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Applications of Graphs
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks
 Highway network

 Flight network

 Computer networks
 Local area network

 Internet

 Web

 Databases
 Entity-relationship diagram
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Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph (Digraph)
 all the edges are directed
 e.g., route network

 Undirected graph
 all the edges are undirected
 e.g., flight network
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Vertices and Edges
 End vertices (or endpoints) of 

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5 

 Parallel edges
 h and i are parallel edges

 Self-loop
 j is a self-loop
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Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices
 E is a collection of pairs of vertices, called edges
 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code
 An edge represents a flight route between two airports and stores the 

mileage of the route
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Paths

 Path
 sequence of alternating 

vertices and edges 
 begins with a vertex
 ends with a vertex
 each edge is preceded and 

followed by its endpoints

 Simple path
 path such that all its vertices 

and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is 

a path that is not simple
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Cycles

 Cycle
 circular sequence of alternating 

vertices and edges 

 each edge is preceded and 
followed by its endpoints

 Simple cycle
 cycle such that all its vertices 

and edges are distinct

 Examples
 C1=(V,b,X,g,Y,f,W,c,U,a,V) is a 

simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)
is a cycle that is not simple
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Subgraphs

 A subgraph S of a graph 
G is a graph such that 
 The vertices of S are a 

subset of the vertices of G

 The edges of S are a 
subset of the edges of G

 A spanning subgraph of 
G is a subgraph that 
contains all the vertices of 
G

Subgraph

Spanning subgraph



Connectivity
 A graph is connected if 

there is a path between 
every pair of vertices

 A connected component 
of a graph G is a maximal 
connected subgraph of G

Connected graph

Non connected graph with two 
connected components



Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)



Spanning Trees

 A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree

 A spanning tree is not unique 
unless the graph is a tree

 Spanning trees have applications 
to the design of communication 
networks

 A spanning forest of a graph is a 
spanning subgraph that is a forest

Graph

Spanning tree



Reachability in Directed Graphs
 A node w is reachable from v if there is a directed path 

originating at v and terminating at w.
 E is reachable from B

 B is not reachable from E
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Properties

Notation
|V| number of vertices

|E| number of edges

deg(v) degree of vertex v

Property 1

v deg(v) 2|E|

Proof: each edge is counted 
twice

Property 2
In an undirected graph with no 

self-loops and no multiple 
edges
|E| ≤ |V| (|V|  1)2

Proof: each vertex has degree 
at most (|V|  1)

Example
 |V| 4
 |E| 6
 deg(v) 3

A :  E  V (V 1)
Q:  What is the bound for a digraph?
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Main Methods of the (Undirected) Graph ADT
 Vertices and edges

 are positions
 store elements

 Accessor methods
 endVertices(e): an array of the 

two endvertices of e
 opposite(v, e): the vertex 

opposite to v on e
 areAdjacent(v, w): true iff v and 

w are adjacent
 replace(v, x): replace element at 

vertex v with x
 replace(e, x): replace element at 

edge e with x

 Update methods
 insertVertex(o): insert a vertex 

storing element o
 insertEdge(v, w, o): insert an 

edge (v,w) storing element o
 removeVertex(v): remove vertex 

v (and its incident edges)
 removeEdge(e): remove edge e

 Iterator methods
 incidentEdges(v): edges 

incident to v
 vertices(): all vertices in the 

graph
 edges(): all edges in the graph



Directed Graph ADT

 Additional methods:
 isDirected(e): return true if e is a directed edge
 insertDirectedEdge(v, w, o): insert and return a new directed 

edge with origin v and destination w, storing element o
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Running Time of Graph Algorithms

 Running time often a function of both |V| and |E|.

 For convenience, we sometimes drop the | … | in 
asymptotic notation, e.g. O(V+E).



Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if ( , ) :  u v E

( ) V E

(degree( )) u

(degree( )) u

2( ) V

( ) V

(1)



Representing Graphs (Details)

 Three basic methods
 Edge List

 Adjacency List

 Adjacency Matrix



Edge List Structure
 Vertex object

 element
 reference to position in vertex 

sequence

 Edge object
 element
 origin vertex object
 destination vertex object
 reference to position in edge 

sequence

 Vertex sequence
 sequence of vertex objects

 Edge sequence
 sequence of edge objects
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Adjacency List Structure

 Edge list structure
 Incidence sequence for 

each vertex
 sequence of references to 

edge objects of incident 
edges

 Augmented edge objects
 references to associated 

positions in incidence 
sequences of end vertices
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Adjacency Matrix Structure
 Edge list structure
 Augmented vertex 

objects
 Integer key (index) 

associated with vertex

 2D-array adjacency 
array
 Reference to edge 

object for adjacent 
vertices

 Null for non-
nonadjacent vertices

u
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w
a b

0 1 2
0 Ø Ø
1 Ø
2 Ø Øa

u v w0 1 2
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Asymptotic Performance 
(assuming collections V and E represented as 

doubly-linked lists)
|V| vertices, |E| edges
no parallel edges
no self-loops
Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency 
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|
areAdjacent (v, w) |E| min(deg(v), deg(w)) 1
insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1
removeVertex(v) |E| deg(v) |V|2

removeEdge(e) 1 1 1
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