
Graphs – Shortest Path (Weighted Graph)

ORD

DFW

SFO

LAX

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

3

Shortest Path on Weighted Graphs

 BFS finds the shortest paths from a source node s to
every vertex v in the graph.

 Here, the length of a path is simply the number of edges
on the path.

 But what if edges have different ‘costs’?

s

v

(,) 3s v  (,) 12s v 

2s

v
2

51
7

Weighted Graphs

 In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:
 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path on a Weighted Graph
 Given a weighted graph and two vertices u and v, we want to find

a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing
 Flight reservations
 Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path: Notation

 Input:

0 1 1
1

Weight of path , ,..., (,)
k

i ik
i

p v v v w v v


   
Shortest-path weight from to :u v

 (u,v)  min{w (p) : u 

p

v } if  a path u v ,
 otherwise.







Shortest path from to is any path such that () (,).u v p w p u v

Directed Graph (,)G V E

Edge weights w : E  N

Shortest Path Properties
Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):
There is a tree of shortest paths from a start vertex to all the other vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Optimal substructure: Proof
 Lemma: Any subpath of a shortest path is a shortest path

 Proof: Cut and paste.

Now suppose there exists a shorter path x 

pxy

 y .

Then () ().xy xyw p w p 

Construct p :

Then () () () ()ux xy yvw p w p w p w p    () () ()ux xy yvw p w p w p   ().w p

So p wasn't a shortest path after all!

Suppose this path is a shortest path from to .p u v

Then (,) () () () ().ux xy yvu v w p w p w p w p    

Shortest path variants

 Single-source shortest-paths problem: – the
shortest path from s to each vertex v.

 Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

 Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

 All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

Negative-weight edges
 OK, as long as no negative-weight cycles are reachable

from the source.
 If we have a negative-weight cycle, we can just keep going

around it, and get w(s, v) = −∞ for all v on the cycle.

 But OK if the negative-weight cycle is not reachable from the
source.

 Some algorithms work only if there are no negative-weight edges
in the graph.

Cycles

 Shortest paths can’t contain cycles:

 Already ruled out negative-weight cycles.

 Positive-weight: we can get a shorter path by omitting the cycle.

 Zero-weight: no reason to use them  assume that our solutions
won’t use them.

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Output of a single-source shortest-path algorithm

For each vertex v in V:

d[v] = δ(s, v).

Initially, d[v]=∞.

Reduce as algorithm progresses.
But always maintain d[v] ≥ δ(s, v).

Call d[v] a shortest-path estimate.

π[v] = predecessor of v on a shortest path from s.

If no predecessor, π[v] = NIL.

π induces a tree — shortest-path tree.

Initialization

All shortest-path algorithms start with the
same initialization:
INIT-SINGLE-SOURCE(V, s)

for each v in V
do d[v]←∞

π[v] ← NIL

d[s] ← 0

Relaxing an edge
 Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?

RELAX(u, v, w)

if d[v] > d[u] + w(u, v) then

d[v] ← d[u] + w(u, v)

π[v]← u

General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

 Basic Idea: topologically sort nodes and relax in linear
order.

 Efficient, since δ[u] (shortest distance to u) has already
been computed when edge (u,v) is relaxed.

 Thus we only relax each edge once, and never have to
backtrack.

Example: Single-source shortest paths in a directed
acyclic graph (DAG)

 Since graph is a DAG, we are guaranteed no
negative-weight cycles.

 Thus algorithm can handle negative edges

Algorithm

Time: ()V E 

Example

Example

Example

Example

Example

Example

Correctness: Path relaxation property

0 1 0Let , , . . . , be a shortest path from .k kp v v v s v to v  

0 1 1 2 -1If we relax, in order, (,), (,), . . . , (,), k kv v v v v v

even intermixed with other relaxations,

then [] (,).k kd v s v

Correctness of DAG Shortest Path Algorithm

 Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

Edges on any shortest path are relaxed in order.

By path-relaxation property, correct.

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

 This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).

Dijkstra’s algorithm (E. Dijkstra,1959)
 Applies to general, weighted, directed or

undirected graph (may contain cycles).

 But weights must be non-negative. (But they
can be 0!)

 Essentially a weighted version of BFS.
 Instead of a FIFO queue, uses a priority queue.

 Keys are shortest-path weights (d[v]).

 Maintain 2 sets of vertices:
 S = vertices whose final shortest-path weights are

determined.

 Q = priority queue = V-S.
Edsger Dijkstra

Dijkstra’s Algorithm: Operation

 We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

 We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

 At each step
 We add to the cloud S the vertex u outside the cloud with the smallest

distance label, d(u)

 We update the labels of the vertices adjacent to u

S

7

9



11

1

4

s

Dijkstra’s algorithm

 Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V − S to add to S.

Dijkstra’s algorithm: Analysis

 Analysis:
 Using minheap, queue operations takes O(logV) time

()O V

(log)O V () iterationsO V

(log)O V () iterationsO E

Running Time is (log)O E V

Example White  Vertex Q V - S
Grey  Vertex = min(Q)

Black  Vertex S, Off Queue

Key:

Example

Example

Example

Example

Example

Djikstra’s Algorithm Cannot Handle Negative Edges

3

2

-2

s

1

x y z

Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.
 Initialization: Initially, S is empty, so trivially true.
 Termination: At end, Q is empty S = V  d[v] = δ(s, v) for all v in V.
 Maintenance:

 Need to show that
 d[u] = δ(s, u) when u is added to S in each iteration.
 d[u] does not change once u is added to S.

Correctness of Dijkstra’s Algorithm: Upper Bound Property
 Upper Bound Property:

1. [] (,)d v s v v V  

• Proof:
By induction.

 [] (,) immediately after initialization, since
[] 0 (,

Base Cas :

[]

e
)

d v s v v V
d s s s
d v v s




  
 
  

  Suppose
Inductive Step:

 [] (,)d x s x x V

(,) (,)s u w u v 

(,)s v

If [] changes, then [] [] (,)d v d v d u w u v 

Suppose we relax edge (,).u v

2. Once [] (,), it doesn't changed v s v

A valid path from s to v!

Correctness of Dijkstra’s Algorithm
When is added to Clai , [] (m): ,u S d u s u

Let be first vertex in on shortest path to y V S u

Let be the predecessor of on the shortest path to x y u

 [] (,) when is added toCl : .aim d y s y u S

Proof:
[] (,), since x .d x s x S 

(,) was relaxed when was added to x y x S [] (,) (,) (,)d y s x w x y s y    

Handled

Let be the first vertex added to
such tha
Proof by Con

t [] (,) when is added.
tradiction: u S

d u s u u

Optimal substructure
property!

Correctness of Dijkstra’s Algorithm
Thus [] (,) when is added to .d y s y u S

[] (,) (,) [] (upper bound property)d y s y s u d u    

But [] [] when added to d u d y u S

Thus [] (,) (,) []!d y s y s u d u   

Thus when is added to , [] (,)u S d u s u

There is a shortest path to such that the predecessor of []
Conse

 whe
quences

n is added to .
:

u u u S u S 

 []u

2The path through can only be a shortest path if [] 0.y w p

Handled

Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.
 Maintenance:

 Need to show that
 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.

Thus once [] (,), it will not be changed.d v s v

 can only decRelax(u rease],v,w) [.d v
upper bound prBy the , operty [] (,).d v s v


?

Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

