
Asymptotic Analysis of Algorithms

Chapter 4

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

The Purpose of Asymptotic Analysis

• To estimate how long a program will run.

• To estimate the largest input that can reasonably be given to the program.

• To compare the efficiency of different algorithms.

• To help focus on the parts of code that are executed the largest number of times.

• To choose an algorithm for an application.

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Running Time

• Most algorithms transform input
objects into output objects.

• The running time of an algorithm
typically grows with the input size.

• Average case time is often difficult
to determine.

• We focus on the worst case
running time.
– Easier to analyze
– Reduces risk

0

20

40

60

80

100

120

1000 2000 3000 4000

Ru
nn

in
g

Ti
m

e

Input Size

best case

average case

worst case

Experimental Studies

• Write a program
implementing the algorithm

• Run the program with
inputs of varying size and
composition

• Use a method like
System.currentTimeMillis() to
get an accurate measure of
the actual running time

• Plot the results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Ti
m

e
(m

s)

Input Size

Limitations of Experiments

• It is necessary to implement the algorithm, which may
be difficult

• Results may not be indicative of the running time on
other inputs not included in the experiment.

• In order to compare two algorithms, the same hardware
and software environments must be used

Theoretical Analysis

• Uses a high-level description of the algorithm instead
of an implementation

• Characterizes running time as a function of the input
size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm
independent of the hardware/software environment

Primitive Operations

• Basic computations
performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the
programming language

• Assumed to take a constant
amount of time

• Examples:
– Evaluating an

expression

– Assigning a value
to a variable

– Indexing into an
array

– Calling a method

– Returning from a
method

Counting Primitive Operations

• By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size
Algorithm arrayMax(A, n)

operations

currentMax  A[0] 2

for i  1 to n - 1 do 2n
if A[i] > currentMax then 2(n -1)

currentMax  A[i] 2(n -1)
return currentMax 1

Total 6n -1

?

?

?

?

?

?

Estimating Running Time

• Algorithm arrayMax executes 6n  1 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
a (6n  1) ≤ T(n) ≤ b(6n  1)

• Hence, the running time T(n) is bounded by two
linear functions

Growth Rate of Running Time

• Changing the hardware/ software environment
– Affects T(n) by a constant factor, but

– Does not qualitatively alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an
intrinsic property of algorithm arrayMax

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Constant Factors

• On a logarithmic
scale, the growth
rate is not affected
by
– constant factors or

– lower-order terms

• Examples
– 102n  105 is a linear

function

– 105n2  108n is a
quadratic function

Seven Important Functions
• Seven functions that often

appear in algorithm analysis:
– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

• In a log-log chart, the slope of
the line corresponds to the
growth rate of the function.

We will follow the convention that logn  log2 n.

Classifying Functions

Note: The universe is estimated to contain ~1080 particles.

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

n

Let’s practice classifying functions

Which are more alike?

n1000 n2 2n

Which are more alike?

Polynomials

n1000 n2 2n

Which are more alike?

1000n2 3n2 2n3

Which are more alike?

Quadratic

1000n2 3n2 2n3

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

• properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

• properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents
Existential and universal operators
Proof techniques

Some Math to Review

gb Loves(b, g)

gb Loves(b, g)

• existential and universal
operators

g,b, loves(b,g) g,b,loves(b,g)
Understand Quantifiers!!!

One girl Could be a separate girl
for each boy.

Sam Mary

Bob Beth

John Marilyn
Monro

Fred Ann

Sam Mary

Bob Beth

John Marilyn
Monro

Fred Ann

Asymptotic Notation

• The notation was first introduced by number theorist Paul Bachmann
in 1894, in the second volume of his book Analytische Zahlentheorie
("analytic number theory”).

• The notation was popularized in the work of number theorist
Edmund Landau; hence it is sometimes called a Landau symbol.

• It was popularized in computer science by Donald Knuth, who
(re)introduced the related Omega and Theta notations.

• Knuth also noted that the (then obscure) Omega notation had been
introduced by Hardy and Littlewood under a slightly different
meaning, and proposed the current definition.

Source: Wikipedia

(,, and all of that)

Big-Oh Notation

• Given functions f(n) and g(n),
we say that f(n) is O(g(n)) if
there are positive constants
c and n0 such that

f(n) ≤ cg(n) for n n0

• Example: 2n  10 is O(n)

– 2n  10 ≤ cn

– (c  2) n 10

– n 10(c  2)

– Pick c 3 and n0 10 1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Definition of “Big Oh”

, 0 00 : , () ()c n n n f n cg n    

()f n

()g n

()cg n

n

() (())f n O g n

Big-Oh Example

• Example: the function
n2 is not O(n)
– n2 ≤ cn

– n c

– The above inequality
cannot be satisfied
since c must be a
constant

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥n0

this is true for c = 5 and n0 = 20

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 32

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the
growth rate of a function

• The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

Big-Oh Rules

• If f(n) is a polynomial of degree d, then f(n) is
O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

• We generally specify the tightest bound possible
– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
– Say “3n  5 is O(n)” instead of “3n  5 is O(3n)”

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running time
in big-Oh notation

• To perform the asymptotic analysis
– We find the worst-case number of primitive operations executed as a

function of the input size

– We express this function with big-Oh notation

• Example:
– We determine that algorithm arrayMax executes at most 6n  1

primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually dropped
anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

• We further illustrate asymptotic
analysis with two algorithms for
prefix averages

• The i-th prefix average of an array X
is the average of the first (i  1)
elements of X:

A[i] X[0]  X[1]  …  X[i])/(i+1)

• Computing the array A of prefix
averages of another array X has
applications to financial analysis, for
example.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

Prefix Averages (v1)
The following algorithm computes prefix averages by applying the
definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A  new array of n integers n

for i  0 to n  1 do n
s  X[0] n
for j  1 to i do 1 2 … (n  1)

s  s  X[j] 1 2 … (n  1)
A[i]  s  (i  1) n

return A 1

Arithmetic Progression

• The running time of
prefixAverages1 is
O(1 2 …n)

• The sum of the first n
integers is n(n 1) 2

– There is a simple visual
proof of this fact

• Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Prefix Averages (v2)
The following algorithm computes prefix averages efficiently by keeping
a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers

Output array A of prefix averages of X #operations
A  new array of n integers n
s  0 1
for i  0 to n  1 do n
s  s  X[i] n
A[i]  s  (i  1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time

Relatives of Big-Oh
Big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

Big-Theta
 f(n) is Θ(g(n)) if there are constants c1 > 0

and c2 > 0 and an integer constant n0 ≥ 1
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0

Intuition for Asymptotic Notation
Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or
equal to g(n)

big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or
equal to g(n)

big-Theta

 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

Note that f (n) g(n)   f (n)O g(n)  and f (n) g(n)  

Definition of Theta

f(n) is sandwiched between c1g(n) and c2g(n)

f(n) = θ(g(n))

     , ,1 2 0 0 1 20 : , () () ()c c n n n c g n f n c g n

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Time Complexity of an Algorithm

• O(n2): For any input size n ≥ n0, the algorithm takes
no more than cn2 time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at
least cn2 time on at least one input.

• θ (n2): Do both.

The time complexity of an algorithm is
the largest time required on any input
of size n. (Worst case analysis.)

What is the height of tallest person in the
class?

Bigger than this?

Need to find
only one person
who is taller

Need to look at
every person

Smaller than this?

Time Complexity of a Problem

• O(n2): Provide an algorithm that solves the problem in no more than
this time.
– Remember: for every input, i.e. worst case analysis!

• Ω(n2): Prove that no algorithm can solve it faster.
– Remember: only need one input that takes at least this long!

• θ (n2): Do both.

The time complexity of a problem is
the time complexity of the fastest
algorithm that solves the problem.

Overview
• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

