Asymptotic Analysis of Algorithms

Chapter 4

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

Overview

Motivation

- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

The Purpose of Asymptotic Analysis

- To estimate how long a program will run.
- To estimate the largest input that can reasonably be given to the program.
- To compare the efficiency of different algorithms.
- To help focus on the parts of code that are executed the largest number of times.
- To choose an algorithm for an application.

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Reduces risk

Input Size

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Assumed to take a constant amount of time

- Examples:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Estimating Running Time

• Algorithm *arrayMax* executes 6n - 1 primitive operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

- Let T(n) be worst-case time of *arrayMax*. Then $a (6n - 1) \le T(n) \le b(6n - 1)$
- Hence, the running time *T*(*n*) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not qualitatively alter the growth rate of T(n)
- The linear growth rate of the running time *T*(*n*) is an intrinsic property of algorithm *arrayMax*

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

Constant Factors

- On a logarithmic scale, the growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

We will follow the convention that $\log n \equiv \log_2 n$.

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function.

Classifying Functions

	n			
T(n)	10	100	1,000	10,000
log <i>n</i>	3	6	9	13
n ^{1/2}	3	10	31	100
n	10	100	1,000	10,000
n log n	30	600	9,000	130,000
n ²	100	10,000	10 ⁶	10 ⁸
n ³	1,000	10 ⁶	10 ⁹	10 ¹²
2 ⁿ	1,024	10 ³⁰	10 ³⁰⁰	10 ³⁰⁰⁰

Note: The universe is estimated to contain $\sim 10^{80}$ particles.

Let's practice classifying functions

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

Some Math to Review

- Summations
- Logarithms and Exponents
- Existential and universal operators
- Proof techniques

- existential and universal operators
 - $\exists g \forall b \text{ Loves}(b,g)$
 - $\forall g \exists b \text{ Loves}(b,g)$

properties of logarithms:

 $\log_{b}(xy) = \log_{b}x + \log_{b}y$

 $\log_{b} (x/y) = \log_{b} x - \log_{b} y$

 $\log_{b} x^{a} = a \log_{b} x$

 $\log_{b}a = \log_{x}a/\log_{x}b$

properties of exponentials:

$$a^{(b+c)} = a^{b}a^{c}$$

 $a^{bc} = (a^{b})^{c}$
 $a^{b} / a^{c} = a^{(b-c)}$
 $b = a^{\log_{a} b}$
 $b^{c} = a^{c^{*}\log_{a} b}$

Understand Quantifiers!!!

$$\exists g, \forall b, loves(b, g)$$

One girl

$$\forall g, \exists b, loves(b,g)$$

Could be a separate girl for each boy.

Asymptotic Notation (O, Ω, Θ) and all of that)

- The notation was first introduced by number theorist <u>Paul Bachmann</u> in 1894, in the second volume of his book *Analytische Zahlentheorie* ("<u>analytic number theory</u>").
- The notation was popularized in the work of number theorist <u>Edmund Landau</u>; hence it is sometimes called a Landau symbol.
- It was popularized in computer science by <u>Donald Knuth</u>, who (re)introduced the related Omega and Theta notations.
- Knuth also noted that the (then obscure) Omega notation had been introduced by Hardy and Littlewood under a slightly different meaning, and proposed the current definition.

Source: Wikipedia

Big-Oh Notation

 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n₀ such that

 $f(n) \leq cg(n)$ for $n > n_0$

- Example: 2*n* + 10 is *O*(*n*)
 - 2*n*+ 10 ≤*cn*
 - -(c-2)n > 10
 - n > 10/(c-2)
 - Pick c = 3 and $n_0 = 10$

 $\exists c, n_0 > 0 : \forall n \ge n_0, f(n) \le cg(n)$

Big-Oh Example

- Example: the function
 n² is not O(n)
 - $n^2 \leq cn$
 - n < c
 - The above inequality cannot be satisfied since *c* must be a constant

More Big-Oh Examples

♦ 7n-2

7n-2 is O(n)

need c > 0 and $n_0 \ge 1$ such that 7n-2 \le c•n for n $\ge n_0$ this is true for c = 7 and $n_0 = 1$

■ 3n³ + 20n² + 5

 $3n^3 + 20n^2 + 5$ is O(n³) need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 5 and $n_0 = 20$

■ 3 log n + 5

3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 \le c•log n for n $\ge n_0$ this is true for c = 4 and $n_0 = 32$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	<i>g</i> (<i>n</i>) is <i>O</i> (<i>f</i> (<i>n</i>))
g(n) grows more	Yes	No
<i>f</i> (<i>n</i>) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

• If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,

1. Drop lower-order terms

2. Drop constant factors

• We generally specify the tightest bound possible

- Say "2n is O(n)" instead of "2n is $O(n^2)$ "

• Use the simplest expression of the class

- Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm *arrayMax* executes at most 6n 1 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is the average of the first (*i* + 1) elements of *X*:

 $A[i] = (X[0] + X[1] + \dots + X[i])/(i+1)$

• Computing the array *A* of prefix averages of another array *X* has applications to financial analysis, for example.

Prefix Averages (v1)

The following algorithm computes prefix averages by applying the definition

```
Algorithm prefixAverages1(X, n)
   Input array X of n integers
    Output array A of prefix averages of X #operations
    A \mid new array of n integers
                                                n
   for i \mid 0 to n - 1 do
                                                n
     s | X[0]
                                                n
     for j \mid 1 to i do
                                                1 + 2 + \ldots + (n - 1)
          s \mid s + X[j]
                                                1 + 2 + \ldots + (n - 1)
     A[i] | s / (i+1)
                                                n
   return A
                                                1
```

Arithmetic Progression

- The running time of prefixAverages1 is
 O(1+2+...+n)
- The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 prefixAverages1 runs in
 O(n²) time

Prefix Averages (v2)

The following algorithm computes prefix averages efficiently by keeping a running sum

Algorithm <i>prefixAverages2(X, n)</i>		
Input array X of <i>n</i> integers		
Output array <i>A</i> of prefix averages of <i>X</i>	#operations	
A new array of <i>n</i> integers	n	
$s \mid 0$	1	
for $\boldsymbol{i} \mid 0$ to $\boldsymbol{n} - 1$ do	n	
$s \mid s + X[i]$	n	
$A[i] \mid s / (i+1)$	n	
return A	1	
$s \mid s + X[i]$ $A[i] \mid s / (i + 1)$ return A	n n 1	

Algorithm *prefixAverages2* runs in *O*(*n*) time

Relatives of Big-Oh

🔷 Big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀

Big-Theta

• f(n) is $\Theta(g(n))$ if there are constants $c_1 > 0$ and $c_2 > 0$ and an integer constant $n_0 \ge 1$ such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta

f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

Note that $f(n) \in \Theta(g(n)) \equiv (f(n) \in O(g(n)))$ and $f(n) \in \Omega(g(n)))$

Definition of Theta

 $\exists c_1, c_2, n_0 > 0 : \forall n \ge n_0, c_1g(n) \le f(n) \le c_2g(n)$

f(n) is sandwiched between $c_1g(n)$ and $c_2g(n)$

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity

Time Complexity of an Algorithm

The time complexity of an algorithm is the *largest* time required on *any* input of size n. (Worst case analysis.)

- O(n²): For any input size n ≥ n₀, the algorithm takes no more than cn² time on every input.
- Ω(n²): For any input size n ≥ n₀, the algorithm takes at least cn² time on at least one input.
- θ (n²): Do both.

What is the height of tallest person in the class?

Time Complexity of a Problem

The time complexity of a problem is the time complexity of the *fastest* algorithm that solves the problem.

- O(n²): Provide an algorithm that solves the problem in no more than this time.
 - Remember: for every input, i.e. worst case analysis!
- $\Omega(n^2)$: Prove that no algorithm can solve it faster.
 - Remember: only need one input that takes at least this long!
- θ (n²): Do both.

Overview

- Motivation
- Definition of Running Time
- Classifying Running Time
- Asymptotic Notation & Proving Bounds
- Algorithm Complexity vs Problem Complexity