
Loop Invariants and Binary Search

Chapter 4.4, 5.1

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Assertions
An assertion is a statement about the

state of the data at a specified point in
your algorithm.

An assertion is not a task for the algorithm
to perform.

You may think of it as a comment that is
added for the benefit of the reader.

Loop Invariants

 Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

 Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.

Other Examples of Assertions

 Preconditions: Any assumptions that must be true
about the input instance.

 Postconditions: The statement of what must be true
when the algorithm/program returns.

 Exit condition: The statement of what must be true to
exit a loop.

Iterative Algorithms

Take one step at a time

towards the final destination

loop (done)

take step

end loop

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

Maintain Loop Invariant

 Suppose that
We start in a safe location (pre-condition)

 If we are in a safe location, we always step
to another safe location (loop invariant)

 Can we be assured that the
computation will always be in a safe
location?

 By what principle?

Maintain Loop Invariant
• By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

Ending The Algorithm
 Define Exit Condition

 Termination: With sufficient progress,

the exit condition will be met.

 When we exit, we know
 exit condition is true

 loop invariant is true

from these we must establish

the post conditions.

Exit

Exit

0 km Exit

Definition of Correctness
<PreCond> & <code><PostCond>

If the input meets the preconditions,
then the output must meet the postconditions.

If the input does not meet the preconditions, then
nothing is required.

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Define Problem: Binary Search

 PreConditions
 Key 25

 Sorted List

 PostConditions
 Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Define Loop Invariant

 Maintain a sublist.

 If the key is contained in the original list, then the key is
contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Define Step

 Cut sublist in half.

 Determine which half the key would be in.

 Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

Define Step

 It is faster not to check if the middle element is the key.

 Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Make Progress

 The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

Exit Condition

 If the key is contained in the
original list,

then the key is contained in the
sublist.

 Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

• If element = key,
return associated
entry.

• Otherwise return
false.

key 25

Running Time

The sublist is of size n, n/2, n/4, n/8,…,1
Each step O(1) time.

Total = O(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Running Time

 Binary search can interact poorly with the memory
hierarchy (i.e. caching), because of its random-access
nature.

 It is common to abandon binary searching for linear
searching as soon as the size of the remaining span falls
below a small value such as 8 or 16 or even more in
recent computers.

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end
end
if []

end

 is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

Simple, right?

 Although the concept is simple, binary search is
notoriously easy to get wrong.

 Why is this?

Boundary Conditions

 The basic idea behind binary search is easy to grasp.

 It is then easy to write pseudocode that works for a
‘typical’ case.

 Unfortunately, it is equally easy to write pseudocode that
fails on the boundary conditions.

1

if []

else

end

q mid

p

key A mid

mid

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

or

What condition will break the loop invariant?

Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

sC eod lek cey t A[m rige hid] t lf: ha

Bug!!

1

if []

else

end

q mid

p

key A mid

mid

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

if < []

else

end

1q mid

p

key A mid

mid

OK OK Not OK!!

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Boundary Conditions

mid
2

p q mid
2

p q
or

Shouldn’t matter, right? Select mid
2

p q

6 74

Boundary Conditions

key 25

9591888372605351494336252121181353

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q

2518 74

Boundary Conditions

key 25

9591888372605351494336212113653

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q

2513 74

Boundary Conditions

key 25

9591888372605351494336212118653

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

•Another bug!

No progress
toward goal:

Loops Forever!

mid
Select mid

2
p q

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

Boundary Conditions

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

if < [

mid
2

1
]

else

end

key A mid

p q

q mid

p mid

OK OK Not OK!!

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

Getting it Right

 How many
possible
algorithms?

 How many
correct
algorithms?

 Probability of
guessing
correctly?

midr
2

o ?p q

if < [or ?]key A mid

else
o

end

1r q mid

p mid

BinarySearch(A[1..n],key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p 1, q n
while q p

 loop-invariant>: If key is in A[1..n], then key is in A[p..q]

mid
p q

2

if key <A[mid]
q mid 1

else if key > A[mid]
p mid 1

else
return(mid)

end
end
return("Key not in list")

Alternative Algorithm: Less Efficient but More Clear

Still (log), but with slightly larger constant.n

 A volunteer, please.

Card Trick

Pick a Card

Done

Thanks to J. Edmonds for this example.

Loop Invariant:
The selected card is one

of these.

Which
column?

left

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

I will rearrange the cards

Relax Loop Invariant:
I will remember the same

about each column.

Which
column?

right

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

I will rearrange the cards

Which
column?

left

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

Here is your
card.

Wow!

Ternary Search

 Loop Invariant: selected card in central subset of
cards

 How many iterations are required to guarantee success?

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

Learning Outcomes

 From this lecture, you should be able to:
 Use the loop invariant method to think about iterative algorithms.

 Prove that the loop invariant is established.

 Prove that the loop invariant is maintained in the ‘typical’ case.

 Prove that the loop invariant is maintained at all boundary
conditions.

 Prove that progress is made in the ‘typical’ case

 Prove that progress is guaranteed even near termination, so that
the exit condition is always reached.

 Prove that the loop invariant, when combined with the exit
condition, produces the post-condition.

 Trade off efficiency for clear, correct code.

