
p. 1 of 16

Final Exam
CSE 1020 3.0
Section M, Winter 2010

Family Name:

Given Name(s):

Student Number: | | | | | | | | | |

Guidelines and Instructions:

1. This is a 90-minute exam. You can use the textbook, but no electronic aids such as
calculators, cellphones etc.

2. Answer questions in the space provided. If you need more space, use the back of
the page. Clearly indicate that your answer continues on the back of the page.

3. Write legibly. Unreadable answers will not be marked.

4. Leave your ID on the desk. A sign-up sheet will be distributed during the test. By
signing it, you acknowledge that you are registered in the course and you are the
owner of the associated ID.

5. Keep your eyes on your own work. At the discretion of the invigilators, students
may be asked to move.

Question Out of Mark

Q1 34

Q2 36

Q3 30

Total 100

Letter grade

p. 2 of 16
Q1. [34 marks] Suppose that you are asked to test an app that accepts as input a nu-

merical range and prints out all the numbers in that range separated by spaces. An
example run for such an app would be:

Enter a numerical range: 1-9

1 2 3 4 5 6 7 8 9

If the bounds of the range are given in descending order, no output should be pro-
duced, as in:

Enter a numerical range: 13-9

The implementation you are testing is shown below. It compiles with no errors.
Pages 225-228 in the textbook contain descriptions of the methods used in this app.

import java.util.Scanner;

import java.io.PrintStream;

public class Q1

{

public static void main(String[] args)

{

Scanner input = new Scanner(System.in);

PrintStream output = System.out;

output.print("Enter a numerical range: ");

String str = input.nextLine();

int dash = str.indexOf("-");

String left = str.substring(0, dash);

String right = str.substring(dash + 1);

int begin = Integer.parseInt(left);

int end = Integer.parseInt(right);

for (int i = begin; i < end; i++)

{

output.print(i + " ");

}

output.println(end);

}

}

p. 3 of 16
In the space below and on the next page, describe a set of test cases that you would
develop for this app. For each test case, indicate whether it will pass, reveal a logic
error, or produce a run-time error. For every test case that does not pass, indicate
how you would fix the problem. You do not have to provide exact code, simply a
description of the changes you would make.

p. 4 of 16
There is a bug: Input 13-9 produces 13 instead of nothing. Also, if there is no dash
or non-numbers, there will be exceptions similar to the example in the textbook. All
other test cases should pass.

4 marks: Upper bound > Lower bound. Works ok.

4 marks: Upper bound = Lower bound. Works ok.

6 marks: Upper bound < Lower bound. Produces output instead of nothing. Add
if statement.

6 marks: Negative numbers. NumberFormat Exception if the first number is nega-
tive, logic error similar to Upper bound < Lower bound if only the second number
is negative.

4 marks: Overflow numbers. NumberFormatException

5 marks: No dash. IndexOutOfBoundsException

5 marks: Non-integers around the dash. NumberFormatException

p. 5 of 16
Q2. [36 marks] Consider the API for the three classes Animal, Cat, and Dog below.

public abstract class Animal
This class encapsulates an animal.

Field Detail

public String name
The name of this animal

Method Detail

public abstract void printName()
Prints out information about this animal.

public class Cat extends Animal
This class encapsulates a cat.

Constructor Detail

public Cat(String s)
The name field is assigned the value of s

Parameters:

s - the name of this cat

Method Detail

public void printName()
Always prints out the string "Cat", followed by a space, followed by

the value of the name field, followed by a newline.

public void meow()
Always prints out the string "Meow!" followed by a newline.

public class Dog extends Animal
This class encapsulates a dog.

Constructor Detail

public Dog(String s)
The name field is assigned the value of s

Parameters:

s - the name of this dog

Method Detail

public void printName()
Always prints out the string "Dog", followed by a space, followed by

the value of the name field, followed by a newline.

public void bark()
Always prints out the string "Arf!" followed by a newline.

p. 6 of 16
Part 1: For each one of the code segments in this and the next page, check the box
next to the expected outcome. Follow the instructions given after the selected an-
swer. You can assume all needed classes have been imported. No marks will be
awarded without error explanation or correct output as the case may be. Each code seg-
ment is worth 4 marks.

(a) Animal a1 = new Dog("Moby");

a1.printName();

Compiles and runs (write output in space below).
Compile-time error (explain source of error).
Run-time error (explain source of error).

Compiles and runs. Output is:

Dog Moby

(b) Animal a2 = new Dog("Moby");

a2.bark();

a2.printName();

Compiles and runs (write output in space below).
Compile-time error (explain source of error).
Run-time error (explain source of error).

Compile-time error. Method bark() is not available for references of type
Animal.

(c) Dog d3 = new Cat("Astor");

d3.meow();

d3.printName();

Compiles and runs (write output in space below).
Compile-time error (explain source of error).
Run-time error (explain source of error).

Compile-time error. Incompatible types in line 1.

p. 7 of 16
(d) Animal a4 = new Animal("Moby");

a4.printName();

Compiles and runs (write output in space below).
Compile-time error (explain source of error).
Run-time error (explain source of error).

Compile-time error. Class Animal cannot be instantiated.

(e) List<Animal> a5 = new ArrayList<Dog>();

a5.add(new Dog("Moby"));

a5.get(0).printName();

Compiles and runs (write output in space below).
Syntax error (explain source of error).
Run-time error (explain source of error).

Compile-time error. Incompatible types in line 1.

(f) Animal a6 = new Dog("Moby");

Dog d6 = (Dog) a6;

a6.printName();

d6.printName();

Compiles and runs (write output in space below).
Syntax error (explain source of error).
Run-time error (explain source of error).

Compiles and runs. Output is:

Dog Moby

Dog Moby

p. 8 of 16
Part 2: The following code segment correctly creates and populates a set of animals.

Segment 1

Set<Animal> zoo = new HashSet<Animal>();

Cat c1 = new Cat("Astor");

zoo.add(c1);

Cat c2 = new Cat("Nutmeg");

zoo.add(c2);

Dog d1 = new Dog("Moby");

zoo.add(d1);

Dog d2 = new Dog("Abby");

zoo.add(d2);

a) [6 marks] Assume that Segment 2 (shown below) immediately follows Segment
1. In the space below, indicate whether Segment 2 will compile correctly or not. If it
compiles, then indicate what will happen at run-time. If it does not compile, explain
why.

Segment 2

Iterator<Animal> it1 = zoo.iterator();

for (;it1.hasNext();)

{

it1.next().printName();

}

Compiles ok (3 marks) and produces the output on the next page (3 marks).

p. 9 of 16
b) [6 marks] Assume that Segment 2 has been removed and Segment 3 (shown be-
low) immediately follows Segment 1. It compiles and runs with no errors.

Segment 3

Iterator<Animal> it2 = zoo.iterator();

for (;it2.hasNext();)

{

Animal a = it2.next();

if (a instanceof Cat)

{

Cat c = (Cat) a;

c.printName();

}

if (a instanceof Dog)

{

Dog d = (Dog) a;

d.printName();

}

}

The output produced is:

Dog Abby

Dog Moby

Cat Astor

Cat Nutmeg

Assuming this is the correct output, provide a critique of Segment 3 (you may use
the next page as well). How could it be improved? (Do not provide code, only a
description of the changes you would make).

Does not use polymorphism (3 marks). Should really be replaced by Segment 2 (3
marks).

p. 10 of 16

p. 11 of 16
Q3. [30 marks] The UML diagrams of the following classes contain all their attributes.

The default constructor for every class initializes all primitives to 0, and all non-
primitives to null. The functionality of methods shallowCopy and deepCopy is as
their name suggests.

Ant

+ i : int

+ b : Bear

+ shallowCopy(): Ant

+ deepCopy(): Ant

Bear

+ d : double

+ c : Cat

+ shallowCopy(): Bear

+ deepCopy(): Bear

Cat

+ l : long

+ f : float

+ shallowCopy(): Cat

+ deepCopy(): Cat

Consider the following app that uses these classes.

public class Q3 {

public static void main (String[] args) {

Cat c1 = new Cat();

c1.l = 1;

c1.f = 2;

Bear b1 = new Bear();

b1.d = 3;

b1.c = c1;

Ant a1 = new Ant();

a1.i = 4;

a1.b = b1;

// Draw diagram 1

Ant a2 = new Ant();

a2.i = 5;

a2.b = b1;

Cat c2 = new Cat();

c2.l = 6;

c2.f = 7;

b1.c = c2;

// Draw diagram 2

Ant a3 = a2.shallowCopy();

// Draw diagram 3

Ant a4 = a3.deepCopy();

// Draw diagram 4

b1 = a4.b.shallowCopy();

// Draw diagram 5

}

}

p. 12 of 16
In the following pages, draw memory diagrams to reflect the contents of memory at
the five points during the execution of this app designated by the comments in the
code. For diagrams 2-5, you don’t need to redraw fully the parts that are unchanged
from the previous diagram, but indicate these unchanged parts clearly. For each
diagram, you can assume that the garbage collector has just run. You do not need
to show parts of the memory where class definitions are loaded.

Tip: Reserve the first column below for the memory diagram of class Q3. Place all
objects in the other two columns.

(a) [6 marks] Draw diagram 1.

Q3 Class
300

340

380

100

120

130

110

140

160

170

150

180

200

210

190

220

240

250

230

260

280

290

270

Cat Object

1

2

300

320

330

310

Bear Object

3

300

Ant Object

4

340

340

360

370

350

380

400

410

390

420

440

450

430

460

480

490

470

500

520

530

510

540

560

570

550

580

600

610

590

620

640

650

630

660

680

690

670

c1

b1

a1

l

f

d

c

i

b

The address values do not have to be the same as above, but they have to point
to the correct object. The primitive values must be exactly as shown.
-2 marks per missing or extra object
-1 mark per missing or incorrect value

p. 13 of 16
(b) [6 marks] Draw diagram 2.

Q3 Class
300

340

380

100

120

130

110

420

460

140

160

170

150

180

200

210

190

220

240

250

230

260

280

290

270

Cat Object

1

2

300

320

330

310

Bear Object

3

460

Ant Object

4

340

Ant Object

5

340

Cat Object

6

7

340

360

370

350

380

400

410

390

420

440

450

430

460

480

490

470

500

520

530

510

540

560

570

550

580

600

610

590

620

640

650

630

660

680

690

670

c1

b1

a1

l

f

d

c

i

b

a2

c2

i

b

l

f

The address values do not have to be the same as above, but they have to point
to the correct object. The primitive values must be exactly as shown. Changed
values are shown in green. No objects are removed by the garbage collector.
-2 marks per missing or extra object
-1 mark per missing or incorrect value

p. 14 of 16
(c) [6 marks] Draw diagram 3.

Q3 Class
300

340

380

100

120

130

110

420

460

500

140

160

170

150

180

200

210

190

220

240

250

230

260

280

290

270

Cat Object

1

2

300

320

330

310

Bear Object

3

460

Ant Object

4

340

Ant Object

5

340

Cat Object

6

7

340

360

370

350

380

400

410

390

420

440

450

430

460

480

490

470

Ant Object

5

340

500

520

530

510

540

560

570

550

580

600

610

590

620

640

650

630

660

680

690

670

c1

b1

a1

l

f

d

c

i

b

a2

c2

i

b

l

f

a3

i

b

The address values do not have to be the same as above, but they have to point
to the correct object. The primitive values must be exactly as shown. No objects
are removed by the garbage collector.
-2 marks per missing or extra object
-1 mark per missing or incorrect value

p. 15 of 16
(d) [6 marks] Draw diagram 4.

Q3 Class
300

340

380

100

120

130

110

420

460

500

540

140

160

170

150

180

200

210

190

220

240

250

230

260

280

290

270

Cat Object

1

2

300

320

330

310

Bear Object

3

460

Ant Object

4

340

Ant Object

5

340

Cat Object

6

7

340

360

370

350

380

400

410

390

420

440

450

430

460

480

490

470

Ant Object

5

340

500

520

530

510

Ant Object

5

580

Bear Object

3

620

Cat Object

6

7

540

560

570

550

580

600

610

590

620

640

650

630

660

680

690

670

c1

b1

a1

l

f

d

c

i

b

a2

c2

i

b

l

f

a3

a4

i

b

i

b

d

c

l

f

The address values do not have to be the same as above, but they have to point
to the correct object. The primitive values must be exactly as shown. No objects
are removed by the garbage collector.
-2 marks per missing or extra object
-1 mark per missing or incorrect value

p. 16 of 16
(e) [6 marks] Draw diagram 5.

Q3 Class
300

660

380

100

120

130

110

420

460

500

540

140

160

170

150

180

200

210

190

220

240

250

230

260

280

290

270

Cat Object

1

2

300

320

330

310

Bear Object

3

460

Ant Object

4

340

Ant Object

5

340

Cat Object

6

7

340

360

370

350

380

400

410

390

420

440

450

430

460

480

490

470

Ant Object

5

340

500

520

530

510

Ant Object

5

580

Bear Object

3

620

Cat Object

6

7

Bear Object

3

620

540

560

570

550

580

600

610

590

620

640

650

630

660

680

690

670

c1

b1

a1

l

f

d

c

i

b

a2

c2

i

b

l

f

a3

a4

i

b

i

b

d

c

l

f

d

c

The address values do not have to be the same as above, but they have to point
to the correct object. The primitive values must be exactly as shown. Changed
values are shown in green. No objects are removed by the garbage collector.
-2 marks per missing or extra object
-1 mark per missing or incorrect value

