Graphs – Breadth First Search

Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness

Outline

> BFS Algorithm

- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness

Breadth-First Search

- > Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - □ Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- > BFS on a graph with /V/ vertices and /E/ edges takes O(/V/+/E/) time
- BFS can be further extended to solve other graph problems
 - □ Cycle detection
 - Find and report a path with the minimum number of edges between two given vertices

BFS Algorithm Pattern

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
        for each vertex u \in V[G]
                 color[u] ← BLACK //initialize vertex
        colour[s] \leftarrow RED
        Q.enqueue(s)
        while \mathbf{Q} \neq \emptyset
                 u \leftarrow Q.dequeue()
                 for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                         if color[v] = BLACK
                                 colour[v] \leftarrow RED
                                 Q.enqueue(v)
                 colour[u] \leftarrow GRAY
```

BFS is a Level-Order Traversal

- Notice that in BFS exploration takes place on a wavefront consisting of nodes that are all the same distance from the source s.
- We can label these successive wavefronts by their distance: L₀, L₁, …

BFS Example

BFS Example (cont.)

BFS Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- $\Box The path of T_s from s to v has i edges$
- Every path from s to v in G_s has at least i edges

Analysis

- > Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled three times
 - □ once as BLACK (undiscovered)

□ once as RED (discovered, on queue)

□ once as GRAY (finished)

- Each edge is considered twice (for an undirected graph)
- Each vertex is placed on the queue once
- Thus BFS runs in O(/V/+/E/) time provided the graph is represented by an adjacency list structure

Applications

- > BFS traversal can be specialized to solve the following problems in O(/V/+/E/) time:
 - \Box Compute the connected components of G
 - \Box Compute a spanning forest of G
 - \Box Find a simple cycle in G, or report that G is a forest
 - □ Given two vertices of *G*, find a path in *G* between them with the minimum number of edges, or report that no such path exists

Outline

BFS Algorithm

BFS Application: Shortest Path on an unweighted graph

Unweighted Shortest Path: Proof of Correctness

Application: Shortest Paths on an Unweighted Graph

- Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
 - □ The length of each path and the paths themselves are returned.

> Notes:

- □ There are an exponential number of possible paths
- □ Analogous to level order traversal for trees
- This problem is harder for general graphs than trees because of cycles!

Breadth-First Search

Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

Output:

d[v] = shortest path distance $\delta(s,v)$ from s to v, $\forall v \in V$.

 $\pi[v] = u$ such that (u,v) is last edge on a shortest path from s to v.

- Idea: send out search 'wave' from s.
- Keep track of progress by colouring vertices:

Undiscovered vertices are coloured black

- □ Just discovered vertices (on the wavefront) are coloured red.
- □ Previously discovered vertices (behind wavefront) are coloured grey.

BFS Algorithm with Distances and Predecessors

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest path from s to each vertex u in G
         for each vertex u \in V[G]
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{null}
                  color[u] = BLACK //initialize vertex
         colour[s] \leftarrow RED
         d[s] \leftarrow 0
         Q.enqueue(s)
         while \mathbf{Q} \neq \emptyset
                  u \leftarrow Q.dequeue()
                  for each v \in \operatorname{Adi}[u] //explore edge (u, v)
                           if color[v] = BLACK
                                    colour[v] \leftarrow RED
                                    d[v] \leftarrow d[u] + 1
                                    \pi[v] \leftarrow u
                                    Q.enqueue(v)
                  colour[u] \leftarrow GRAY
```


Breadth-First Search Algorithm: Properties

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
         for each vertex u \in V[G]
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{null}
                  color[u] = BLACK //initialize vertex
         colour[s] \leftarrow RED
         d[s] \leftarrow 0
                                                                        \succ
         Q.enqueue(s)
         while \mathbf{Q} \neq \emptyset
                  u \leftarrow Q.dequeue()
                  for each v \in \operatorname{Adi}[u] //explore edge (u, v)
                           if color[v] = BLACK
                                                                             time.
                                    colour[v] \leftarrow RED
                                    d[v] \leftarrow d[u] + 1
                                    \pi[v] \leftarrow u
                                    Q.enqueue(v)
                  colour[u] \leftarrow GRAY
```

- Q is a FIFO queue.
- Each vertex assigned finite d value at most once.
- Q contains vertices with d values {*i*, ..., *i*, *i*+1, ..., *i*+1}
- d values assigned are monotonically increasing over time.

Breadth-First-Search is Greedy

Vertices are handled (and finished):

- □ in order of their discovery (FIFO queue)
- □ Smallest *d* values first

Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness

Correctness

Basic Steps:

The shortest path to u& there is an edgehas length dfrom u to v

There is a path to v with length d+1.

Correctness: Basic Intuition

When we discover v, how do we know there is not a shorter path to v?

Because if there was, we would already have discovered it!

Correctness: More Complete Explanation

- Vertices are discovered in order of their distance from the source vertex s.
- Suppose that at time t₁ we have discovered the set V_d of all vertices that are a distance of d from s.
- Each vertex in the set V_{d+1} of all vertices a distance of d+1 from s must be adjacent to a vertex in V_d
- Thus we can correctly label these vertices by visiting all vertices in the adjacency lists of vertices in V_d.

Inductive Proof of BFS

Suppose at step *i* that the set of nodes S_i with distance $\delta(v) \le d_i$ have been discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S_i , with d values of d_i .

Any node v with $\delta(v) = d_i + 1$ must be adjacent to S_i .

Any node v adjacent to S_i but not in S_i must have $\delta(v) = d_i + 1$.

At step *i* + 1, all nodes on the queue with d values of d_i are dequeued and processed. In so doing, all nodes adjacent to S_i are discovered and assigned *d* values of d_i + 1. Thus after step *i* + 1, all nodes *v* with distance $\delta(v) \le d_i + 1$ have been discovered and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S_i with *d* values of $d_i + 1$.

Correctness: Formal Proof

Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

Output:

 $d[v] = \text{ distance } \delta(v) \text{ from } s \text{ to } v, \forall v \in V.$

 $\pi[v] = u$ such that (u, v) is last edge on shortest path from s to v.

Two-step proof:

On exit:

1. $d[v] \ge \delta(s, v) \forall v \in V$

2. $d[v] \neq \delta(s, v) \forall v \in V$

Claim 1. *d* is never too small: $d[v] \ge \delta(s, v) \forall v \in V$ Proof: There exists a path from *s* to *v* of length $\le d[v]$.

By Induction:

Suppose it is true for all vertices thus far discovered (red and grey). *v* is discovered from some adjacent vertex *u* being handled.

since each vertex *v* is assigned a *d* value exactly once, it follows that on exit, $d[v] \ge \delta(s, v) \forall v \in V$.

```
Claim 1. d is never too small: d[v] \ge \delta(s, v) \forall v \in V
                       Proof: There exists a path from s to v of length \leq d[v].
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
        for each vertex u \in V[G]
                d[u] \leftarrow \infty
                \pi[u] \leftarrow \text{null}
                                                                   S
                color[u] = BLACK //initialize vertex
        colour[s] \leftarrow RED
        d[s] \leftarrow 0
        Q.enqueue(s)
        while \mathbf{Q} \neq \emptyset
                               \leftarrow <LI>: d[v] \ge \delta(s, v) \forall 'discovered' (red or grey) v \in V
                u \leftarrow Q.dequeue()
                for each v \in \operatorname{Adi}[u] //explore edge (u, v)
                        if color[v] = BLACK
                                colour[v] \leftarrow RED
                                d[v] \leftarrow d[u] + 1
                                                     \geq \delta(s, u) + 1 \geq \delta(s, v)
                                \pi[v] \leftarrow u
                               Q.enqueue(v)
                colour[u] \leftarrow GRAY
```

Claim 2. *d* is never too big: $d[v] \le \delta(s, v) \forall v \in V$

Proof by contradiction:

Suppose one or more vertices receive a *d* value greater than δ .

Let **v** be the vertex with minimum $\delta(s, v)$ that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let *u* be v's predecessor on a shortest path from *s* to v.

Then

$$\delta(s, \mathbf{v}) < d[\mathbf{v}]$$

$$\rightarrow \delta(s, \mathbf{v}) - 1 < d[\mathbf{v}] - 1$$

$$\rightarrow d[u] < d[x]$$

Recall: vertices are dequeued in increasing order of *d* value.

 \rightarrow u was dequeued before x.

 $\rightarrow d[v] = d[u] + 1 = \delta(s, v)$ Contradiction!

Correctness

Claim 1. *d* is never too small: $d[v] \ge \delta(s, v) \forall v \in V$ Claim 2. *d* is never too big: $d[v] \le \delta(s, v) \forall v \in V$

 \Rightarrow *d* is just right: $d[v] = \delta(s, v) \forall v \in V$

```
Progress? > On every iteration one vertex is processed (turns gray).
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
        for each vertex u \in V[G]
                d[u] \leftarrow \infty
                \pi[u] \leftarrow \text{null}
                color[u] = BLACK //initialize vertex
        colour[s] \leftarrow RED
        d[s] \leftarrow 0
        Q.enqueue(s)
        while \mathbf{Q} \neq \emptyset
                u \leftarrow Q.dequeue()
                 for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                         if color[v] = BLACK
                                 colour[v] \leftarrow RED
                                 d[v] \leftarrow d[u] + 1
                                 \pi[v] \leftarrow u
                                 Q.enqueue(v)
                 colour[u] \leftarrow GRAY
```

Optimal Substructure Property

> The shortest path problem has the optimal substructure property:

□ Every subpath of a shortest path is a shortest path.

The optimal substructure property

- □ is a hallmark of both greedy and dynamic programming algorithms.
- allows us to compute both shortest path distance and the shortest paths themselves by storing only one *d* value and one predecessor value per vertex.

Recovering the Shortest Path

For each node v, store predecessor of v in $\Box(v)$.

Recovering the Shortest Path

PRINT-PATH(G, s, v)

Precondition: s and v are vertices of graph G

Postcondition: the vertices on the shortest path from s to v have been printed in order

```
if v = s then
    print s
else if π[v] = NIL then
    print "no path from" s "to" v "exists"
else
    PRINT-PATH(G, s, π[v])
    print v
```


BFS Algorithm without Colours

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors \pi[u] and shortest
distance d[u] from s to each vertex u in G has been computed
         for each vertex u \in V[G]
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{null}
         d[s] \leftarrow 0
         Q.enqueue(s)
         while \mathbf{Q} \neq \emptyset
                  u \leftarrow Q.dequeue()
                  for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                           if d[v] = \infty
                                     d[v] \leftarrow d[u] + 1
                                     \pi[v] \leftarrow u
                                     Q.enqueue(v)
```

Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness