Graphs — Shortest Path (Weighted Graph)

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Shortest Path on Weighted Graphs

» BFS finds the shortest paths from a source node s to
every vertex v in the graph.

» Here, the length of a path is simply the number of edges
on the path.

» But what if edges have different ‘costs’?

Weighted Graphs

» In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

» Edge weights may represent, distances, costs, etc.

» Example:

d In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

Shortest Path on a Weighted Graph

» Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

O Length of a path is the sum of the weights of its edges.
» Example:

O Shortest path between Providence and Honolulu
» Applications

U Internet packet routing

U Flight reservations

U Driving directions

Shortest Path: Notation

> |Input:

Directed Graph G = (V,E)
Edge weights w: E >N

k
Weight of path p =<vy,v,...v, > =D w(v,.v;)
i=1

Shortest-path weight from u to v :

P
S(u,v)=< min{w(p): u—---—v} ifJapathu—---—v,

e otherwise.
Shortest path from u to v is any path p such that w(p) = 6(u,v).

Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path
Property 2 (Shortest Path Tree):

There is a tree of shortest paths from a start vertex to all the other vertices
Example:

Tree of shortest paths from Providence

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Optimal substructure: Proof

» Lemma: Any subpath of a shortest path is a shortest path
» Proof. Cut and paste.

Suppose this path p is a shortest path from u to v.

Then 5(uv) =w(p) =w(p,) +w(p,) +w(p,).

Now suppose there exists a shorter path x — --- > y.

Then w(p,,) <w(p,,).

Construct p":

Then w(p")=w(p,)+w(py)+w(p,) < w(p,)+w(p,)+w(p,) =w(p).

So p wasn't a shortest path after all!

Shortest path variants

» Single-source shortest-paths problem: — the
shortest path from s to each vertex v.

» Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

» Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

» All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

Negative-weight edges

» OK, as long as no negative-weight cycles are reachable
from the source.

O If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = — for all v on the cycle.

O But OK if the negative-weight cycle is not reachable from the
source.

O Some algorithms work only if there are no negative-weight edges

in the graph.
b
¥ /'ﬁ\
»{—])
= h I
4 () 2)':’c:o\
¢ (." 4 r—
> S NN S VN \ /
\l]/,'){-\—-C‘O S\ / D
o e \ ¥
S 02
/ 7 ~

Cycles

» Shortest paths can’t contain cycles:
1 Already ruled out negative-weight cycles.
[Positive-weight: we can get a shorter path by omitting the cycle.

1 Zero-weight: no reason to use them - assume that our solutions
won't use them.

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Output of a single-source shortest-path algorithm

» For each vertex vin V:

dd[v] = 0(s, V).
< Initially, d[v]=<.

<>Reduce as algorithm progresses.
But always maintain d[v] = &(s, v).

<-Call d[v] a shortest-path estimate.

T1r[v] = predecessor of v on a shortest path from s.
<-If no predecessor, 1T[v] = NIL.

<11 induces a tree — shortest-path tree.

Initialization

» All shortest-path algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV
do d[v]«—<
Tr[v] < NIL

d[s] < O

Relaxing an edge

» Can we improve shortest-path estimate for v by first going to u
and then following edge (u,v)?

RELAX(u, v, w)
if d[v] > d[u] + w(u, v) then
d[v] <« d[u] + w(u, v)

m[v]«<— u

i V 7,
®——® O——6

RELAX(1e,v.w) RELAX(1e,v. W)

“ u ' v

T v
—>) OO0

General single-source shortest-path strategy
1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
[Shortest path on a general graph: Dijkstra’s algorithm

Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

» Basic ldea: topologically sort nodes and relax in linear
order.

» Efficient, since d[u] (shortest distance to u) has already
been computed when edge (u,v) is relaxed.

» Thus we only relax each edge once, and never have to
backtrack.

Example: Single-source shortest paths in a directed
acyclic graph (DAG)

» Since graph is a DAG, we are guaranteed no
negative-weight cycles.

» Thus algorithm can handle negative edges

§

- puni

\‘

-3

r : {(’) t 7}(1 :
(oo)—2(0)—>{(00)—>(0) >>J >
N : 3 ~ X

, ,
~ 4

-_— ., — e e
—

o

— "

-

l
\\
o0

(a) :

Algorithm

DAG-SHORTEST-PATHS (G, w, §)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex u, taken in topologically sorted order
do for each vertex v € Adj[u]
do RELAX (u, v. w)

h B W N -

Time: OV +E)

Example

Example

Example

Example

Example

Example

Correctness: Path relaxation property

Let p =<v,, v;, ..., v, > be ashortest path froms =v, to v,.
If we relax, in order, (v,,v,), V;,V5), ..., (v,.,V,),

even intermixed with other relaxations,

then d[v,] = 6(s, v,).

Correctness of DAG Shortest Path Algorithm

» Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

> Edges on any shortest path are relaxed in order.

=By path-relaxation property, correct.

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

» This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).

Dijkstra’s algorithm (E. Dijkstra,1959)

» Applies to general, weighted, directed or
undirected graph (may contain cycles).

» But weights must be non-negative. (But they
can be 0!)

» Essentially a weighted version of BFS.
O Instead of a FIFO queue, uses a priority queue.

O Keys are shortest-path weights (d[v]).

» Maintain 2 sets of vertices:

'.
O S = vertices whose final shortest-path weights are\ / /

determined.
Edsger Dijkstra
A Q = priority queue = V-S.

Dijkstra’s Algorithm: Operation

» We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

» We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

» At each step

L We add to the cloud S the vertex u outside the cloud with the smallest
distance label, d(u)

O We update the labels of the vertices adjacent to u

Dijkstra's algorithm

DIIKSTRA(G, w, §)

INITIALIZE-SINGLE-SOURCE (G,)
S«
0O <« VI[G]
while Q # 0
do u < EXTRACT-MIN(Q)
S «— SU{uj
for each vertex v € Adj[u]
do RELAX (u, v, w)

= Dijkstra's algorithm can be viewed as greedy, since it always
chooses the "lightest” vertex inV - S to add to S.

Dijkstra’s algorithm: Analysis
Analysis:

Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

S «— S U {uj
for each vertex v € Adj[u]
do RELAX(u, v, w) O(logV')xO(E) iterations

1 INITIALIZE-SINGLE-SOURCE(G, 5) O(V)

2 S <0

3 0 <« VI[G]

4 while Q # 0

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6

7

8

— Running Time is O(ElogV)

Example Key: MAlEESS VD SeEA S

Example

Example

Djikstra’s Algorithm Cannot Handle Negative Edges

Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w,)

INITIALIZE-SINGLE-SOURCE(G, s)
S« 0
Q0 < VI[G]
while Q # ¢/
~ do u < EXTRACT-MIN(Q)
S «— S U {u)
for each vertex v € Adj[u]
do RELAX(u, v, w)

LS I N T

o0~ O B

>~ Loop invariant: d[v] = &(s, v) forall vin S.
Q Initialization: Initially, S is empty, so trivially true.
O Termination: Atend, Q is empty 2S =V - d[v] = 0(s, v) forallvin V.

1 Maintenance:

< Need to show that
% d[u] = &(s, u) when u is added to S in each iteration.

% d[u] does not change once u is added to S.

Correctness of Dijkstra’s Algorithm: Upper Bound Property

» Upper Bound Property:

1.d[v] = o(s,v)Vv eV
2. Once d[v]=(s,v), it doesn't change

* Proof:
By induction.
Base Case: d[v] > d(s,v)VVv €V immediately after initialization, since

d[s]=0=4(s,s)
d[v]=woVVv #s

Inductive Step:
Suppose d[x] > (s, x)Vx eV

Suppose we relax edge (u,v).

If d[v] changes, then d[v] =d[u]+w(u,v)

A valid path from s to v!
> §(S,u)+w(u,v)</_

>0(s,Vv)

Correctness of Dijkstra’s Algorithm
Claim: When u is added to S, d[u] = d(s,u)

Proof by Contradiction: Let u be the first vertex added to S
such that d[u] # o(s,u) when u is added.

Let y be first vertex in V — S on shortest path to u
Let x be the predecessor of y on the shortest path to u

Claim: d[y] = &(s,y) when u is added to S. Optimal substructure

Proof: property!
d[x]=o(s,x), since x € S.

(x,y) was relaxed when x was added to S — d[y]=9(s,x)+w(x,y)=05(s,y)

Handled

Correctness of Dijkstra’s Algorithm

Thus d[y]=d(s,y) when u is added to S.
DUKSTRA(G, w,)

—d[y] = 5(s,y) < §(S,u) < d[u] (upper bound property) 1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

But d[u] < d[y] when u added to S 3 Q0 <« VI[G]
T N o
do u < EXTRACT-MIN(Q)

Thus d[y]=9d(s,y) = o(s,u) =d[u]!

6 S « S U{u)
_ 7 for each vertex v € Adj
Thus when u is added to S, d[u] = 5(s,u) " do RELAX (4. v. ;f)[“]

Consequences:
There is a shortest path to u such that the predecessor of u z[u] € S when u is added to S.

The path through y can only be a shortest path if w[p,]=0.

Handled

Correctness of Dijkstra’s algorithm

DUKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S0

3 Q <« VI[G]

4 while Q # 0

5 do u < EXTRACT-MIN(Q)

0 S <« 5U{u) . Relax(u,v,w) can only decrease d[v].

7 for each vertex v € Adj[u

8 C :dE'RELAX(u, v, w)_ = By the upper bound property, d[v]= &(s,v).

Thus once d[v] = d(s,v), it will not be changed.
» Loop invariant: d[v] = &(s, v) forall vin S.
O Maintenance:

< Need to show that
% d[u] = &(s, u) when u is added to S in each iteration. \/

~ —*1*_a[u] does not change once u is added to S. - = R) ?
N e o e e e e e e e e o - - -— = u

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

