
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

MIDI plugins with JUCE
EECS 4462 - Digital Audio

September 25, 2018

2

What is a plugin?
•  A plugin is a software component that adds functionality

to an existing application

•  Many applications support a plugin architecture
•  Digital Audio Workstations
•  Email clients
•  Browsers

•  Main benefits
•  Third party developers can add functionality
•  The size of the main application is reduced
•  Adding new features becomes much easier

3

What is JUCE?
•  A framework that allows for the development of cross-

platform audio applications and audio plugins

•  Allows the developer to focus on the processing they
want to implement

•  Supports both MIDI and audio plugins

•  Used by many professional audio plugin developers

•  Free for personal or educational use

•  https://juce.com/

4

Assignment 1
•  The goal of Assignment 1 is to develop a plugin that

arpeggiates incoming MIDI notes

•  We will use the Arpeggiator Tutorial plugin provided by
JUCE as a starting point

•  Download the tutorial and open ArpeggiatorTutorial.jucer

•  Click on Modules and ensure that the paths point to
where you installed JUCE

•  Under Release, you can see the VST Binary location.
This is the path that will contain the .dll file you will
submit

5

Assignment 1
•  Click Save Project and Open in IDE…

•  Build

•  Test with the Audio Plugin Host that the MIDI events get
arpeggiated

•  Let’s look at the code

•  The online tutorial explains the code line by line
•  Some additional information in the next few slides

6

Important class: AudioProcessor
•  Base class for audio plugins

•  Your plugin class must inherit from AudioProcessor

•  Must declare a global function called createPluginFilter()
that returns an instance of your plugin

class Arpeggiator : public AudioProcessor
{ … }

AudioProcessor* createPluginFilter()
{
 return new Arpeggiator();
}

7

JUCE API

•  JUCE provides an API for all its classes

•  See link under Assignment 1

•  Check out AudioProcessorParameter

•  Base class for all parameter types you might want to
add to your plugin’s GUI
•  AudioParameterBool
•  AudioParameterChoice
•  AudioParameterFloat
•  AudioParameterInt

8

C++ info
•  Class constructors work similar to Java

•  Same name as the class
•  Can have overloaded versions

•  C++ also has destructors
•  Run when an instance is destroyed
•  Same name as class with a ~ in front

~Arpeggiator() {}

9

C++ info
•  Declaring an object is C++ is enough to create an object

at run time

•  The above creates an Arpeggiator object

•  Such an object gets destroyed automatically when out of
scope

•  To dynamically create objects, use pointers

Arpeggiator arp;

Arpeggiator *arp;
arp = new Arpeggiator();

10

C++ info
•  C++ has no garbage collection

•  You must delete dynamically created objects manually

•  This will call the destructor before releasing the memory

•  malloc, realloc, free etc. can also be used for
dynamic memory allocation

Arpeggiator *arp;
arp = new Arpeggiator();
delete arp;

11

Important function: addParameter
•  This function adds another parameter to your GUI that

the user can affect in real time

•  In the Arpeggiator Tutorial all you need is the call to
addParameter
•  Since no AudioProcessorEditor is defined, JUCE

uses a GenericAudioProcessorEditor

•  More on GUIs next time

12

Buffer processing
•  In JUCE, processing takes place in buffers

•  For audio plugins, this buffer contains a number of audio
samples (more in this in a week or two)

•  For MIDI plugins, the buffer contains the MIDI events
that took place since the last buffer

•  Time information is based on the sample rate, even in
the case of MIDI

•  The duration of a buffer is
Sample Rate x Number of Samples in Buffer

13

Important function: prepareToPlay
•  Called once before processing starts

•  Can be used to initialize any variables in your plugin

•  Also sets the Sample Rate

14

Important function: processBlock
•  Called repeatedly

•  All the processing (converting input to output) happens
in its body

•  Received an AudioBuffer and a MidiBuffer
•  Only one of them will contain data based on the type of

the plugin

•  Timing information is obtained from the AudioBuffer
even in the case of a MIDI plugin

15

C++ info
•  Static functions in C++ are similar to static methods in

Java, but the syntax is a bit different

MidiMessage::noteOff (1, lastNoteValue)

