
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

OpenAL
EECS 4462 - Digital Audio

November 6, 2018

2

OpenAL

•  Cross-platform Audio API
•  Can be used for games, and other audio

applications

•  Similar style to OpenGL (G for graphics)

•  One of many options for audio middleware
•  FMOD
•  Wwise
•  Fabric (for Unity)

3

OpenAL overview

•  Each game scene is called a context
•  OpenAL class: ALCcontext

•  Each context has
•  Several Buffers that contain audio data
•  Several Sources (points that emit sound)
•  Exactly one Listener (the position where the Sources are

heard)

•  Audio rendering is always done from the point of view of
the Listener

4

Important Class: ALCdevice

•  Models an audio device in the host machine
•  Typically, your sound card

•  OpenAL allows you to get a list of audio devices and
select the one you want to use

•  Or you can just use the default audio device with

•  You must do this before doing anything else audio-
related

ALCdevice *device;
device = alcOpenDevice(NULL);

5

Important Class: ALCcontext

•  Models an audio scene in the game

•  You can create a default context and make it the current
context with

•  You must do this before as soon as you have a device

•  The current context will apply to all the Buffers and
Sources you will create next

ALCcontext *cxt;
cxt = alcCreateContext(device, NULL);
alcMakeContextCurrent(cxt);

6

Important Method: alGetError();
•  Any call to an al*() function may cause an error

•  You can check if an error has occurred as below

•  Common error codes

ALenum error;
error = alGetError();
if (error != AL_NO_ERROR) exit(2);

AL_NO_ERROR
AL_INVALID_NAME
AL_INVALID_ENUM
AL_INVALID_VALUE
AL_INVALID_OPERATION
AL_OUT_OF_MEMORY

7

Error handling example

ALCcontext *context;
context =
 alcCreateContext(device, NULL);
if (!alcMakeContextCurrent(context))
{
 printf("%s",
 alGetString(alGetError()));
 exit(2);
}

8

At shut down…
•  When audio functionality is not needed any more, we

must destroy the context and close the audio device

context = alcGetCurrentContext();
device = alcGetContextsDevice(context);
alcMakeContextCurrent(NULL);
alcDestroyContext(context);
alcCloseDevice(device);

9

Creating Sources
•  A Source is a source of audio that has a particular

position in the 3D space, as well as a particular velocity

•  Sources cannot be created directly

•  You must use the alGenSources function

•  Each Source has a “name”, which is actually an integer

•  The above creates two Sources that you can refer to
with source[0] and source[1]

ALuint source[2];
alGenSources(2,source);

10

Customizing Sources
•  A set of alSource*() functions can be used to set the

attributes of the various sources

•  See the specification for a complete list of parameters

ALuint s;
alGenSources(1,&s);
alSourcef(s, AL_PITCH, 1);
alSourcef(s, AL_GAIN, 1);
alSource3f(s, AL_POSITION, 0, 0, 0);
alSource3f(s, AL_VELOCITY, 0, 0, 0);
alSourcei(s, AL_LOOPING, AL_FALSE);

11

Creating Buffers
•  A Buffer is an object that holds audio data that can be

played when associated with a Source

•  Buffers cannot be created directly

•  You must use the alGenBuffers function

•  Each Buffer has a “name”, which is actually an integer

•  The above creates two Sources that you can refer to
with buffer[0] and buffer[1]

ALuint buffer[2];
alGenBuffers(2,buffer);

12

Loading data into a Buffer
•  The alut library provides functions to read various

formats into a buffer

•  Use the alutLoadWAVFile function for WAV files

ALsizei size, freq;
ALenum format;
ALvoid *data;
alutLoadWAVFile("bark.wav", &format,
 &data, &size, &freq);
alBufferData(buffer, format,
 data, size, freq);

13

Playing Sound
•  First, associate a source with a buffer

•  Then, play!

alSourcei(source, AL_BUFFER, buffer);

alSourcePlay(source);

14

Making sure a source is finished
•  Sources play audio is separate threads

•  Before exiting, you might want to ensure that the audio
thread is finished

ALint source_state;
alGetSourcei(source, AL_SOURCE_STATE,
 &source_state);
while (source_state == AL_PLAYING) {
 alGetSourcei(source, AL_SOURCE_STATE,
 &source_state);
}

15

Deleting Sources and Buffers
•  When sources and buffers are not needed any more,

they can be deleted

alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);

16

Customizing the Listener
•  The Listener is created and destroyed automatically

•  It can be customized in a manner similar to Sources

alListener3f(AL_POSITION, 0, 0, 1.0f);
alListener3f(AL_VELOCITY, 0, 0, 0);

ALfloat listenerOri[] =
{0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f};

alListenerfv(AL_ORIENTATION,
 listenerOri);

17

Source and Listener attributes
•  Sources and Listener have a number of common

attributes that can be customized

•  The first two require X,Y,Z coordinates (see next slide)
while AL_GAIN requires a positive float
•  AL_GAIN of 1 is no attenuation

•  AL_GAIN of 0.5 id 6dB quieter

•  AL_GAIN of 0 is silence

•  AL_GAIN of more than one is possible but the sound
engine may restrict it to avoid clipping

AL_POSITION
AL_VELOCITY
AL_GAIN

18

Coordinate system

•  OpenAL uses a right-handed Cartesian coordinate
system
•  X points right
•  Y points up
•  Z points towards the viewer

•  Default position for listener and all sources is {0,0,0}

•  Examples
•  {-2,0,0}: Left of the listener
•  {2,0,2}: Right and behind the listener

19

AL_POSITION

•  Specifies the 3D position of a source (or the listener)

•  By default, independent of the position of the listener,
but it can be toggled to relative by setting
AL_SOURCE_RELATIVE to AL_TRUE

•  Used to calculate attenuation for the sound emanating
from the source
•  The closer the source to the listener, the louder it should

sound

•  OpenAL has a number of distance models to implement
this

20

Distance models

•  The default distance model is
AL_INVERSE_DISTANCE_CLAMPED

•  INVERSE means that attenuation follows the inverse
square law

•  CLAMPED means that once the distance becomes
smaller than a threshold (set by
AL_REFERENCE_DISTANCE), gain does not
increase any more, i.e. gain is clamped

21

Changing distance models

•  The distance model behaviour can be changed by
setting the value of AL_ROLLOFF_FACTOR
•  Larger values è more drastic attenuation

•  You can also set a completely different distance model
with void alDistanceModel(ALenum m);

•  Possible values include

AL_NONE
AL_INVERSE_DISTANCE
AL_LINEAR_DISTANCE
AL_EXPONENT_DISTANCE

22

Exponential Clamped DM

23

Calculating overall gain

•  Calculating the overall gain for a particular sound is
complicated. It depends on
•  The listener position and orientation
•  The source position
•  The source directionality (discussed later)
•  The distance model, rolloff factor and reference distance
•  The source gain

•  Sources can also set AL_MIN_GAIN and AL_MAX_GAIN
•  The listener gain

24

AL_VELOCITY

•  Specifies the speed and direction of a source

•  Independent of AL_POSITION
•  Changes to one do not affect the other

•  Used to synthesize the Doppler effect
•  If the source is moving towards the listener, the

frequencies in its sound increase
•  If the source is moving away from the listener, the

frequencies in its sound decrease
•  https://www.youtube.com/watch?v=h4OnBYrbCjY

25

Doppler effect in OpenAL

•  Calculated automatically

•  Can exaggerate or deemphasize with

•  Default value is 1

•  Can also change the speed of sound which affects the
magnitude of the Doppler effect

•  Default value is 343.3

void alDopplerFactor(ALfloat df);

void alSpeedOfSound(ALfloat speed);

26

Directional Sources

•  By default, Sources are omni-directional, i.e. they get
attenuated in the same way in all directions

•  Many sound sources are directional though
•  If a character is facing away from the listener, their gain

should be attenuated

•  To make a source directional, set AL_DIRECTION to
the X,Y,Z coordinates of their direction, e.g.

alSource3i(src, AL_DIRECTION, 1,1,1);

27

Cones

•  A directional source must define an inner and outer cone

•  AL_CONE_INNER_ANGLE defines the angle of the
inner cone inside which no directional attenuation will
take place

•  AL_CONE_OUTER_ANGLE defines an outer cone,
outside of which, gain will be attenuated by
AL_CONE_OUTER_GAIN

•  Attenuation between the inner and outer cones is
interpolated

