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The Purpose of Asymptotic Analysis

• To estimate how long a program will run. 

• To estimate the largest input that can reasonably be given to the program. 

• To compare the efficiency of different algorithms.

• To help focus on the parts of code that are executed the largest number of times. 

• To choose an algorithm for an application.
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Running Time 

• Most algorithms transform input 
objects into output objects.

• The running time of an algorithm 
typically grows with the input size.

• Average case time is often difficult 
to determine.

• We focus on the worst case 
running time.
– Easier to analyze
– Reduces risk
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Experimental Studies

• Write a program 
implementing the algorithm

• Run the program with 
inputs of varying size and 
composition

• Use a method like 
System.currentTimeMillis() to 
get an accurate measure of 
the actual running time

• Plot the results
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Limitations of Experiments

• It is necessary to implement the algorithm, which may 
be difficult

• Results may not be indicative of the running time on 
other inputs not included in the experiment. 

• In order to compare two algorithms, the same hardware 
and software environments must be used



Theoretical Analysis

• Uses a high-level description of the algorithm instead 
of an implementation

• Characterizes running time as a function of the input 
size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm 
independent of the hardware/software environment



Primitive Operations

• Basic computations 
performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the 
programming language

• Assumed to take a constant 
amount of time

• Examples:
– Evaluating an 

expression

– Assigning a value 
to a variable

– Indexing into an 
array

– Calling a method

– Returning from a 
method



Counting Primitive Operations 

• By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size
Algorithm arrayMax(A, n)

# operations

currentMax  A[0] 2

for i  1 to n - 1 do 2n
if A[i] > currentMax then 2(n -1)

currentMax  A[i] 2(n -1)
return currentMax 1

Total 6n -1
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Estimating Running Time

• Algorithm arrayMax executes 6n  1 primitive 
operations in the worst case.  Define:
a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
a (6n  1) ≤ T(n) ≤ b(6n  1)

• Hence, the running time T(n) is bounded by two 
linear functions



Growth Rate of Running Time

• Changing the hardware/ software environment 
– Affects T(n) by a constant factor, but

– Does not qualitatively alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an 
intrinsic property of algorithm arrayMax
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Constant Factors

• On a logarithmic 
scale, the growth 
rate is not affected 
by
– constant factors or 

– lower-order terms

• Examples
– 102n  105 is a linear 

function

– 105n2  108n is a 
quadratic function



Seven Important Functions 
• Seven functions that often 

appear in algorithm analysis:
– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

• In a log-log chart, the slope of 
the line corresponds to the 
growth rate of the function.

We will follow the convention that logn  log2 n.



Classifying Functions

Note: The universe is estimated to contain ~1080 particles.

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

n



Let’s practice classifying functions



Which are more alike?

n1000 n2 2n



Which are more alike?

Polynomials

n1000 n2 2n



Which are more alike?

1000n2 3n2 2n3



Which are more alike?

Quadratic

1000n2 3n2 2n3
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• properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

• properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents
Existential and universal operators
Proof techniques

Some Math to Review

gb Loves(b, g)

gb Loves(b, g)

• existential and universal 
operators



g,b, loves(b,g) g,b,loves(b,g )
Understand Quantifiers!!!

One girl Could be a separate girl 
for each boy.

Sam Mary

Bob Beth

John Marilyn 
Monro

Fred Ann

Sam Mary

Bob Beth

John Marilyn 
Monro

Fred Ann



Asymptotic Notation

• The notation was first introduced by number theorist Paul Bachmann
in 1894, in the second volume of his book Analytische Zahlentheorie
("analytic number theory”). 

• The notation was popularized in the work of number theorist 
Edmund Landau; hence it is sometimes called a Landau symbol. 

• It was popularized in computer science by Donald Knuth, who 
(re)introduced the related Omega and Theta notations. 

• Knuth also noted that the (then obscure) Omega notation had been 
introduced by Hardy and Littlewood under a slightly different 
meaning, and proposed the current definition. 

Source:  Wikipedia

(,, and all of that)



Big-Oh Notation 

• Given functions f(n) and g(n), 
we say that f(n) is O(g(n)) if 
there are positive constants
c and n0 such that

f(n) ≤ cg(n)  for n n0

• Example: 2n  10 is O(n)

– 2n  10 ≤ cn

– (c  2) n 10

– n 10(c  2)

– Pick c 3 and n0 10 1
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Definition of  “Big Oh”
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Big-Oh Example

• Example: the function 
n2 is not O(n)
– n2 ≤ cn

– n c

– The above inequality 
cannot be satisfied 
since c must be a 
constant 



More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥n0

this is true for c = 5 and n0 = 20

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 32



Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the 
growth rate of a function

• The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes



Big-Oh Rules

• If f(n) is a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

• We generally specify the tightest bound possible
– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
– Say “3n  5 is O(n)” instead of “3n  5 is O(3n)”



Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running time 
in big-Oh notation

• To perform the asymptotic analysis
– We find the worst-case number of primitive operations executed as a 

function of the input size

– We express this function with big-Oh notation

• Example:
– We determine that algorithm arrayMax executes at most 6n  1 

primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually dropped 
anyhow, we can disregard them when counting primitive operations



Computing Prefix Averages

• We further illustrate asymptotic 
analysis with two algorithms for 
prefix averages

• The i-th prefix average of an array X
is the average of the first (i  1) 
elements of X:

A[i] X[0]  X[1]  …  X[i])/(i+1)

• Computing the array A of prefix 
averages of another array X has 
applications to financial analysis, for 
example.
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Prefix Averages (v1)
The following algorithm computes prefix averages by applying the 
definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A  new array of n integers n

for i  0 to n  1 do n
s  X[0] n
for j  1 to i do 1 2 … (n  1)

s  s  X[j] 1 2 … (n  1)
A[i]  s  (i  1) n

return A 1



Arithmetic Progression

• The running time of 
prefixAverages1 is
O(1 2 …n)

• The sum of the first n
integers is n(n 1) 2

– There is a simple visual 
proof of this fact

• Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 
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Prefix Averages (v2)
The following algorithm computes prefix averages efficiently by keeping 
a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers

Output array A of prefix averages of X #operations
A  new array of n integers n
s  0 1
for i  0 to n  1 do n
s  s  X[i] n
A[i]  s  (i  1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time 



Relatives of Big-Oh
Big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that 
f(n) ≥ c•g(n) for n ≥ n0

Big-Theta
 f(n) is Θ(g(n)) if there are constants c1 > 0 

and c2 > 0 and an integer constant n0 ≥ 1 
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0



Intuition for Asymptotic Notation
Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or 
equal to g(n)

big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or 
equal to g(n)

big-Theta

 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

Note that f (n) g(n)   f (n)O g(n)   and f (n) g(n)  



Definition of  Theta

f(n) is sandwiched between c1g(n) and c2g(n)

f(n) = θ(g(n))

     , ,1 2 0 0 1 20 : , ( ) ( ) ( )c c n n n c g n f n c g n
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Time Complexity of an Algorithm

• O(n2): For any input size n ≥ n0, the algorithm takes 
no more than cn2 time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at 
least cn2 time on at least one input.

• θ (n2): Do both.

The time complexity of an algorithm is
the largest time required on any input 
of size n. (Worst case analysis.)



What is the height of tallest person in the 
class?

Bigger than this?

Need to find 
only one person 
who is taller

Need to look at 
every person

Smaller than this?



Time Complexity of a Problem

• O(n2): Provide an algorithm that solves the problem in no more than 
this time. 
– Remember: for every input, i.e. worst case analysis!

• Ω(n2): Prove that no algorithm can solve it faster.
– Remember:  only need one input that takes at least this long!

• θ (n2): Do both.

The time complexity of a problem is 
the time complexity of the fastest
algorithm that solves the problem.
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