Digital Audio Processing

EECS 4462 - Digital Audio

November 24, 2018

Digital Audio Processing

- We have already developed a digital audio processing plugin: a digital delay
- A large variety of other plugins are possible
- Volume-based: Gain, Compression, Limiting
- **Time-based**: Delay, Time stretching, Reverse
- Frequency-based: Filters, Distortion, Pitch shifting
- Other: Reverb, Wahwah, Metering

Volume-based processing

- Adjusting **gain** is rather simple
 - Multiply each factor by a gain factor
 - Care must be taken not to clip
- **Dynamic range compression** is a very common processing operation for both speech and music
- The dynamic range of a piece of audio is the difference in volume between the loudest part and the softest part of the signal
- A compressor makes that difference smaller by making the louder parts softer

Compressor Settings: Threshold

- The minimum level at which compression starts
 - E.g. everything above -10dB must get quieter

• Bottom peaks will also be reduced (not shown)

Compressor Settings: Ratio

- The amount of compression applied
 - A ratio of 4:1 means that for every 4dB of level above the threshold, only 1dB will remain

Compressor Settings: Attack

• How fast compression starts

Compressor Settings: Release

 How fast compression stops after the input signal goes below the threshold

Other compressor settings

- Makeup Gain: Compression reduces the overall loudness of the input signal. If that is not desired, the output signal can be gained to compensate for it
 - Some compressor plugins have automatic makeup gain
- Knee: Whether the transition over the threshold is abrupt (hard knee) or gradual (soft knee)
- Noise floor: Parts of the signal below the noise floor will not be gained up
- Peak vs RMS sensing: Whether the peak level or the RMS level of the input signal is compared to the threshold

Compression transfer function

Hard knee vs soft knee

• Soft knee may be desired with high compression ratios to avoid having the compression effect being obvious

Sidechaining

- Instead of compressing when the input signal is above the threshold, a compressor can be set to compress when an external signal is above the threshold
- Used to lower the music, when the DJ speaks

Compression uses

- Even out the volume of a vocal track if the singer has been moving with regard to the microphone
- Increase the sustain of a musical instrument
 - By softening the onset of a note, the decay lasts longer
- Reduce the dynamic range of instruments with wide variation in loudness, such as drums
- Compressing each instrument ensures that they will all be heard in the final mix

Limiting

- A limiter is a compressor with a very high ratio (10:1 or more) and a fast attack time
- Brickwall limiters (ratios of 20:1 and higher) ensures audio is never above the threshold
 - Used as safety device in live sound and broadcast applications

Dynamic range expansion

- The dual of a compressor is an expander
- An expander makes the softer parts of a signal even softer
- Used to soften unwanted sounds, such as bleed from other instruments, or background noise
- Has similar settings to a compressor
 - Threshold, expansion ration, attack, release

Expansion transfer function

Noise gates

- Expanders with a large expansion ratio are called noise gates, as no output is produced when the input signal is below the threshold
- Noise gates have an additional parameter: **Hold**
 - Specifies an amount of time that the gate will stay open even if the input signal is below the threshold
 - Used to avoid opening the gate on and off too often
- Some noise gates will have different open and close thresholds to achieve the same goal of not opening and closing the gate too often
 - This feature is called **hysteresis**

Filters

- Frequency-based effects that affect the distribution of magnitude to different frequencies
- Some filters aim to completely eliminate some frequencies
 - High-pass, Low-pass, Band-pass, Band-stop
- Others adjust the relative gain of different frequencies
 - Shelving, peaking, and notch filters

Ideal transfer functions 1

Ideal transfer functions 2

Audio Effects: Theory, Implementation, and Application, by Joshua Reiss and Andrew P. McPherson

20

Practical filters

• In practice, it is neither possible nor desirable to have such sharp cutoffs

- The cutoff frequency is where attenuation has reached 3dB
- The rolloff factor indicates how fast attenuation happens after the cutoff frequency
 - Often measured in dB per octave

Equalization

- Equalizers are used to balance the relative gain of different frequency bands
- An equalization operation has three parameters
- 1. Center frequency: The frequency of largest boost or attenuation
- 2. Gain: The amount of gain for the center frequency
- **3. Bandwidth**: The total range of frequencies affected measured in octaves
 - In DAWs, bandwidth is often shown as Q
 - The smaller the Q, the wider the bandwidth

Equalization operation

2000 Hz +20.0 dB 1.00

Center Frequency

Gain

Q (Bandwidth)

EQ Curve

Several filters may be combined to achieve the desired effect

Their combined effect provides the EQ curve of an equalizer effect

Wah-wah

- Essentially a band-pass or peaking filter whose center frequency is changed by a foot pedal
- In typical wah-wahs, the center frequency ranges from 300Hz to 1200Hz
- This simulates formants found in speech
 - The [u] sound has formants around 300Hz
 - The [a] sound has formants at 750Hz and 1200Hz
- Formants are stronger frequencies when we speak depending on how the vocal tract is shaped
 - They are the way we recognize different vowels

Wah variations

- Auto wah: Uses a low-frequency oscillator (LFO) typically at around 1-2Hz to adjust the center frequency
 - Some variations adjust the center frequency based on the amplitude of the input signal
- **Tremolo wah**: An auto wah with a second LFO to modify the amplitude of the output signal
 - The two LFO can be independent, synchronized, or even synchronized but out of phase

Reverberation

- Sound in a room reaches the listener in many ways:
 - Directly
 - After one reflection in any of the room surfaces
 - After many reflections in many different surfaces
- Reflected copies of the original sound are attenuated because they travel longer and they are partially absorbed by the surfaces
- As these reflections typically within 40ms of the direct sound, they are perceived as one sound
- The combination of all the copies gives us an impression of space

Room impulse response

Each vertical line is a copy of the original sound

The height of each of line is the amplitude of the copy

https://commons.wikimedia.org/wiki/File:Corrected_Room_Impulse_Response.png

Reverberation time

- To summarize the reverberation properties of a room, we use the notion of reverberation time RT₆₀
 - The time it takes for the sound to decay by 60dB
 - Small rooms have RT₆₀ that is usually less than 1 sec
 - Larger rooms may have an RT₆₀ of 2 sec or more
- Several factors affect the RT₆₀ of a room
 - Room dimensions
 - Wall materials
 - Furniture or people in the room

