
Graphs – Breadth First Search

ORD

DFW

SFO

LAX

Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted graph

 Unweighted Shortest Path: Proof of Correctness

Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted graph

 Unweighted Shortest Path: Proof of Correctness

Breadth-First Search
 Breadth-first search (BFS) is a general technique for traversing a graph
 A BFS traversal of a graph G

 Visits all the vertices and edges of G
 Determines whether G is connected
 Computes the connected components of G
 Computes a spanning forest of G

 BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

 BFS can be further extended to solve other graph problems
 Cycle detection

 Find and report a path with the minimum number of edges between two
given vertices

BFS Algorithm Pattern
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex uV [G]
color[u] BLACK //initialize vertex

colour[s] RED
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]RED
Q.enqueue(v)

colour [u]GRAY

BFS is a Level-Order Traversal

 Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

 We can label these successive wavefronts by their
distance: L0, L1, …

BFS Example

CB

A

E

D

discovery edge

cross edge

A discovered (on Queue)
A undiscovered

unexplored edge

L0

L1

F

CB

A

E

D
L1

F

CB

A

E

D

L0

L1

F

A finished

BFS Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

BFS Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
For each vertex v in Li
 The path of Ts from s to v has i

edges
 Every path from s to v in Gs has at

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

Analysis
 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled three times
 once as BLACK (undiscovered)

 once as RED (discovered, on queue)

 once as GRAY (finished)

 Each edge is considered twice (for an undirected graph)

 Each vertex is placed on the queue once

 Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure

Applications

BFS traversal can be specialized to solve the
following problems in O(|V|+|E|) time:
Compute the connected components of G

Compute a spanning forest of G

Find a simple cycle in G, or report that G is a forest

Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted
graph

 Unweighted Shortest Path: Proof of Correctness

Application: Shortest Paths on an Unweighted Graph

 Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.
 The length of each path and the paths themselves are returned.

 Notes:
 There are an exponential number of possible paths

 Analogous to level order traversal for trees

 This problem is harder for general graphs than trees because of
cycles!

s

?

Breadth-First Search

 Idea: send out search ‘wave’ from s.

 Keep track of progress by colouring vertices:
 Undiscovered vertices are coloured black

 Just discovered vertices (on the wavefront) are coloured red.

 Previously discovered vertices (behind wavefront) are coloured grey.

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V

[] shortest path distance (,) from to , .
 [] such that (,) is las

Outpu

t edg

t:

e on shortest path from a to

.
d v s v s v v V

v u u v s v

BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] shortest distance [u] and
 [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null
color[u] = BLACK //initialize vertex

colour[s] RED
d[s] 0
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]RED
d[v] d[u]1
 [v] u
Q.enqueue(v)

colour [u]GRAY

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

First-In First-Out (FIFO) queue
stores ‘just discovered’ vertices

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

s

d=0

d=0

BFS Found
Not Handled

Queue

d=0
a

b
g
d

d=1

s

a

c

h

k

f

i

l

m

j

e

b

g
d

d=0
d=1

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

a

b
g
d

d=0
d=1

d=1

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g
d

c
f

d=0
d=1

d=2

d=1

d=2

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g

c
f
m
e

d=0
d=1

d=2

d=1

d=2

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

b

j

c
f
m
e

d=1

d=2

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

j

c
f
m
e

d=1

d=2

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

c
f
m
e
j

d=0
d=1

d=2

d=2

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

f
m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

e
j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h

d=0
d=1

d=2

d=3

i
l

d=3

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

i
l
k

d=0
d=1

d=2

d=3d=4

d=3

d=4

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

l
k

d=0
d=1

d=2

d=3d=4

d=3

d=4

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3d=4

d=3

d=4

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3d=4

d=4

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

d=3d=4

d=4
d=5

Breadth-First Search Algorithm: Properties

 Q is a FIFO queue.

 Each vertex assigned finite d
value at most once.

 Q contains vertices with d
values {i, …, i, i+1, …, i+1}

 d values assigned are
monotonically increasing over
time.

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] shortest distance [u] and
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null
color[u] = BLACK //initialize vertex

colour[s] RED
d[s] 0
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]RED
d[v] d[u]1
 [v] u
Q.enqueue(v)

colour [u]GRAY

Breadth-First-Search is Greedy

 Vertices are handled (and finished):
 in order of their discovery (FIFO queue)

 Smallest d values first

Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted graph

 Unweighted Shortest Path: Proof of Correctness

Basic Steps:

s
u

The shortest path to u
has length d

v

& there is an edge
from u to v

There is a path to v with length d+1.

Correctness

d

Correctness: Basic Intuition

 When we discover v, how do we know there is not a
shorter path to v?
 Because if there was, we would already have discovered it!

s
u vd

Correctness: More Complete Explanation

 Vertices are discovered in order of their distance from
the source vertex s.

 Suppose that at time t1 we have discovered the set Vd of
all vertices that are a distance of d from s.

 Each vertex in the set Vd+1 of all vertices a distance of
d+1 from s must be adjacent to a vertex in Vd

 Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in Vd.

s
u vd

Inductive Proof of BFS

Suppose at step i that the set of nodes Si with distance (v) di have been
discovered and their distance values d[v] have been correctly assigned.

Any node v with (v) di 1 must be adjacent to Si .

Any node v adjacent to Si but not in Si must have (v) di 1.

At step i 1, all nodes on the queue with d values of di are dequeued and processed.

Thus after step i 1, all nodes v with distance (v) di 1 have been discovered
and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in Si with d values of di .

In so doing, all nodes adjacent to Si are discovered and assigned d values of di 1.

Furthermore, the queue contains only nodes in Si with d values of di 1.

Correctness: Formal Proof

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V

Output:
 d[v] distance (v) from s to v, v V .
 [v] u such that (u,v) is last edge on shortest path from s to v .

1. [] (,)d v s v v V

2. [] (,) d v s v v V

Two-step proof:

On exit:

 Claim 1. is never too small: [] (,)d d v s v v V
Proof: There exists a path from s to v of length d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (an grre d d ey).

 is discovered from some adjacent vertex being handled.uv

 [] [] 1d v d u
 (,) 1us
 (,)s v u v

s

since each vertex is assigned a value exactly once,
it follows that o []n exit, (.,)d v s v

v
v V

d

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] shortest distance [u] and
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null
color[u] = BLACK //initialize vertex

colour[s] RED
d[s] 0
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]RED
d[v] d[u]1
 [v] u
Q.enqueue(v)

colour [u]GRAY

: [] (,) 'disco rvered' (o gr)eyred d v s v v V

(,) 1s u (,)s v

 Claim 1. is never too small: [] (,)d d v s v v V
Proof: There exists a path from s to v of length d[v].

s
u v

 Claim 2. is never too big: [] (,) d d v s v v V
Proof by contradiction:

Suppose one or more vertices receive a value greater than .d

Let be the vertex with minimum (,) that receives such a value.s dv v

Let be 's predecessor on a shortest path from to .u sv v

s
u v

Suppose that is discovered and assigned this d value when vertex is dequeued.v x

 [] [] 1d x d v

 [] (,) 1d s vu

 (,) []vs d v

 vertices are dequeued in increasing order of Reca v .ll: alued

 u was dequeued before x.
 [] [] 1 (,)dvd u s v

x (,) 1 [] 1v d vs

 [] []d u d x

Then

Contradiction!

Correctness

 Claim 1. is never too small: [] (,)d d v s v v V

 Claim 2. is never too big: [] (,) d d v s v v V

 is just right: [] (,) d d v s v v V

Progress? On every iteration one vertex is processed (turns gray).
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] shortest distance [u] and
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null
color[u] = BLACK //initialize vertex

colour[s] RED
d[s] 0
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]RED
d[v] d[u]1
 [v] u
Q.enqueue(v)

colour [u]GRAY

 The shortest path problem has the optimal substructure property:
 Every subpath of a shortest path is a shortest path.

 The optimal substructure property
 is a hallmark of both greedy and dynamic programming algorithms.

 allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.

Optimal Substructure Property

u vs

shortest path

shortest path shortest path

How would we
prove this?

Recovering the Shortest Path
For each node v, store predecessor of v in (v).

s
u v

Predecessor of v is

(v)

(v) = u.

Recovering the Shortest Path

Precondition: and are vertices of graph
Postcondition: the vertices on the shortest path from to have been prin

P

if then

RINT-PATH(, ,)

pr

print

ted in o

else

int
if

rd

then [] I
"

e

L

r

N

s v G
s v

s

v

v

s
s

G

v

else
no path from" "to" "exists"

PRINT-PATH(, , [])
print

s v

G s v
v

BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors [u] and shortest
distance d[u] from s to each vertex u in G has been computed

for each vertex uV [G]
d[u]
 [u] null

d[s] 0
Q.enqueue(s)
while Q

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if d[v] =
d[v] d[u]1
 [v] u
Q.enqueue(v)

Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted graph

 Unweighted Shortest Path: Proof of Correctness

