Graphs - Breadth First Search

Outline

> BFS Algorithm
$>$ BFS Application: Shortest Path on an unweighted graph
> Unweighted Shortest Path: Proof of Correctness

Outline

> BFS Algorithm
$>$ BFS Application: Shortest Path on an unweighted graph
> Unweighted Shortest Path: Proof of Correctness

Breadth-First Search

$>$ Breadth-first search (BFS) is a general technique for traversing a graph
$>$ A BFS traversal of a graph G
\square Visits all the vertices and edges of G
\square Determines whether G is connected
\square Computes the connected components of G
\square Computes a spanning forest of G
$>B \mathrm{BFS}$ on a graph with $|\boldsymbol{V}|$ vertices and $|\boldsymbol{E}|$ edges takes $\boldsymbol{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)$ time
$>B F S$ can be further extended to solve other graph problems
\square Cycle detection
\square Find and report a path with the minimum number of edges between two given vertices

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited for each vertex $u \in V[G]$
color[u] \leftarrow BLACK //initialize vertex
colour[s] \leftarrow RED
Q.enqueue(s)
while $Q \neq \varnothing$

$$
\begin{aligned}
& u \leftarrow \text { Q.dequeue }() \\
& \text { for each } v \in \operatorname{Adj}[u] / / \text { explore edge }(u, v) \\
& \text { if color }[v]=\text { BLACK } \\
& \text { colour }[v] \leftarrow \text { RED } \\
& \text { Q.enqueue }(v) \\
& \text { colour }[u] \leftarrow G R A Y
\end{aligned}
$$

BFS is a Level-Order Traversal

$>$ Notice that in BFS exploration takes place on a wavefront consisting of nodes that are all the same distance from the source s.
$>$ We can label these successive wavefronts by their distance: L_{0}, L_{1}, \ldots

BFS Example

BFS Example (cont.)

BFS Example (cont.)

Properties

Notation

G_{s} : connected component of s
Property 1
$\operatorname{BFS}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of $\boldsymbol{G}_{\boldsymbol{s}}$
Property 2
The discovery edges labeled by
 $\operatorname{BFS}(G, s)$ form a spanning tree T_{s} of G_{s}
Property 3
For each vertex v in L_{i}
\square The path of T_{s} from s to v has i edges
\square Every path from s to v in G_{s} has at least i edges

Analysis

$>$ Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
$>$ Each vertex is labeled three times
\square once as BLACK (undiscovered)
\square once as RED (discovered, on queue)
\square once as GRAY (finished)
$>$ Each edge is considered twice (for an undirected graph)
$>$ Each vertex is placed on the queue once
$>$ Thus BFS runs in $\boldsymbol{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)$ time provided the graph is represented by an adjacency list structure

Applications

$>$ BFS traversal can be specialized to solve the following problems in $\boldsymbol{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)$ time:
\square Compute the connected components of \boldsymbol{G}
\square Compute a spanning forest of \boldsymbol{G}
\square Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
\square Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

Outline

> BFS Algorithm
$>$ BFS Application: Shortest Path on an unweighted graph
> Unweighted Shortest Path: Proof of Correctness

Application: Shortest Paths on an Unweighted Graph

$>$ Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
\square The length of each path and the paths themselves are returned.
> Notes:
\square There are an exponential number of possible paths
\square Analogous to level order traversal for trees
\square This problem is harder for general graphs than trees because of cycles!

Breadth-First Search

Input: $\operatorname{Graph} G=(V, E)$ (directed or undirected) and source vertex $s \in V$.
Output:
$d[v]=$ shortest path distance $\delta(s, v)$ from s to $v, \forall v \in V$. $\pi[v]=u$ such that (u, v) is last edge on a shortest path from s to v.
> Idea: send out search 'wave' from s.
> Keep track of progress by colouring vertices:
\square Undiscovered vertices are coloured black
\square Just discovered vertices (on the wavefront) are coloured red.
\square Previously discovered vertices (behind wavefront) are coloured grey.

BFS Algorithm with Distances and Predecessors

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: $d[u]=$ shortest distance $\delta[u]$ and
$\pi[u]=$ predecessor of u on shortest path from s to each vertex u in G for each vertex $u \in V[G]$
$d[u] \leftarrow \infty$
$\pi[u] \leftarrow$ null
color[u] = BLACK //initialize vertex
colour[s] \leftarrow RED
$d[s] \leftarrow 0$
Q.enqueue(s)
while $Q \neq \varnothing$
$u \leftarrow$ Q.dequeue()
for each $v \in \operatorname{Adj}[u] / / e x p l o r e ~ e d g e ~(u, v)$
if color[v] = BLACK
colour $[\mathrm{v}] \leftarrow \mathrm{RED}$
$d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$
Q.enqueue(v)
colour $[u] \leftarrow G R A Y$

BFS

Breadth-First Search Algorithm: Properties

```
BFS(G,s)
Precondition: G is a graph,s is a vertex in G
Postcondition: d[u] = shortest distance }\delta[u]\mathrm{ and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
    for each vertex u \inV[G]
        d[u]}\leftarrow
        \pi[u]}\leftarrow\mathrm{ null
        color[u] = BLACK //initialize vertex
    colour[s] \leftarrow RED
    d[s]}\leftarrow
    Q.enqueue(s)
    while Q*= 
    u}\leftarrow\mathrm{ Q.dequeue()
    for each v A Adj[u] //explore edge (u,v)
        if color[v] = BLACK
            colour[v]}\leftarrowRE
            d[v]}\leftarrowd[u]+
            \pi[v]}\leftarrow
            Q.enqueue(v)
colour[u]}\leftarrowGRA
```

> Each vertex assigned finite d value at most once.
$>Q$ contains vertices with d values $\{i, \ldots, i, i+1, \ldots, i+1\}$
>d values assigned are monotonically increasing over time.

Breadth-First-Search is Greedy

$>$ Vertices are handled (and finished):
\square in order of their discovery (FIFO queue)
\square Smallest d values first

Outline

> BFS Algorithm
$>$ BFS Application: Shortest Path on an unweighted graph
> Unweighted Shortest Path: Proof of Correctness

Correctness

Basic Steps:

The shortest path to u has length d
\& there is an edge from u to v

There is a path to v with length $\mathrm{d}+1$.

Correctness: Basic Intuition

$>$ When we discover v, how do we know there is not a shorter path to v ?
\square Because if there was, we would already have discovered it!

Correctness: More Complete Explanation

$>$ Vertices are discovered in order of their distance from the source vertex s.
$>$ Suppose that at time t_{1} we have discovered the set V_{d} of all vertices that are a distance of d from s.
$>$ Each vertex in the set V_{d+1} of all vertices a distance of $d+1$ from s must be adjacent to a vertex in V_{d}
$>$ Thus we can correctly label these vertices by visiting all vertices in the adjacency lists of vertices in V_{d}.

Inductive Proof of BFS

Suppose at step i that the set of nodes S_{i} with distance $\delta(v) \leq d_{i}$ have been discovered and their distance values $d[v]$ have been correctly assigned.

Further suppose that the queue contains only nodes in S_{i} with d values of d_{i}.
Any node v with $\delta(v)=d_{i}+1$ must be adjacent to S_{i}.
Any node v adjacent to S_{i} but not in S_{i} must have $\delta(v)=d_{i}+1$.
At step $i+1$, all nodes on the queue with d values of d_{i} are dequeued and processed.
In so doing, all nodes adjacent to S_{i} are discovered and assigned d values of $d_{i}+1$.
Thus after step $i+1$, all nodes v with distance $\delta(v) \leq d_{i}+1$ have been discovered and their distance values $d[v]$ have been correctly assigned.

Furthermore, the queue contains only nodes in S_{i} with d values of $d_{i}+1$.

Correctness: Formal Proof

Input: $\operatorname{Graph} G=(V, E)$ (directed or undirected) and source vertex $s \in V$.
Output:
$d[v]=$ distance $\delta(v)$ from s to $v, \forall v \in V$.
$\pi[v]=u$ such that (u, v) is last edge on shortest path from s to v.
Two-step proof:
On exit:

1. $d[v] \geq \delta(s, v) \forall v \in V$
2. $d[v] \ngtr \delta(s, v) \forall v \in V$

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$
 Proof: There exists a path from s to v of length $\leq d[v]$.

By Induction:

Suppose it is true for all vertices thus far discovered (red and grey). v is discovered from some adjacent vertex u being handled.

$$
\begin{aligned}
\rightarrow d[v] & =d[u]+1 \\
& \geq \delta(s, u)+1 \\
& \geq \delta(s, v)
\end{aligned}
$$

since each vertex v is assigned a d value exactly once, it follows that on exit, $d[v] \geq \delta(s, v) \forall v \in V$.

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$

$\operatorname{BFS}(G, s) \quad$ Proof: There exists a path from s to v of length $\leq d[v]$.
Precondition: G is a graph, s is a vertex in G
Postcondition: $d[u]=$ shortest distance $\delta[u]$ and
$\pi[u]=$ predecessor of u on shortest paths from s to each vertex u in G for each vertex $u \in V[G]$

$$
d[u] \leftarrow \infty
$$

$\pi[u] \leftarrow$ null
color[u] = BLACK //initialize vertex
colour[s] \leftarrow RED
$d[s] \leftarrow 0$

Q.enqueue(s)
while $Q \neq \varnothing$
$\mathrm{u} \leftarrow$ Q.dequeue() $\ll \mathrm{Ll>}: d[V] \geq \delta(S, V) \forall$ 'discovered' (red or grey) $V \in V$
for each $v \in \operatorname{Adj}[u] / / e x p l o r e ~ e d g e ~(u, v)$
if color[v] = BLACK
$\frac{\text { colour }[\mathrm{v}] \leftarrow \text { RED }}{d[v] \leftarrow d[u]+1} \geq \delta(s, u)+1 \geq \delta(s, v)$
Q.enqueue(v)
colour $[u] \leftarrow$ GRAY

Claim 2. d is never too big: $d[v] \leq \delta(s, v) \forall v \in V$

Proof by contradiction:

Suppose one or more vertices receive a d value greater than δ.
Let v be the vertex with minimum $\delta(s, v)$ that receives such a d value.
Suppose that v is discovered and assigned this d value when vertex x is dequeued.
Let u be v 's predecessor on a shortest path from s to v.
Then

$$
\begin{gathered}
\delta(s, v)<d[v] \\
\rightarrow \delta(s, v)-1<d[v]-1 \\
\rightarrow d[u]<d[x]
\end{gathered}
$$

Recall: vertices are dequeued in increasing order of d value.
$\rightarrow \mathrm{u}$ was dequeued before x .
$\rightarrow d[v]=d[u]+1=\delta(s, v) \quad$ Contradiction!

Correctness

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$
Claim 2. d is never too big: $d[v] \leq \delta(s, v) \forall v \in V$
$\Rightarrow d$ is just right: $d[v]=\delta(s, v) \forall v \in V$

Progress? > On every iteration one vertex is processed (turns gray).

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: $d[u]=$ shortest distance $\delta[u]$ and
$\pi[u]=$ predecessor of u on shortest paths from s to each vertex u in G for each vertex $u \in V[G]$
$d[u] \leftarrow \infty$
$\pi[u] \leftarrow$ null
color[u] = BLACK //initialize vertex
colour[s] \leftarrow RED
$d[s] \leftarrow 0$
Q.enqueue(s)
while $Q \neq \varnothing$
$\mathrm{u} \leftarrow$ Q.dequeue()
for each $v \in \operatorname{Adj}[u] / / e x p l o r e ~ e d g e ~(u, v)$
if color[v] = BLACK
colour $[\mathrm{v}] \leftarrow$ RED
$d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$
Q.enqueue(v)
colour $[u] \leftarrow G R A Y$

Optimal Substructure Property

> The shortest path problem has the optimal substructure property:
\square Every subpath of a shortest path is a shortest path.

How would we prove this?

> The optimal substructure property
\square is a hallmark of both greedy and dynamic programming algorithms.
\square allows us to compute both shortest path distance and the shortest paths themselves by storing only one d value and one predecessor value per vertex.

Recovering the Shortest Path

For each node v , store predecessor of v in $\square(\mathrm{v})$.

Recovering the Shortest Path

PRINT-PATH(G, s, v)

Precondition: s and v are vertices of graph G
Postcondition: the vertices on the shortest path from s to v have been printed in order if $v=s$ then
print s
else if $\pi[v]=$ NIL then
print "no path from" s "to" v "exists" else

PRINT-PATH($G, s, \pi[v])$ print v

BFS Algorithm without Colours

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors $\pi[u]$ and shortest
distance $d[u]$ from s to each vertex u in G has been computed for each vertex $u \in V[G]$

$$
d[u] \leftarrow \infty
$$

$$
\pi[u] \leftarrow \text { null }
$$

$$
d[s] \leftarrow 0
$$

Q.enqueue(s)
while $Q \neq \varnothing$

$$
\begin{aligned}
& \begin{array}{l}
u \leftarrow \text { Q.dequeue }() \\
\text { for each } v \in \text { Adj }[u] / / \text { explore edge }(u, v) \\
\text { if } \mathrm{d}[v]=\infty
\end{array} \\
& d[v] \leftarrow d[u]+1 \\
& \pi[v] \leftarrow u \\
& \text { Q.enqueue }(v)
\end{aligned}
$$

Outline

> BFS Algorithm
$>$ BFS Application: Shortest Path on an unweighted graph
> Unweighted Shortest Path: Proof of Correctness

