \boldsymbol{K}^{-T}
$$

- and thus

$$
\boldsymbol{R}_{i j}=\boldsymbol{R}_{i j}^{-T} \longrightarrow \boldsymbol{K}^{-1} \tilde{\boldsymbol{H}}_{i j} \boldsymbol{K} \sim \boldsymbol{K}^{T} \tilde{\boldsymbol{H}}_{i j}^{-T} \boldsymbol{K}^{-T} \longrightarrow \tilde{\boldsymbol{H}}_{i j}\left(\boldsymbol{K} \boldsymbol{K}^{T}\right) \sim\left(\boldsymbol{K} \boldsymbol{K}^{T}\right) \tilde{\boldsymbol{H}}_{i j}^{-T}
$$

Self-Calibration from Rotation

* Each pair of images (i, j) introduces a set of linear constraints on $\boldsymbol{A} \triangleq \boldsymbol{K} \boldsymbol{K}^{\top}$

$$
\tilde{\boldsymbol{H}}_{i j}\left(\boldsymbol{K} \boldsymbol{K}^{T}\right) \sim\left(\boldsymbol{K} \boldsymbol{K}^{T}\right) \tilde{\boldsymbol{H}}_{i j}^{-T}
$$

* We first use SVD to solve the resulting over-constrained homogeneous system $\boldsymbol{M a}=\mathbf{0}$, where \boldsymbol{a} is a vector containing the six non-zero elements of \boldsymbol{A}.
* We then solve for \boldsymbol{K} using Cholesky decomposition.

Outline

* Object Pose Estimation
* Calibrating Cameras in the Lab
* Self-Calibration

