
Trees
Chapter 8

Outline

 Definitions

 Traversing trees

 Binary trees

Outline

 Definitions

 Traversing trees

 Binary trees

Graph

a

c

b Node ~ city or computer

Edge ~ road or data cable

Undirected or Directed

A surprisingly large number of computational
problems can be expressed as graph problems.

Directed and Undirected Graphs

(c) The subgraph of the graph in part (a) induced by the vertex
set {1,2,3,6}.

(a) A directed graph G = (V, E), where V = {1,2,3,4,5,6} and
E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}.
The edge (2,2) is a self-loop.

(b) An undirected graph G = (V,E), where V = {1,2,3,4,5,6} and
E = {(1,2), (1,5), (2,5), (3,6)}. The vertex 4 is isolated.

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Rooted Trees
 Trees are often used to represent hierarchical structure

 In this view, one of the vertices (nodes) of the tree is distinguished as the
root.

 This induces a parent-child relationship between nodes of the tree.

 Applications:
 Organization charts

 File systems

 Programming environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

root

Formal Definition of Rooted Tree

 A rooted tree may be empty.

 Otherwise, it consists of
 A root node r

 A set of subtrees whose roots are the children of r

r

B DC

G HE F

I J K

subtree

subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least one child

(A, B, C, F)
 External node (a.k.a. leaf): node without

children (E, I, J, K, G, H, D)
 Ancestors of a node: self, parent, grandparent,

great-grandparent, etc.
 NB: A node is considered an ancestor of itself!

 Descendent of a node: self, child, grandchild,
great-grandchild, etc.
 NB: A node is considered a descendent of itself!

 Siblings: two nodes having the same parent
 Depth of a node: number of ancestors

(excluding the node itself)
 Height of a tree: maximum depth of any node

(3)
 Subtree: tree consisting of a node and its

descendents

A

B DC

G HE F

I J K

Outline

 Definitions

 Traversing trees

 Binary trees

Traversing Trees

 One of the basic operations we require is to be able to
traverse over the nodes of a tree.

 To do this, we will make use of a Position ADT.

Position ADT

 The Position ADT models the notion of place within a
data structure where a single object is stored

 It gives a unified view of diverse ways of storing data,
such as
 a cell of an array
 a node of a linked list
 a node of a tree

 Just one method:
 object p.element(): returns the element stored at the position p.

Tree ADT

 We use positions to abstract the
nodes of a tree.

 Generic methods:
 integer size()

 boolean isEmpty()

 Iterator iterator()

 Iterable positions()

 Accessor methods:
 Position root()

 Position parent(p)

 Iterable children(p)

 Query methods:
 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

 Update method:
 object replace(p, o)

 Additional update methods may
be defined by data structures
implementing the Tree ADT

Positions vs Elements

 Why have both
 Iterator iterator()

 Iterable positions()

 The iterator returned by iterator() provides a means for
stepping through the elements stored by the tree.

 The positions() method returns a collection of the nodes
of the tree.

 Each node includes the element but also the links
connecting the node to its parent and its children.

 This allows you to move around the tree by following
links to parents and children.

Preorder Traversal
 A traversal visits the nodes of a tree

in a systematic manner

 Each time a node is visited, an
action may be performed.

 Thus the order in which the nodes
are visited is important.

 In a preorder traversal, a node is
visited before its descendants

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder (w)

Postorder Traversal

 In a postorder traversal, a
node is visited after its
descendants

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Ø

Linked Structure for Trees

 A node is represented by an
object storing
 Element
 Parent node
 Sequence of children nodes

 Node objects implement the
Position ADT

B

DA

C E

F

B

Ø Ø

A D F

Ø

C

Ø

E

Outline

 Definitions

 Traversing trees

 Binary trees

Binary Trees
 A binary tree is a tree with the

following properties:
 Each internal node has at most two

children (exactly two for proper
binary trees)

 The children of a node are an
ordered pair

 We call the children of an internal
node left child and right child

 Applications:
 arithmetic expressions

 decision processes

 searching

A

B C

F GD E

H I

Arithmetic Expression Tree

 Binary tree associated with an arithmetic expression
 internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the
expression (2 × (a  1)  (3 × b))





2

a 1

3 b

Decision Tree

 Binary tree associated with a decision process
 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Second Cup Blueberry Hill Canoe Cafe Diplomatico

Yes No

Yes No Yes No

Proper Binary Trees

 A binary tree is said to be proper if each node has either
0 or 2 children.

Properties of Proper Binary Trees
 Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

 Properties:
 e = i + 1

 n = 2e - 1

 h ≤ i

 h ≤ (n - 1)/2

 e ≤ 2h

 h ≥ log2e

 h ≥ log2(n + 1) - 1

BinaryTree ADT
The BinaryTree ADT extends the Tree ADT,

i.e., it inherits all the methods of the Tree ADT

Additional methods:
Position left(p)

Position right(p)

boolean hasLeft(p)

boolean hasRight(p)

Update methods may be defined by data
structures implementing the BinaryTree ADT

Representing Binary Trees

 Linked Structure Representation

 Array Representation

Linked Structure for Binary Trees
 A node is represented

by an object storing
 Element

 Parent node

 Left child node

 Right child node

 Node objects implement
the Position ADT

B

DA

C E

Ø Ø

Ø Ø Ø Ø

B

A D

C E

Ø

Implementation of Linked Binary Trees in net.datastructures

Tree<E>

LinkedBinaryTree<E>

Query Methods:

 size()

 isEmpty()

 isInternal(p)

 isExternal(p)

 isRoot(p)

 hasLeft(p)

 hasRight(p)

 root()

 left(p)

 right(p)

 parent(p)

 children(p)

 sibling(p)

 positions()

 iterator()

BinaryTree<E>

Modification
Methods:

 replace(p, e)

 addRoot(e)

 insertLeft(p)

 insertRight(p)

 remove(e)

 …

BTPosition in net.datastructures
 The implementation of Positions for binary trees in net.datastructures is a bit subtle.

 BTPosition<E> is an interface in net.datastructures that represents the positions of a binary tree. This is used
extensively to define the types of objects used by the LinkedBinaryTree<E> class that LinkedBinaryTreeLevel<E>
extends.

 You do not have to implement BTPosition<E>: it is already implemented by BTNode<E>. Note that
LinkedBinaryTree<E> only actually uses the BTNode<E> class explicitly when instantiating a node of the tree, in
method createNode. In all other methods it refers to the nodes of the tree using the BTPosition<E> class (i.e., a
widening cast). This layer of abstraction makes it easier to change the specific implementation of a node down the
road – it would only require a change to the one method createNode.

 We use BTPosition<E> in testLinkedBinary to define the type of father, mother, daughter and son, and to cast the
returned values from T.addRoot, T.insertLeft and T.insertRight. These three methods are implemented by
LinkedBinaryTree and return nodes created by the createNode method.

 In LinkedBinaryTreeLevel, you can use the BTPosition<E> interface to define the type of the nodes stored in your
NodeQueue. These nodes will be returned from queries on your binary tree, and thus will have been created by
the createNode method using the BTNode<E> Class.

BTPosition<E>

BTNode<E>

LinkedBinaryTree
• public hasLeft (p)
• public hasRight (p)
• …

• protected createNode (e, parent, left, right)

Position<E>

Array-Based Representation of Binary Trees

 nodes are stored in an array, using
a level-numbering scheme.

…

 let rank(node) be defined as follows:

 rank(root) = 1

 if node is the left child of parent(node),
rank(node) = 2*rank(parent(node))

 if node is the right child of parent(node),
rank(node) = 2*rank(parent(node))+1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

Comparison

Linked Structure
 Requires explicit

representation of 3 links
per position:
 parent, left child, right child

 Data structure grows as
needed – no wasted
space.

Array
 Parent and children are

implicitly represented:
 Lower memory

requirements per position

 Memory requirements
determined by height of
tree. If tree is sparse,
this is highly inefficient.

Inorder Traversal of Binary Trees

 In an inorder traversal a node is
visited after its left subtree and
before its right subtree

 Application: draw a binary tree
 x(v) = inorder rank of v
 y(v) = depth of v

Algorithm inOrder(v)
if hasLeft (v)

inOrder (left (v))
visit(v)
if hasRight (v)

inOrder (right (v))

3

1

2

5

6

7 9

8

4

Print Arithmetic Expressions

 Specialization of an inorder traversal
 print operand or operator when visiting

node
 print “(“ before traversing left subtree
 print “)“ after traversing right subtree

Algorithm printExpression(v)
if hasLeft (v)

print(“(’’)
inOrder (left(v))

print(v.element ())
if hasRight (v)

inOrder (right(v))
print (“)’’)



2

a 1

3 b ((2 × (a  1))  (3 × b))

Input:

Output:

Evaluate Arithmetic Expressions

 Specialization of a postorder
traversal
 recursive method returning the

value of a subtree

 when visiting an internal node,
combine the values of the
subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

x evalExpr (leftChild (v))
y  evalExpr (rightChild (v))
  operator stored at v
return x  y



2

5 1

3 2

Euler Tour Traversal

 Generic traversal of a binary tree

 Includes as special cases the preorder, postorder and inorder traversals

 Walk around the tree and visit each node three times:

 on the left (preorder)

 from below (inorder)

 on the right (postorder)




2

5 1

3 2

L
B

R

Template Method Pattern

 Generic algorithm that can
be specialized by
redefining certain steps

 Implemented by means of
an abstract Java class

 Visit methods can be
redefined by subclasses

 Template method eulerTour
 Recursively called on the

left and right children

 A Result object with fields
leftResult, rightResult and
finalResult keeps track of
the output of the
recursive calls to eulerTour

public abstract class EulerTour {
protected BinaryTree tree;
protected void visitExternal(Position p, Result r) { }
protected void visitLeft(Position p, Result r) { }
protected void visitBelow(Position p, Result r) { }
protected void visitRight(Position p, Result r) { }
protected Object eulerTour(Position p) {

Result r = new Result();
if tree.isExternal(p) { visitExternal(p, r); }

else {
visitLeft(p, r);
r.leftResult = eulerTour(tree.left(p));
visitBelow(p, r);
r.rightResult = eulerTour(tree.right(p));
visitRight(p, r);
return r.finalResult;

} …

Specializations of EulerTour

 We show how to specialize
class EulerTour to evaluate
an arithmetic expression

 Assumptions
 External nodes store

Integer objects

 Internal nodes store
Operator objects supporting
method

operation (Integer, Integer)

public class EvaluateExpression
extends EulerTour {

protected void visitExternal(Position p, Result r) {
r.finalResult = (Integer) p.element();

}

protected void visitRight(Position p, Result r) {
Operator op = (Operator) p.element();
r.finalResult = op.operation(

(Integer) r.leftResult,
(Integer) r.rightResult
);

}

…

}

Outline

 Definitions

 Traversing trees

 Binary trees

