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Plugins vs Apps

« So far, we have implemented plugins that
receive input from a host and provide output
back to the host

 With JUCE, one can also create standalone
apps

 We will look at how to do that in the context of
generating sound
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Important Class: AudioAppComponent

e Qur app must inherit from AudioAppComponent

« AudioAppComponent takes care of connecting to the
audio inputs and outputs of your computer

 Need to implement three methods that should sound
familiar

prepareToPlay ()
releaseResources ()
getNextAudioBlock ()
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Two important methods to call

* To get access to two audio inputs and outputs, we need
to call

setAudioChannels (2,2);

» This call will also start the loop of calling
getNextAudioBlock ()

 When finished, we need to call

shutDownAudio();
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White noise generation

» Let's examine the code in the white noise generator
tutorial

* Important: getNextAudioBlock () receives an
AudioSourceChannelInfo as an argument
e Just a struct that contains an audio buffer and two ints:

The first sample to write at, and how many samples to
write
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Sine wave generation

* Let's examine the code in the sine wave generator
tutorial (3 different versions)

* V1 creates a sampled version of the sine function

« V2 adds smooth transitioning to the new frequency
when the slider is changed

V3 adds a level slider
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Virtual Instruments

« Avirtual instrument is a piece of software that receives
MIDI events as input, and produces audio samples as
output

« This can be quite complicated if we want to produce
sounds rich in frequency content

« Let's listen to some examples...

« We will use JUCE to create a sine wave based virtual
Instrument
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Important Class: Synthesiser

* The base class for virtual instruments in JUCE

« Contains a collection of SynthesiserSound

« Each sound can apply to specific notes or specific MIDI
channels

* Contains a collection of SynthesiserVoice

« Each voice can sound independently
* When playing multiple notes at the same time, each note
is a different voice

* All audio rendering happens in method
renderNextBlock of SynthesiserVoice

IIIIIIIIII



MIDI Synthesiser Tutorial

* Let's examine the code in the MIDI Synthesiser tutorial

 The main app makes a
MidiKeyboardComponent visible, and delegates
all audio rendering to a subclass of A udioSource
called SynthAudioSource

* AudioSource is a superclass of
AudioAppComponent and is the one that declares
methods

prepareToPlay ()
releaseResources ()
getNextAudioBlock () YORK
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MIDI Synthesiser Tutorial

« SynthAudioSource contains a Synthesiser object
* Four voices and one sound are added to the synthesiser
« SineWaveVoice inherits from SynthesiserVoice

« SineWaveSound inherits from SynthesiserSound

« getNextAudioBlock receives a MidiBuffer from
the keyboard and passes it to the renderNextBlock
function of the synthesiser, which in turn calls the
renderNextBlock method of each voice
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SynthesiserVoice::renderNextBlock

« renderNextBlock creates sample values as before

« Rather than setting direct values to samples, use the
addSample method

 If the voice has finished producing sound, call
clearCurrentNote {0 free the voice for the next note

« Can choose to have sound trail off slowly by continuing
to produce sound with decreasing level (see code)
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SynthesiserVoice (other methods)

« canPlaySound determines if the voice can play a
particular sound

* startNote initializes class attributes for the next note
to be rendered

 stopNote indicates what happens when a note has
ended

e pitchWheelMoved, controllerMoved eic. react to
the corresponding MIDI events

IIIIIIIIII
IIIIIIIIII




13

Wavetable Synthesis

* Real, complex sounds are composed of hundreds of
frequencies

« Creating these by calculating and adding as many sine
waves is very computation-intensive

« See v1 of the wavetable synthesis tutorial

« Using wavetables, i.e. precomputed signals, we can
accelerate computation by interpolating on the
precomputed signal rather than computing directly

« See v2 of the wavetable synthesis tutorial
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