
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Game Audio Programming
EECS 4462 - Digital Audio

November 20, 2018
Most material in this slide set is from
Game Audio Programming 2: Principles and Practices,
by Guy Somberg, CRC Press

2

Audio for movies vs games

•  Similarities
•  3 main audio components: Music, Dialogue,

Sound effects
•  Need quality audio for all three

•  Music: Appropriate genre, well recorded, different
music for different parts of the movie/game

•  Dialogue: Clearly recorded with no background
noise

•  Sound FX: Realistic sounds / foley

•  https://www.youtube.com/watch?v=U_tqB4IZvMk

3

Audio Personnel

•  Many different roles for audio people (depending on the
size of the project)
•  Sound designers will decide create original sounds
•  Composers will write original music and music

professionals will play it
•  Recording engineers will record all audio components
•  Audio post production personnel will put everything

together in the end to create an immersive experience
•  A game audio programmer is also doing audio post

production, but…

4

Audio for movies vs games
•  Differences

•  Audio post production takes place after the visual aspect
of a movie has been fixed

•  A movie is a passive experience
•  Games are interactive
•  Sounds must be mixed together on the fly depending on

what the player and all the characters in the game are
doing

•  Limited resources in terms of memory and CPU time will
be available for audio

5

Game production lifecycle
•  Game audio should be a part of game production form

the beginning

•  The three phases of game production and their
milestones:

1.  Preproduction è First Playable (Vertical Slice)

2.  Production è Alpha (Content Complete)

3.  Postproduction è Beta (Content Finalized)

6

Audio middleware
•  Keeps track of all the audio content, as well as the audio

infrastructure, e.g.
•  Audio assets contain raw audio as well as information

about volume, positioning, pitch etc.
•  Audio events are triggered by the game engine and

contain information as to how an audio asset should
sound, e.g. how it will attenuate over distance

•  Audio triggers are in-game entities that trigger audio
events

7

Preproduction
•  Decide on the audio modules that will be part of the

game
•  Player
•  Cast
•  Levels
•  Environment
•  Music

•  Brainstorm on ideas for all the above

8

Audio prototypes

•  Small test cases to help us define triggers, events, and
their interaction

•  Audio assets can be simple but as realistic as possible
at this point

•  Examples
•  Surface types
•  Reverb areas
•  Equipment / vehicles
•  Environments
•  Other characters

9

Audio design layers
•  Feedback

•  Indicates that something has happened, e.g. a beep in
PONG

•  Immersion
•  More realistic sounds, e.g. a racket flick, that may change

based on speed or direction

•  Emotion / Experience
•  The audio changes depending on whether the player is

winning or losing, or gets louder as time goes by

•  In preproduction, we focus on feedback and try to
incorporate as much immersion as possible

10

Preproduction milestone
•  First Playable

•  Limited / condensed version of the final product

•  Showcases only a few basic options

•  Main goal to set up and test the audio infrastructure of
events and triggers

11

Production
•  Fill up every element of the game

•  Can use placeholders when audio is not available
•  E.g. say the name of the event, or the state of different

characters, or of the sound effect
•  Many audio assets are created in post production where

things like character clothes or shoes are finalized

•  Debug placeholders, e.g. a beep, can be used when
game states or parameters are not specified or missing

•  Build towards immersion as much as possible

12

Production milestone
•  Alpha

•  The game is content complete, i.e. can be played from
start to finish without crashes

•  There is audio for every event even if it is a placeholder

•  All audio assets conform to the EBU R128 Loudness
Recommendation Standard
•  Measures loudness in loudness units (LU) across an

audio asset, not only at the peak level
•  Much closer to how loudness is perceived
•  https://www.youtube.com/watch?v=iuEtQqC-Sqo

13

Postproduction
•  Finalize all audio assets

•  Test!
•  Typically done in pairs: One tester plays, the other mixes,

i.e. adjusts volumes, effects etc.
•  Bug fixing

•  Milestone: Beta

14

Dealing with multiple characters
•  In many modern games, there is a variety of characters

on the screen at at time that could generate audio

•  Mixing audio from many sources can make the final mix
sound muddy, and uses many resources

•  The HW platform may also have a playback limit

•  Solution: Virtual Channels
•  Some sources of audio (sometimes also called channels)

are declared virtual, i.e. do not contribute audio
•  It is up to the audio programmer to decide how this will be

implemented

15

Choosing virtual channels
•  Assign a priority to each sound, and play only those

sounds of highest priority

•  The listener’s distance to the sound must be factored in
•  Further sounds must have lower priority

•  In modern HW, the global playback limit is not an issue,
but audio programmers often impose local limits to avoid
making the mix too muddy
•  For example, limit gunshot sounds to at most 20

16

The rule of two and a half
•  Used in movie audio post production

•  When one actor is walking, it is important that the sound
of their footsteps match the visuals

•  Similarly, when two actors are walking

•  When we pass the threshold of 2.5 actors, it is no longer
necessary to synchronize footsteps to actors
•  Audio of multiple people walking is sufficient

17

Mixing
•  The act of bringing all audio assets (music, voice, SFX)

together in a way that is enjoyable and supports the
gameplay

•  Offline mixing: Mixing happens in a separate program
(usually a DAW). The result is fixed and is reproduced
as is

•  Games require real time mixing
•  Volumes and frequencies of audio assets are changed as

the game is running

18

Real time mixing (passive)
•  The behaviour of audio is authored in a static way, so

that the audio signal changes dynamically by being
routed to a DSP effect

•  Example: Ducking music when dialogue is heard

•  This can be done programmatically (active mixing) but is
often done by side-chaining the dialogue audio bus on
to a dynamic range compressor on the music bus
•  More on this on the next module

19

Realtime mixing (active)
•  Events in the gameplay manipulate the mix

•  Audio assets are being changed on the fly

•  Example: An explosion happens very close to the player.
Instead of playing an explosion sound very loud, the
game ducks the SFX bus and plays a ringing sound
instead

20

Music transitions
•  Music background for games is often pre-composed and

recorded

•  Looping the same audio file can quickly become boring

•  Different levels in a game will typically have different
music

•  Dramatic events also require music transitions

•  Two ways to accomplish this
•  Horizontal Composition
•  Vertical Composition

21

Horizontal Composition
•  Music switches from one pre-recorded track to another

•  Transition can be done through fade in/out, but more
often through a stinger, a small piece of audio that
corresponds to the event that required the transition,
e.g. an explosion

22

Vertical Composition
•  Different sets of instruments are recorded in separate

tracks, called stems

•  Based on game events, different stems are faded in or
out, e.g. drums may come in for a fight scene, or piano
for a more quiet part, while strings are playing
throughout

23

MIDI in games
•  To allow more flexibility in the tempo and texture of

game music, modern audio middleware supports MIDI

•  This allows for different instruments to be swapped in

•  Each musical piece can be played in different keys

•  Different scales can be used in different situations, e.g.
major for action, minor for more somber parts

•  Randomizing some notes in terms of pitch of velocity
can allow for many variations

•  CPU intensive as samples have to be created on the fly

24

Low-level issues
•  Audio waits for nothing

•  Your audio device makes a callback every few
milliseconds

•  void callback(float *buffer,  
 int channels, int samples)

•  Your implementation of the callback must finish within
these few milliseconds

•  Must be done on a separate thread that does not lock!

•  https://www.youtube.com/watch?v=boPEO2auJj4&t=15m43s

25

Audio resampling
•  Sample rate conversion is a fundamental operation for

an audio engine

•  Used for including audio recorded at different sample
rates, or for effects, such as pitch shifting

•  Need to write a function like

•  We will select some samples from the input signal and
fabricate others

void Resample(int input_frequency, int output_frequency,
 const float* input, size_t input_length,
 float* output, size_t output_length)
{ ... }

26

An example: 12Hz è 20Hz
•  Take the LCM of the two frequencies and upsample the

input by linear interpolation

è

27

An example: 12Hz è 20Hz
•  Then, downsample to 20Hz

•  The result will be different from what would have been
obtained by sampling directly at 20 Hz

≠

28

A realistic example
•  Going to the LCM does not work well for realistic sample

rates

•  192kHz and 44.1kHz have an LCM of 28.2MHz !

•  We compute the ratio of the LCM to the two sample
rates
•  For 12Hz to 20Hz, we have Rin = 60/12 = 5,

and Rout= 60/20 = 3
•  We have 3 input samples for every 5 output samples
•  For 192kHz to 44.1kHz, we have 640 input samples for

every 147 output samples

29

Let’s look at our example
Output Index
Index number of the
output sample

From
Beginning index from
the input samples

To
Next sample after From

Offset
The number of LCM samples past the From index

30

Output sample formula

Lerp = Linear interpolation

31

Other resamplers
•  Linear interpolation is quite sufficient for games

•  Higher order polynomial interpolation is also possible

•  Each type of interpolation has different frequency
responses

