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Assertions
An assertion is a statement about the 

state of the data at a specified point in 
your algorithm.

An assertion is not a task for the algorithm 
to perform. 

You may think of it as a comment that is 
added for the benefit of the reader.



Loop Invariants

 Binary search can be implemented as an iterative 
algorithm (it could also be done recursively).

 Loop Invariant:  An assertion about the current state 
useful for designing, analyzing and proving the 
correctness of iterative algorithms.



Other Examples of Assertions

 Preconditions: Any assumptions that must be true 
about the input instance.

 Postconditions: The statement of what must be true 
when the algorithm/program returns.

 Exit condition: The statement of what must be true to 
exit a loop.



Iterative Algorithms

Take one step at a time

towards the final destination

loop (done)

take step

end loop



From the Pre-Conditions on the input instance 
we must establish the loop invariant.

Establishing Loop Invariant



Maintain Loop Invariant

 Suppose that
We start in a safe location (pre-condition)

 If we are in a safe location, we always step 
to another safe location (loop invariant)

 Can we be assured that the 
computation will always be in a safe 
location?

 By what principle?



Maintain Loop Invariant
• By Induction the computation will 
always be in a safe location.
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Ending The Algorithm
 Define Exit Condition

 Termination: With sufficient progress, 

the exit condition will be met.

 When we exit, we know
 exit condition is true

 loop invariant is true

from these we must establish  

the post conditions.

Exit

Exit

0 km Exit



Definition of Correctness
<PreCond> & <code><PostCond>

If the input meets the preconditions, 
then the output must meet the postconditions. 

If the input does not meet the preconditions, then 
nothing is required.
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Define Problem: Binary Search

 PreConditions
 Key       25

 Sorted List

 PostConditions
 Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95



Define Loop Invariant

 Maintain a sublist.

 If the key is contained in the original list, then the key is 
contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95



Define Step

 Cut sublist in half.

 Determine which half the key would be in.

 Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid



Define Step

 It is faster not to check if the middle element is the key.

 Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.



Make Progress

 The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95
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Exit Condition

 If the key is contained in the 
original list, 

then the key is contained in the 
sublist.

 Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

• If element = key, 
return associated 
entry.

• Otherwise return 
false.

key 25



Running Time 

The sublist is of size n, n/2, n/4, n/8,…,1
Each step O(1) time.

Total = O(log n) 

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.



Running Time

 Binary search can interact poorly with the memory 
hierarchy (i.e. caching), because of its random-access 
nature. 

 It is common to abandon binary searching for linear 
searching as soon as the size of the remaining span falls 
below a small value such as 8 or 16 or even more in 
recent computers.



<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If  is in A[1..n], algorithm returns

1,  
its location

loop-invariant>: If  is 
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Simple, right?

 Although the concept is simple, binary search is 
notoriously easy to get wrong.

 Why is this?



Boundary Conditions

 The basic idea behind binary search is easy to grasp.

 It is then easy to write pseudocode that works for a 
‘typical’ case.

 Unfortunately, it is equally easy to write pseudocode that 
fails on the boundary conditions.
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Boundary Conditions
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or

What condition will break the loop invariant?



Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid
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Bug!!
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Boundary Conditions
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if  < [ ]

else

end
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OK OK Not OK!!



key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Boundary Conditions

mid  
2
    

p q mid  
2
    

p q
or

Shouldn’t matter, right? Select mid  
2

p q    
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Boundary Conditions

key 25

9591888372605351494336252121181353

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid  

2
p q    
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Boundary Conditions

key 25

9591888372605351494336212113653

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid  

2
p q    
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Boundary Conditions

key 25

9591888372605351494336212118653

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

•Another bug!

No progress 
toward goal: 

Loops Forever!
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Boundary Conditions
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OK OK Not OK!!
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Getting it Right

 How many 
possible 
algorithms?

 How many 
correct
algorithms?

 Probability of 
guessing
correctly?
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BinarySearch(A[1..n],key )
<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If key  is in A[1..n], algorithm returns its location
p  1,  q  n
while q  p

 loop-invariant>: If key  is in A[1..n], then key  is in A[p..q]

mid 
p  q

2













if key <A[mid]
q  mid  1

else if key > A[mid]
p  mid  1

else
return(mid)

end
end
return("Key not in list")

Alternative Algorithm:  Less Efficient but More Clear

Still (log ),  but with slightly larger constant.n



 A volunteer, please.

Card Trick



Pick a Card

Done

Thanks to J. Edmonds for this example.



Loop Invariant:
The selected card is one 

of  these.



Which 
column?

left



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



I will rearrange the cards



Relax Loop Invariant:
I will remember the same 

about each column.



Which 
column?

right



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



I will rearrange the cards



Which 
column?

left



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



Here is your 
card.

Wow!



Ternary Search

 Loop Invariant:  selected card in central subset of             
cards

 How many iterations are required to guarantee success?

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

  






Learning Outcomes

 From this lecture, you should be able to:
 Use the loop invariant method to think about iterative algorithms.

 Prove that the loop invariant is established.

 Prove that the loop invariant is maintained in the ‘typical’ case.

 Prove that the loop invariant is maintained at all boundary 
conditions.

 Prove that progress is made in the ‘typical’ case

 Prove that progress is guaranteed even near termination, so that 
the exit condition is always reached.

 Prove that the loop invariant, when combined with the exit 
condition, produces the post-condition.

 Trade off efficiency for clear, correct code.


