
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Generating Sound
EECS 4462 - Digital Audio

October 22, 2018

2

Plugins vs Apps

•  So far, we have implemented plugins that
receive input from a host and provide output
back to the host

•  With JUCE, one can also create standalone
apps

•  We will look at how to do that in the context of
generating sound

3

Important Class: AudioAppComponent

•  Our app must inherit from AudioAppComponent

•  AudioAppComponent takes care of connecting to the
audio inputs and outputs of your computer

•  Need to implement three methods that should sound
familiar

prepareToPlay()
releaseResources()
getNextAudioBlock()

4

Two important methods to call
•  To get access to two audio inputs and outputs, we need

to call

•  This call will also start the loop of calling
getNextAudioBlock()

•  When finished, we need to call

setAudioChannels(2,2);

shutDownAudio();

5

White noise generation
•  Let’s examine the code in the white noise generator

tutorial

•  Important: getNextAudioBlock() receives an
AudioSourceChannelInfo as an argument
•  Just a struct that contains an audio buffer and two ints:

The first sample to write at, and how many samples to
write

6

Sine wave generation
•  Let’s examine the code in the sine wave generator

tutorial (3 different versions)

•  V1 creates a sampled version of the sine function

•  V2 adds smooth transitioning to the new frequency
when the slider is changed

•  V3 adds a level slider

7

Virtual Instruments
•  A virtual instrument is a piece of software that receives

MIDI events as input, and produces audio samples as
output

•  This can be quite complicated if we want to produce
sounds rich in frequency content
•  Let’s listen to some examples…

•  We will use JUCE to create a sine wave based virtual
instrument

8

Important Class: Synthesiser

•  The base class for virtual instruments in JUCE

•  Contains a collection of SynthesiserSound
•  Each sound can apply to specific notes or specific MIDI

channels

•  Contains a collection of SynthesiserVoice
•  Each voice can sound independently
•  When playing multiple notes at the same time, each note

is a different voice
•  All audio rendering happens in method
renderNextBlock of SynthesiserVoice

9

MIDI Synthesiser Tutorial
•  Let’s examine the code in the MIDI Synthesiser tutorial

•  The main app makes a
MidiKeyboardComponent visible, and delegates
all audio rendering to a subclass of AudioSource
called SynthAudioSource

•  AudioSource is a superclass of
AudioAppComponent and is the one that declares
methods

prepareToPlay()
releaseResources()
getNextAudioBlock()

10

MIDI Synthesiser Tutorial
•  SynthAudioSource contains a Synthesiser object

•  Four voices and one sound are added to the synthesiser

•  SineWaveVoice inherits from SynthesiserVoice

•  SineWaveSound inherits from SynthesiserSound

•  getNextAudioBlock receives a MidiBuffer from
the keyboard and passes it to the renderNextBlock
function of the synthesiser, which in turn calls the
renderNextBlock method of each voice

11

SynthesiserVoice::renderNextBlock
•  renderNextBlock creates sample values as before

•  Rather than setting direct values to samples, use the
addSample method

•  If the voice has finished producing sound, call
clearCurrentNote to free the voice for the next note

•  Can choose to have sound trail off slowly by continuing
to produce sound with decreasing level (see code)

12

SynthesiserVoice (other methods)
•  canPlaySound determines if the voice can play a

particular sound

•  startNote initializes class attributes for the next note
to be rendered

•  stopNote indicates what happens when a note has
ended

•  pitchWheelMoved, controllerMoved etc. react to
the corresponding MIDI events

13

Wavetable Synthesis
•  Real, complex sounds are composed of hundreds of

frequencies

•  Creating these by calculating and adding as many sine
waves is very computation-intensive
•  See v1 of the wavetable synthesis tutorial

•  Using wavetables, i.e. precomputed signals, we can
accelerate computation by interpolating on the
precomputed signal rather than computing directly
•  See v2 of the wavetable synthesis tutorial

