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Shortest Path on Weighted Graphs

 BFS finds the shortest paths from a source node s to 
every vertex v in the graph.

 Here, the length of a path is simply the number of edges 
on the path.

 But what if edges have different ‘costs’? 
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Weighted Graphs

 In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:
 In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports
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Shortest Path on a Weighted Graph 
 Given a weighted graph and two vertices u and v, we want to find 

a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing 
 Flight reservations
 Driving directions
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Shortest Path:  Notation

 Input:

0 1 1
1

Weight of path , ,...,  ( , )
k

i ik
i

p v v v w v v


   
Shortest-path weight from  to :u v

 (u,v )  min{w (p) :  u 

p

v } if  a path u v ,
 otherwise.

  
 


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Shortest path from  to  is any path  such that ( ) ( , ).u v p w p u v

Directed Graph ( , )G V E

Edge weights w : E  N



Shortest Path Properties
Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):
There is a tree of shortest paths from a start vertex to all the other vertices

Example:
Tree of shortest paths from Providence
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Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.



Optimal substructure:  Proof
 Lemma:  Any subpath of a shortest path is a shortest path

 Proof:  Cut and paste.

Now suppose there exists a shorter path x 

pxy

 y .

Then ( ) ( ).xy xyw p w p 

Construct p :

Then ( ) ( ) ( ) ( )ux xy yvw p w p w p w p    ( ) ( ) ( )ux xy yvw p w p w p   ( ).w p

So p wasn't a shortest path after all!

Suppose this path  is a shortest path from  to .p u v

Then ( , ) ( ) ( ) ( ) ( ).ux xy yvu v w p w p w p w p    



Shortest path variants

 Single-source shortest-paths problem: – the 
shortest path from s to each vertex v.

 Single-destination shortest-paths problem: Find a 
shortest path to a given destination vertex t from 
each vertex v. 

 Single-pair shortest-path problem: Find a shortest 
path from u to v for given vertices u and v. 

 All-pairs shortest-paths problem: Find a shortest 
path from u to v for every pair of vertices u and v. 



Negative-weight edges
 OK, as long as no negative-weight cycles are reachable 

from the source.
 If we have a negative-weight cycle, we can just keep going 

around it, and get w(s, v) = −∞ for all v on the cycle.

 But OK if the negative-weight cycle is not reachable from the 
source.

 Some algorithms work only if there are no negative-weight edges 
in the graph.



Cycles

 Shortest paths can’t contain cycles:

 Already ruled out negative-weight cycles.

 Positive-weight:  we can get a shorter path by omitting the cycle.

 Zero-weight: no reason to use them  assume that our solutions 
won’t use them.
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Output of a single-source shortest-path algorithm

For each vertex v in V:

d[v] = δ(s, v).

Initially, d[v]=∞.

Reduce as algorithm progresses. 
But always maintain d[v] ≥ δ(s, v).

Call d[v] a shortest-path estimate.

π[v] = predecessor of v on a shortest path from s.

If no predecessor, π[v] = NIL.

π induces a tree — shortest-path tree.



Initialization

All shortest-path algorithms start with the 
same initialization:
INIT-SINGLE-SOURCE(V, s)

for each v in V
do d[v]←∞

π[v] ← NIL

d[s] ← 0



Relaxing an edge
 Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?

RELAX(u, v, w)

if d[v] > d[u] + w(u, v) then 

d[v] ← d[u] + w(u, v)

π[v]← u



General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

Algorithms differ in the order in which edges are 
taken and how many times each edge is relaxed.
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Example 1.   Single-Source Shortest Path 
on a Directed Acyclic Graph

 Basic Idea:  topologically sort nodes and relax in linear 
order.

 Efficient, since δ[u] (shortest distance to u)  has already 
been computed when edge (u,v) is relaxed.

 Thus we only relax each edge once, and never have to 
backtrack.



Example:  Single-source shortest paths in a directed 
acyclic graph (DAG)

 Since graph is a DAG, we are guaranteed no 
negative-weight cycles.

 Thus algorithm can handle negative edges



Algorithm

Time: ( )V E 
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Correctness:  Path relaxation property

0 1 0Let ,  ,  . . . ,   be a shortest path from   .k kp v v v s v to v  

0 1 1 2 -1If we relax, in order, ( , ),  ( , ),  . . . , ( , ), k kv v v v v v

even intermixed with other relaxations,

then [ ]  ( ,  ).k kd v s v



Correctness of DAG Shortest Path Algorithm

 Because we process vertices in topologically sorted 
order, edges of any path are relaxed in order of 
appearance in the path.

Edges on any shortest path are relaxed in order.

By path-relaxation property, correct.



Outline

 The shortest path problem

 Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph:  Dijkstra’s algorithm



Example 2.  Single-Source Shortest Path on 
a General Graph (May Contain Cycles)

 This is fundamentally harder, because the first paths we 
discover may not be the shortest (not monotonic).



Dijkstra’s algorithm (E. Dijkstra,1959)
 Applies to general, weighted, directed or 

undirected graph (may contain cycles).

 But weights must be non-negative. (But they 
can be 0!)

 Essentially a weighted version of BFS.
 Instead of a FIFO queue, uses a priority queue.

 Keys are shortest-path weights (d[v]).

 Maintain 2 sets of vertices:
 S = vertices whose final shortest-path weights are 

determined.

 Q = priority queue = V-S.
Edsger Dijkstra



Dijkstra’s Algorithm:  Operation 

 We grow a “cloud” S of vertices, beginning with s and eventually 
covering all the vertices

 We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

 At each step
 We add to the cloud S the vertex u outside the cloud with the smallest 

distance label, d(u)

 We update the labels of the vertices adjacent to u

S
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Dijkstra’s algorithm

 Dijkstra’s algorithm can be viewed as greedy, since it always 
chooses the “lightest” vertex in V − S to add to S.



Dijkstra’s algorithm:  Analysis

 Analysis:
 Using minheap, queue operations takes O(logV) time

( )O V

(log )O V ( ) iterationsO V

(log )O V ( ) iterationsO E

Running Time is ( log )O E V



Example White   Vertex Q V - S
Grey   Vertex = min(Q)

Black   Vertex S, Off Queue

Key:
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Djikstra’s Algorithm Cannot Handle Negative Edges
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Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.
 Initialization: Initially, S is empty, so trivially true.
 Termination: At end, Q is empty S = V  d[v] = δ(s, v) for all v in V.
 Maintenance:

 Need to show that 
 d[u] = δ(s, u) when u is added to S in each iteration.
 d[u] does not change once u is added to S.



Correctness of Dijkstra’s Algorithm:  Upper Bound Property
 Upper Bound Property:

1. [ ] ( , )d v s v v V  

• Proof:
By induction.

 [ ] ( , )  immediately after initialization, since
[ ] 0 ( ,

Base Cas :

[ ]

e
)

d v s v v V
d s s s
d v v s




  
 
  

  Suppose
Inductive Step:

 [ ] ( , )d x s x x V

( , ) ( , )s u w u v 

( , )s v

If [ ] changes, then [ ] [ ] ( , )d v d v d u w u v 

Suppose we relax edge ( , ).u v

2. Once [ ] ( , ),  it doesn't changed v s v

A valid path from s to v!



Correctness of Dijkstra’s Algorithm
When  is added to Clai , [ ] (m  ): ,u S d u s u

Let  be first vertex in  on shortest path to  y V S u

Let  be the predecessor of  on the shortest path to x y u

 [ ] ( , ) when  is added toCl : .aim d y s y u S

Proof:
[ ] ( , ),  since x .d x s x S 

( , ) was relaxed when  was added to x y x S [ ] ( , ) ( , ) ( , )d y s x w x y s y    

Handled

Let  be the first vertex added to  
such tha
Proof by Con

t [ ] ( , ) when  is added.
tradiction: u S

d u s u u

Optimal substructure 
property!



Correctness of Dijkstra’s Algorithm
Thus [ ] ( , ) when  is added to .d y s y u S

[ ] ( , ) ( , ) [ ] (upper bound property)d y s y s u d u    

But [ ] [ ] when  added to d u d y u S

Thus [ ] ( , ) ( , ) [ ]!d y s y s u d u   

Thus when  is added to ,  [ ] ( , )u S d u s u

There is a shortest path to  such that the predecessor of  [ ]
Conse

 whe
quences

n  is added to .
:

u u u S u S 

 [ ]u

2The path through  can only be a shortest path if [ ] 0.y w p

Handled



Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.
 Maintenance:

 Need to show that 
 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.

Thus once [ ] ( , ), it will not be changed.d v s v

 can only decRelax(u rease ],v,w) [ .d v
upper bound prBy the , operty [ ] ( , ).d v s v


?
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