Graphs — Depth First Search




Graph Search Algorithms
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Depth First Search (DFS)

> ldea:

O Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

O Analogous to Euler tour for trees

» Used to help solve many graph problems, including
[ Nodes that are reachable from a specific node v
O Detection of cycles
O Extraction of strongly connected components

L Topological sorts



Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

o We mark each Dy ‘ 4
intersection, corner and

dead end (vertex) visited ‘ —
J We mark each corridor ‘ v

(edge ) traversed

O We keep track of the path v
back to the entrance

(start vertex) by means of \ ‘ ‘
a rope (recursion stack)




Depth-First Search

Input: Graph 6 =(V ,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
» As soon as vertex discovered, explore from it.
» Keep track of progress by colouring vertices:

d Black: undiscovered vertices

O Red: discovered, but not finished (still exploring from it)

Q Gray: finished (found everything reachable from it).



DFS Example on Undirected Graph

|| ove

unexplored
being explored
finished
unexplored edge

discovery edge

back edge




Example (cont.)




DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G]
color[u] = BLACK //initialize vertex
for each vertex u eV[G]
if color[u] = BLACK //as yet unexplored
DFS-Visit(u)

*

N
s



DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

DFS-Visit(v) /\

colour[u] < GRAY



Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u




DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G] h
color[u] = BLACK //initialize vertex . fofal work
for each vertex u eV[G] = 0V)

J
if color[u] = BLACK //as yet unexplored
DFS-Visit(u)



DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
for each v e Adj[u] //explore edge (u,v)

' total work
if color[v] = BLACK .
= d' — 0 E
DFS-Visit(v) v%\;' Adjlv]|= &)
colour[u]l <« GRAY

/
Thus running time = 9(V + E) \
(assuming adjacency list structure)



Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

O from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph 6 =(V ,E) (directed or undirected)

Output: 2 tfimestamps on each vertex:

d[v] =discovery time.
f[v] = finishing time. 1<d[v]<flvl<2]|V|



DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u eVI[G]
color[u] = BLACK //initialize vertex
time <0
for each vertex u eV[G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u) ! . .



DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] <« RED
time <« time + 1
d[u] « time
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK /\\
DFS-Visit(v)
colour[u] < GRAY
time < time + 1
flu] < time



Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 11[u]

O Label edges in the graph according to their role in the search
(see textbook)

< Tree edges, traversed to an undiscovered vertex

<> . traversed to a descendent vertex on the current
spanning tree

<> Back edges, traversed to an ancestor vertex on the current
spanning tree

<> Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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DFS Note: Stackis Last-In First-Out (LIFO)

d f Found
’g\ Not Handled
Stack
<node,# edges>
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DFS Found
Cross Edge to handled node: d[hkd[i] Not Handled
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DFS Found
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DFS Found
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Tree Edges

Back Edges
Forward Edges

Cross Edges

2/20
d

DFS

1/27

Finished!

el22/23

1 9/10

Found
Not Handled
Stack
<node,# edges>

J[12/15

13/14




Classification of Edges in DFS

Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an ancestor vin
a depth-first tree.

Forward edges are non-tree edges (u, v) connecting a vertex uto a
descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.
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Classification of Edges in DFS

1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.
2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and dfv] > dfu].

4, Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
dfv] < d[u].

Classifying edges can help to identify
properties of the graph, e.g., a graph is
acyclic iff DFS yields no back edges.

3/19




DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

> Why?



DFS on Undirected Graphs

Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

(u,v) is a forward edge or a cross edge when v
is already handled (grey) when accessed from
u.

This means that all vertices reachable from v
have been explored.

Since we are currently handling u, u must be red.
Clearly v is reachable from u.

Since the graph is undirected, u must also be
reachable from v.

Thus u must already have been handled: u must
be grey.

Contradiction!
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DFS Application 1: Path Finding

The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

We use a stack to keep track of the current path

If the destination vertex z is encountered, we return the path as the contents of

the stack DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] <« RED
push u onto stack
ifu=z
return TRUE
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE

colour[u]l <~ GRAY
pop u from stack
return FALSE




DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.

> If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colourfu] <« RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return true
else if color[v] = BLACK
if DFS-Cycle(v)
return true
colour[u] < GRAY
return false




Why must DFS on a graph with a cycle

generate a back edge?

Suppose that vertex s is in a connected
component S that contains a cycle C.

Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

Let v be the first vertex in C reached by a
DFS from s.

There are two vertices u and w adjacent
to v on the cycle C.

wlog, suppose u is explored first.

Since w is reachable from u, w will
eventually be discovered.

When exploring w's adjacency list, the
back-edge (w, v) will be discovered.

?




DFS Application 3. Topological Sorting
(e.g., putting tasks in linear order)

Note: The textbook also describes a breadth-
first TopologicalSort algorithm (Section 13.4.3)



DAGs and Topological Ordering

» A directed acyclic graph (DAG) is a
digraph that has no directed cycles

» A topological ordering of a digraph G @
IS a numbering

Vis oo Vy e

of the vertices such that for every G

edge (v;, v;), we have i <]

» Example: in a task scheduling ° DAG G
digraph, a topological ordering is a
task sequence that satisfies the V, Vs
precedence constraints

Theorem V)

A digraph admits a topological
ordering if and only if it is a DAG

Topological
ordering of G



Topological (Linear) Order

underwear socks
9 ®
pantsg . shoes
=
underwAeb )W socks
pants " underwear

socks 3 pants
shoes P,

shoes



Topological (Linear) Order

underweal; socks

Invalid
shoes
¢ Order

pantsg




Algorithm for Topological Sorting

» Note: This algorithm is different than the one
in Goodrich-Tamassia

Method TopologicalSort(G)

H € G // Temporary copy of G

n € G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v € n
n€n-1
Remove v from H //as well as edges involving v




Linear Order

4 Pre-Condition:
/\ A Directed Acyclic Graph
4

b I Ih (DAG)

C ‘ 1 Post-Condition:

d I 4 IJ Find one valid linear order
doo

Put 1t last in sequence.

k Algorithm:
/ *Find a terminal node (sink):
g } O([VI)
‘o 4 ol *Delete from graph & repea

v

Running time: ) i = O(Mz)
i=1

1 Can we do better?



Linear Order
Alg: DFS

Found
Not Handled
Stack

c.aogq =H




Linear Order Found
Alg: DF
& > Not Handled

a
/\ Stack
b “ Meh

c% ) %i
d1 ) Jk

4

1
<

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:

T



Linear Order
Alg: DFS
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Linear Order:
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Found
Not Handled
Stack

C.a0Q



Linear Order
Alg: DFS

bI/I\I‘f
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)
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Linear Order:

gLt

Found
Not Handled
Stack

Q.0



Linear Order
Alg: DFS

bI/I\I‘f
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Linear Order:

e,g,l,f

Found
Not Handled
Stack




Linear Order Found
Ale: DF
= > Not Handled

/a\ Stack
Y
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Linear Order:

d,e,gl,f




Linear Order
Alg: DFS

bI/I\I‘f
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Linear Order:
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Found
Not Handled
Stack




Linear Order

Alg: DFS
PN
b © eh
T
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R
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Linear Order: k,d,e,g,l,f

Found
Not Handled
Stack




/a\ Stack
b © eh
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Linear Order

Alg: DFS Found

Not Handled

1

'
k

Linear Order: j,k,d,e,g,laf
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Linear Order

Alg: DFS Found

Not Handled

1

'
k

Linear Order: i,j,k,d,e,g,laf



Linear Order

Found
a Alg: DFS Not Handled
/\ Stack
b © eh
C I 4 Il
dI .
J
e 1 ‘ 1k
g '
\ C
f l b

Linear Order: i,j,k,d,e,g,laf



Linear Order

Found
a Alg: DES Not Handled

/\ Stack
b © eh

| .1
"1 |
d R
e 1 ‘ 1k

>
f 1 b

Linear Order: C,i,j,k,d,e,g,laf



Linear Order

Found
9 Alg: DES Not Handled
/\ StaCK
b “ Meh
N
C | 11
d ol
e 1 ‘ 1k
>
f |

Linear Order: b,C,i,j,k,d,e,g,l,f



Linear Order

Found
q Alg: DES Not Handled
/\ Stack
b “ eh
| .1
C 1 11
d ol
e 1 ‘ 1k
g -
> :
f \ 1 .

Linear Order: b,c,i,j,k,d,e,g,l,f



Linear Order

I/\Ih
R
.0

ol

o o o o

Alg: DFS

Found
Not Handled
Stack

a

Linear Order: h,b,C,i,j,k,d,e,g,l,f



Linear Order
Alg: DFS Found

a Not Handled
/\ Stack
© eh
I 4 Il
I 4 I J
I 4 Ik

ol

o o o o

Linear Order:  a,h,b,c.1,1,k,d,e,g,1,f Done!



DFS Algorithm for Topologial Sort

» Makes sense. But how do we prove that it works?



Linear Order Found

Proof: Consider each edge Not Hapdled
*Case 1: u goes on stack first before v. Stack
*Because of edge,
v goes on before u comes off
*v comes off before u comes off
v goes after u in order. ©

Ue—e V



Linear Order Found

Proof: Consider each edge Not Hapdled
*Case 1: u goes on stack first before v. Stack
*Case 2: v goes on stack first before u.
v comes off before u goes on.

v goes after u in order. ©

Ue—e V



Linear Order

Proof: Consider each edge

*Case 1: u goes on stack first before v.
*Case 2: v goes on stack first before u.

v comes off before u goes on.
Case 3: v goes on stack first before u.
u goes on before v comes off.
Panic: u goes after v in order. ®
*Cycle means linear order

. is impossible ©

Found
Not Handled

Stack

Q

u

\"

D

The nodes 1n the stack form a path starting at s.

Ue——o VvV
V.. U...



Linear Order

Found
9 Alg: DES Not Handled
/\ Stack
b © oh
C I ) Ii
1
c ) k
>< Analysis: O(V+E)
fe ol

Linear Order: a,h,b,c,1,5,k,d,e,g,1,f Done!




DFS Application 3. Topological Sort

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order
for each vertex u eV[G]
colorfu] = BLACK //initialize vertex
for each vertex u eV[G]
if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u) \//. .
\

SR



DFS Application 3. Topological Sort

Topological-Sort-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: u and all vertices reachable from u
nave been pushed onto stack in reverse linear order

colourfu] « RED

for each v € Adj[u] //explore edge (u,v)

If color[v] = BLACK
Topological-Sort-Visit(v)
push u onto stack
colour[u] < GRAY
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