
1 

Click to edit Master text styles 
Second level 

Third level 
Fourth level 

Fifth level 
 

GUIs with JUCE 
EECS 4462 - Digital Audio 

September 30, 2018 



2 

Plugin creation process for A1 
•  Run the Projucer (login with Roli account if necessary) 

•  Click on Audio Plugin 

•  Provide Project Name and Project Folder 

•  Select IDE 

•  Click Create… 

•  Click on Project Settings 
•  Under Plugin Characteristics enable all three MIDI options 

•  Click on Save and Open in IDE… 



3 

Testing your plugin 
•  Build the plugin in your IDE 

•  It does nothing yet, which means any MIDI events are 
unaffected by it 

•  To test, run the Plugin Audio Host 
•  Executable provided for Windows 

•  Find the .dll file in your project folder 
•  e.g. Builds/VisualStudio2017/x64/Debug/VST 

•  Drag it to the Audio Plugin Host 

•  Click on Plugins -> Create Plugin -> Sine Wave Synth 



4 

Testing your plugin 
•  Connect the MIDI input to your Plugin 

•  Connect the output of your plugin to the Synth 

•  Connect the audio output of the Synth to Audio Output  

•  Use the Audio Plugin Host piano keyboard to provide 
MIDI input events 

•  You should be able to hear the output 
•  Make sure you have headphones or speakers connected 

•  Clicking on your plugin in the Audio Plugin Host will 
show you its GUI 



5 

Turn the plugin into an arpeggiator 
•  Copy the code for prepareToPlay and processBlock to 

PluginProcessor.cpp 

•  Copy the private variables to PluginProcessor.h 

•  Delete the plugin from the Audio Plugin Host 
•  It cannot be rewritten if it is in use 

•  Rebuild the project, and reconnect the plugin in the 
Audio Plugin Host 

•  It now arpeggiates, but its GUI is the Hello World one 



6 

JUCE GUIs 
•  Each plugin must be associated with an editor object 

that inherits from AudioProcessorEditor
•  AudioProcessorEditor inherits from Component, 

the base class for all GUI objects  

•  The createEditor method in AudioProcessor must 
be overriden to return the editor object 

•  In our example, the editor object is defined in 
PluginEditor.h and PluginEditor.cpp

•  We will modify its constructor, as well as methods paint 
and resized so that it presents the GUI we need 



7 

Adding widgets to our GUI 
•  Each Component can contain other Components 

•  In our editor object, we can declare GUI objects that we 
want it to contain 

•  In the editor’s constructor, we add them to the GUI 

private:
Slider slider;
Label label;

addAndMakeVisible(slider);
addAndMakeVisible(label);



8 

Adding widgets to our GUI 
•  In the editor’s constructor, we can customize each 

widget 

•  We then add listeners to components that we want to 
react to 

slider.setRange(0.0, 1.0);
slider.setValue(0.5);
label.setText("Speed",
                   dontSendNotification);
label.attachToComponent(&slider, true);

slider.addListener(this);



9 

Setting sizes 
•  In the editor’s constructor, you can set the size of the 

entire plugin window 

•  In the resized method, we can set the sizes of 
contained components 

•  The paint method can be modified to change colours, 
draw rectangles, shapes etc. 

setSize (400, 100);

slider.setBounds(70, 30, 
     getWidth() - 100, getHeight() - 60);



10 

Reacting to slider events 
•  We need to implement the methods of the 

Slider::Listener interface 

•  0 is the index of the parameter 

•  If we have multiple parameters, we need to do a bit 
more work… 

void sliderValueChanged (Slider* slider)
{
  processor.setParameterNotifyingHost
                 (0, slider->getValue());
}



11 

Reacting to slider events 

void sliderValueChanged (Slider* slider)
{
   auto& params = processor.getParameters();
   for (auto p : params)
   {
     if (auto* param =
     dynamic_cast<AudioParameterFloat*> (p))
     {
       if (param->paramID == "speed")
           param->setValueNotifyingHost
                       (slider->getValue());
     }
   }
}



12 

C++ info 
•  Casting at runtime should be done using 
dynamic_cast<new_type> (expression)

•  Returns null if the casting is not possible 

•  The right way to do downcasting as in the example in 
the previous slide 

•  It is also possible to cast at compile time with 
static_cast<new_type> (expression) 

•  Much faster, but only to be used if the cast is 
guaranteed to work, otherwise your system will crash 



13 

More on GUIs 
•  There are many more tutorials on JUCE GUI 

components online 
•  See tutorials on labels, combo boxes, radio buttons and 

checkboxes if you need to use them 
•  See Tutorial: Adding plug-in parameters 
•  See Tutorial: The Graphics class 
•  See Tutorial: Customise the look and feel of your app 

•  The Projucer contains the code for all these examples 


