Generating Sound

EECS 4462 - Digital Audio

October 22, 2018

IIIIIIIIII
IIIIIIIIII




Plugins vs Apps

« So far, we have implemented plugins that
receive input from a host and provide output
back to the host

 With JUCE, one can also create standalone
apps

 We will look at how to do that in the context of
generating sound

IIIIIIIIII
IIIIIIIIII




Important Class: AudioAppComponent

e Qur app must inherit from AudioAppComponent

« AudioAppComponent takes care of connecting to the
audio inputs and outputs of your computer

 Need to implement three methods that should sound
familiar

prepareToPlay ()
releaseResources ()
getNextAudioBlock ()

IIIIIIIIII
IIIIIIIIII




Two important methods to call

* To get access to two audio inputs and outputs, we need
to call

setAudioChannels (2,2);

» This call will also start the loop of calling
getNextAudioBlock ()

 When finished, we need to call

shutDownAudio();

IIIIIIIIII
IIIIIIIIII




White noise generation

» Let's examine the code in the white noise generator
tutorial

* Important: getNextAudioBlock () receives an
AudioSourceChannelInfo as an argument
e Just a struct that contains an audio buffer and two ints:

The first sample to write at, and how many samples to
write

IIIIIIIIII



Sine wave generation

* Let's examine the code in the sine wave generator
tutorial (3 different versions)

* V1 creates a sampled version of the sine function

« V2 adds smooth transitioning to the new frequency
when the slider is changed

V3 adds a level slider

IIIIIIIIII
IIIIIIIIII




Virtual Instruments

« Avirtual instrument is a piece of software that receives
MIDI events as input, and produces audio samples as
output

« This can be quite complicated if we want to produce
sounds rich in frequency content

« Let's listen to some examples...

« We will use JUCE to create a sine wave based virtual
Instrument

IIIIIIIIII
IIIIIIIIII




Important Class: Synthesiser

* The base class for virtual instruments in JUCE

« Contains a collection of SynthesiserSound

« Each sound can apply to specific notes or specific MIDI
channels

* Contains a collection of SynthesiserVoice

« Each voice can sound independently
* When playing multiple notes at the same time, each note
is a different voice

* All audio rendering happens in method
renderNextBlock of SynthesiserVoice

IIIIIIIIII



MIDI Synthesiser Tutorial

* Let's examine the code in the MIDI Synthesiser tutorial

 The main app makes a
MidiKeyboardComponent visible, and delegates
all audio rendering to a subclass of A udioSource
called SynthAudioSource

* AudioSource is a superclass of
AudioAppComponent and is the one that declares
methods

prepareToPlay ()
releaseResources ()
getNextAudioBlock () YORK

IIIIIIIIII
IIIIIIIIII




10

MIDI Synthesiser Tutorial

« SynthAudioSource contains a Synthesiser object
* Four voices and one sound are added to the synthesiser
« SineWaveVoice inherits from SynthesiserVoice

« SineWaveSound inherits from SynthesiserSound

« getNextAudioBlock receives a MidiBuffer from
the keyboard and passes it to the renderNextBlock
function of the synthesiser, which in turn calls the
renderNextBlock method of each voice

IIIIIIIIII



11

SynthesiserVoice::renderNextBlock

« renderNextBlock creates sample values as before

« Rather than setting direct values to samples, use the
addSample method

 If the voice has finished producing sound, call
clearCurrentNote {0 free the voice for the next note

« Can choose to have sound trail off slowly by continuing
to produce sound with decreasing level (see code)

IIIIIIIIII
IIIIIIIIII




12

SynthesiserVoice (other methods)

« canPlaySound determines if the voice can play a
particular sound

* startNote initializes class attributes for the next note
to be rendered

 stopNote indicates what happens when a note has
ended

e pitchWheelMoved, controllerMoved eic. react to
the corresponding MIDI events

IIIIIIIIII
IIIIIIIIII




13

Wavetable Synthesis

* Real, complex sounds are composed of hundreds of
frequencies

« Creating these by calculating and adding as many sine
waves is very computation-intensive

« See v1 of the wavetable synthesis tutorial

« Using wavetables, i.e. precomputed signals, we can
accelerate computation by interpolating on the
precomputed signal rather than computing directly

« See v2 of the wavetable synthesis tutorial

IIIIIIIIII
IIIIIIIIII




