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Breadth-First Search
 Breadth-first search (BFS) is a general technique for traversing a graph
 A BFS traversal of a graph G 

 Visits all the vertices and edges of G
 Determines whether G is connected
 Computes the connected components of G
 Computes a spanning forest of G

 BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

 BFS can be further extended to solve other graph problems
 Cycle detection

 Find and report a path with the minimum number of edges between two 
given vertices 



BFS Algorithm Pattern
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex uV [G] 
color[u]   BLACK //initialize vertex

colour[s]   RED
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]RED
Q.enqueue(v)

colour [u]GRAY



BFS is a Level-Order Traversal

 Notice that in BFS exploration takes place on a 
wavefront consisting of nodes that are all the same 
distance from the source s.

 We can label these successive wavefronts by their 
distance:  L0, L1, …
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BFS Example (cont.)
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BFS Example (cont.)
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs

Property 3
For each vertex v in Li
 The path of  Ts from s to v has i

edges 
 Every path from s to v in Gs has at 

least i edges
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Analysis
 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled three times
 once as BLACK (undiscovered)

 once as RED (discovered, on queue)

 once as GRAY (finished)

 Each edge is considered twice (for an undirected graph)

 Each vertex is placed on the queue once 

 Thus BFS runs in O(|V|+|E|) time provided the graph is 
represented by an adjacency list structure



Applications

BFS traversal can be specialized to  solve the 
following problems in O(|V|+|E|) time:
Compute the connected components of G

Compute a spanning forest of G

Find a simple cycle in G, or report that G is a forest

Given two vertices of G, find a path in G between 
them with the minimum number of edges, or report 
that no such path exists
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Application:  Shortest Paths on an Unweighted Graph

 Goal: To recover the shortest paths from a source node 
s to all other reachable nodes v in a graph.
 The length of each path and the paths themselves are returned.

 Notes:
 There are an exponential number of possible paths

 Analogous to level order traversal for trees

 This problem is harder for general graphs than trees because of 
cycles!

s

?



Breadth-First Search

 Idea:  send out search ‘wave’ from s.

 Keep track of progress by colouring vertices:
 Undiscovered vertices are coloured black

 Just discovered vertices (on the wavefront) are coloured red.

 Previously discovered vertices (behind wavefront) are coloured grey.

Graph ( , ) (directed or undirected) and sourceInput: vertex .G V E s V 
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BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u]  shortest distance  [u] and 
 [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null 
color[u] = BLACK //initialize vertex

colour[s]   RED
d[s] 0 
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]RED
d[v ] d[u]1 
 [v ] u
Q.enqueue(v)

colour [u]GRAY
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BFS Found
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Breadth-First Search Algorithm:  Properties

 Q is a FIFO queue.

 Each vertex assigned finite d
value at most once.

 Q contains vertices with d
values {i, …, i, i+1, …, i+1}

 d values assigned are 
monotonically increasing over 
time.

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u]  shortest distance  [u] and 
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null 
color[u] = BLACK //initialize vertex

colour[s]   RED
d[s] 0 
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]RED
d[v ] d[u]1 
 [v ] u
Q.enqueue(v)

colour [u]GRAY



Breadth-First-Search is Greedy

 Vertices are handled (and finished):
 in order of their discovery (FIFO queue)

 Smallest d values first
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Basic Steps:

s
u

The shortest path to u
has length d

v

& there is an edge 
from u to v

There is a path to v with length d+1.

Correctness

d



Correctness:  Basic Intuition

 When we discover v, how do we know there is not a 
shorter path to v?
 Because if there was, we would already have discovered it!

s
u vd



Correctness:  More Complete Explanation

 Vertices are discovered in order of their distance from 
the source vertex s.

 Suppose that at time t1 we have discovered the set Vd of 
all vertices that are a distance of d from s.

 Each vertex in the set Vd+1 of all vertices a distance of    
d+1 from s must be adjacent to a vertex in Vd

 Thus we can correctly label these vertices by visiting all 
vertices in the adjacency lists of vertices in Vd.

s
u vd



Inductive Proof of BFS

Suppose at step i  that the set of nodes Si  with distance (v)  di  have been 
discovered and their distance values d[v ] have been correctly assigned.

Any node v  with (v)  di 1 must be adjacent to Si .

Any node v  adjacent to Si  but not in Si  must have (v)  di 1.

At step i 1, all nodes on the queue with d values of di  are dequeued and processed.

Thus after step i 1, all nodes v  with distance (v)  di 1 have been discovered
and their distance values d[v ] have been correctly assigned.

Further suppose that the queue contains only nodes in Si  with d  values of di .

In so doing, all nodes adjacent to Si  are discovered and assigned d  values of di 1.   

Furthermore, the queue contains only nodes in Si  with d  values of di 1.



Correctness:  Formal Proof

Graph ( , ) (directed or undirected) and sourceInput: vertex .G V E s V 

Output:  
  d[v]   distance (v) from s  to v,  v V .
  [v]  u  such that (u,v ) is last edge on shortest path from s  to v .

1. [ ] ( , )d v s v v V  

2. [ ] ( , )  d v s v v V  

Two-step proof:

On exit:



  Claim 1.  is never too small:  [ ] ( , )d d v s v v V
Proof:  There exists a path from s to v  of length  d[v ].

By Induction:
Suppose it is true for all vertices thus far discovered (  an grre  d d ey).

 is discovered from some adjacent vertex  being handled.uv

  [ ] [ ] 1d v d u
 ( , ) 1us
 ( , )s v u v

s

since each vertex  is assigned a  value exactly once, 
it follows that o [ ]n exit, ( ., )d v s v

v
v V

d
  



BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u]  shortest distance  [u] and 
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null 
color[u] = BLACK //initialize vertex

colour[s]   RED
d[s] 0 
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]RED
d[v ] d[u]1 
 [v ] u
Q.enqueue(v)

colour [u]GRAY

<LI>: [ ] ( , )  'disco rvered' (  o gr )eyred   d v s v v V   

( , ) 1s u  ( , )s v

  Claim 1.  is never too small:  [ ] ( , )d d v s v v V
Proof: There exists a path from s to v of length  d[v ].

s
u v



  Claim 2.   is never too big:  [ ] ( , )  d d v s v v V
Proof by contradiction:

Suppose one or more vertices receive a  value greater than .d

Let  be the vertex with minimum ( , ) that receives such a  value.s dv v

Let  be 's predecessor on a shortest path from  to .u sv v

s
u v

Suppose that  is discovered and assigned this d value when vertex  is dequeued.v x

 [ ] [ ] 1d x d v

 [ ] ( , ) 1d s vu

 ( , ) [ ]vs d v

  vertices are dequeued in increasing order of Reca v .ll: alued

  u was dequeued before x.
   [ ] [ ] 1 ( , )dvd u s v

x   ( , ) 1 [ ] 1v d vs

 [ ] [ ]d u d x

Then

Contradiction!



Correctness

  Claim 1.  is never too small:  [ ] ( , )d d v s v v V

  Claim 2.   is never too big:  [ ] ( , )  d d v s v v V

    is just right:  [ ] ( , )  d d v s v v V



Progress?  On every iteration one vertex is processed (turns gray).
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u]  shortest distance  [u] and 
 [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex uV [G]
d[u]
 [u] null 
color[u] = BLACK //initialize vertex

colour[s]   RED
d[s] 0 
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]RED
d[v ] d[u]1 
 [v ] u
Q.enqueue(v)

colour [u]GRAY



 The shortest path problem has the optimal substructure property:
 Every subpath of a shortest path is a shortest path.

 The optimal substructure property
 is a hallmark of both greedy and dynamic programming algorithms.

 allows us to compute both shortest path distance and the shortest paths 
themselves by storing only one d value and one predecessor value per 
vertex.

Optimal Substructure Property

u vs

shortest path

shortest path shortest path

How would we 
prove this?



Recovering the Shortest Path
For each node v, store predecessor of v in (v).

s
u v

Predecessor of v is

(v)

(v) = u.



Recovering the Shortest Path

Precondition:   and  are vertices of graph 
Postcondition: the vertices on the shortest path from  to  have been prin
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BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors  [u] and shortest 
distance d[u] from s to each vertex u in G has been computed

for each vertex uV [G]
d[u]
 [u] null 

d[s] 0 
Q.enqueue(s)
while Q  

uQ.dequeue()
for each v Adj[u] //explore edge (u,v)

if d[v ] = 
d[v ] d[u]1 
 [v ] u
Q.enqueue(v)



Outline

 BFS Algorithm

 BFS Application: Shortest Path on an unweighted graph

 Unweighted Shortest Path:  Proof of Correctness


