
EECS 4315 3.0 Mission Critical Systems
Solution of final exam

15:45–17:00 on April 10, 2019

1 (3 marks)
(a) What is a native method?

Answer: A method that is implemented in a language other than Java but that is invoked
from a Java app.

Marking scheme: 1 mark for mentioning something related to “implemented in another
language.”

(b) Explain the difference between a peer class and a native peer class.

Answer: A peer class models the behaviour of a native method as a method in Java code
and this method (instead of the native method) is model checked by JPF’s virtual machine. A
native peer class contains a method corresponding to the native method (that may call native
code) and this method is executed by the host virtual machine.

Marking scheme: 1 mark for mentioning that the method in the peer class is model checked
and 1 mark for mentioning that the native peer class is executed.

2 (2 marks)
Consider the following class that tests a JPF listener.

1 import gov.nasa.jpf.util.test.TestJPF;
2 import org.junit.Test;
3

4 public class SampleTest extends TestJPF {
5 /**
6 * Tests a listener.
7 */
8 @Test
9 public void test() {

10 if (!TestJPF.isJPFRun()) {
11 ...
12 }
13 if (this.verifyNoPropertyViolation(...)){
14 ...
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15 } else {
16 ...
17 }
18 }
19

20 ...
21 }

(a) Of the lines 10–17 of code, which lines are executed by the host virtual machine?

Answer: Lines 10–13 and 16.

Marking scheme: 0.5 mark for line 10–13 and 0.5 mark for lines 16.

(b) Of the lines 10–17 of code, which lines are executed by JPF’s virtual machine?

Answer: Lines 10, and 13–14.

Marking scheme: 0.5 mark for line 10 and 0.5 mark for lines 13 and 14.

3 (3 marks)
Two threads share the attribute a. Initially, the value of a is 0. The first thread executes the
following code.

1 a = a + 2;

The second thread executes the following code.

1 a = a - 2;

What are the possible final values of a? Explain your answer.

Answer: The statement a = a + 2 consists of reading the value of a, incrementing that value
by 2, and writing the new value to a. The statement a = a - 2 consists of multiple bytecode
instructions as well. Consider all interleavings, the final value of a can either, 0, 2, or -2.

Marking scheme: 1 marks for the observation that both statements consist of multiple bytecode
instructions. 1 mark for mentioning that there are different interleavings. 1 mark for the correct
final values.
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4 (2 marks)
A thread can be in different states, as shown in the following diagram.

runnable scheduler running

blocked

waitnotify

Consider the solution to the readers-writers problem given on pages 11–12. Using the diagram
above, explain why we use while instead of if in line 12 of the Database class.

Answer: When line 14 is executed, the state of the Reader thread executing the code changes
from running to blocked. When that Reader thread gets notified, its state changes from blocked
to runnable. At that point, the writing attribute is false. However, before its state becomes
running, writing attribute may be set to true. Hence, once its state becomes running, we should
check again the value of the writing attribute.

Marking scheme: 0.5 mark for explaining the change from running to blocked. 0.5 mark for
explaining the change from blocked to runnable. 1 mark for observing that the value of writing
may change before the change from runnable to running.

5 (1 marks)
Consider the solution to the readers-writers problem given on pages 11–12. Can notifyAll on
line 43 of the Database class be replaced with notify. Explain your answer.

Answer: No. It may cause a deadlock.

Marking scheme: 1 mark for for mentioning deadlock.

6 (5 marks)
Consider the following transition system
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1 2

43

and the following labelling function

`(1) = {a}
`(2) = {a, b}
`(3) = {b, c}
`(4) = {c}

Note that states 1 and 2 are both initial. For each of the following LTL formulas, determine if that
formula holds for the above transition system. A simple yes or no suffices.

(a) a

(b) b

(c) a ∧ ¬b

(d) ©(b ∨ c)

(e) ©©¬a

(f) ♦b

(g) �(a ∨ c)

(h) a U b

(i) b U a

(j) a U ((b ∨ c) U c)

Answer:

(a) Yes.

(b) No.

(c) No.

(d) Yes.

(e) Yes.
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(f) Yes.

(g) Yes.

(h) Yes.

(i) Yes.

(j) Yes.

For each of the following CTL formulas, determine if that formula holds for the above transition
system. A simple yes or no suffices.

(k) ∃♦c

(l) ∀♦c

(m) ∃♦b

(n) ∀♦b

(o) ∃�(¬a ∨ ¬b)

(p) ∀�(¬a ∨ ¬b)

(q) ∃a U b

(r) ∀a U b

(s) ∃a U (∃b U c)

(t) ∀a U (∀b U c)

Answer:
(k) Yes.

(l) Yes.

(m) Yes.

(n) Yes.

(o) No.

(p) No.

(q) Yes.

(r) Yes.

(s) Yes.

(t) Yes.

Marking scheme: 0.25 mark for each correct answer.
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7 (3 marks)

(a) Let a and b be atomic propositions. Express “b happens never after a” in LTL.

Answer: �(a⇒©�¬b).

Marking scheme: 0.5 mark for the initial �. 0.5 mark for the a⇒. 0.5 mark for©�¬b.

(b) Let a be an atomic proposition. Express “If a ever happens, then it won’t keep happening
forever” in CTL.

Answer: ∀�(a⇒ ∀♦¬a).

Marking scheme: 0.5 mark for the initial ∀�. 0.5 mark for the a⇒. 0.5 mark for ∀♦¬a.

8 (4 marks)

Let f and g be arbitrary LTL formulas. Which of the following equivalences hold? If the equiv-
alence holds, give a proof. If the equivalence does not hold, provide a transition system (and
a specific choice for f and g) for which one of the two LTL formulas holds and the other LTL
formula does not hold.

(a) ©(f U g) ≡ (f U©g) ∨ g

Answer: The formulas are not equivalent. For f and g we choose the atomic propostions a
and b, respectively. We consider the following transition system.

1 2

and the following labelling function

`(1) = ∅
`(2) = {b}

This transition system satisfies ©(a U b) since state 2 has label b. However, the transition
system does not satisfy (a U©b) ∨ b since state 1 is neither labelled a nor b.

Marking scheme: 0.25 mark for choosing appropriate choices for f and g. 0.5 mark for
an appropriate transition system. 0.25 mark for arguing why the transition satisfies the one
property but not the other.

(b) ©♦f ≡ ♦© f
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Answer: The formulas are equivalent. Let TS be an arbitrary transition system. Let p be a
path starting in an initial state. Then

p |=©♦f

iff p[1..] |= ♦f

iff ∃i ≥ 0 : p[1..][i..] |= f

iff ∃i ≥ 0 : p[(i + 1)..] |= f

iff ∃i ≥ 0 : p[i..][1..] |= f

iff ∃i ≥ 0 : p[i..] |=©f

iff p |= ♦© f

Marking scheme: 0.25 mark for expanding the definition of©. 0.25 mark for expanding
the definition of ♦. 0.5 mark for the remainder of the proof.

Let f and g be arbitrary CTL formulas. Which of the following equivalences hold? If the
equivalence holds, give a proof. If the equivalence does not hold, provide a transition system (and
a specific choice for f and g) for which one of the two CTL formulas holds and the other CTL
formula does not hold.

(c) ∃(f U g) ≡ g ∨ (f ∧ ∃© ∃(f U g))

Answer: The formulas are equivalent. Let TS be an arbitrary transition system. Let s be an
initial state. Then

s |= ∃(f U g)

iff ∃p ∈ Paths(s) : p |= f U g

iff ∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= g ∧ ∀0 ≤ j < i : p[j] |= f

iff ∃p ∈ Paths(s) : p[0] |= g ∨ (∃i ≥ 1 : p[i] |= g ∧ (p[0] |= f ∧ ∀1 ≤ j < i : p[j] |= f))

iff ∃p ∈ Paths(s) : p[0] |= g ∨ (p[0] |= f ∧ (∃i ≥ 1 : p[i] |= g ∧ ∀1 ≤ j < i : p[j] |= f))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : ∃i ≥ 1 : p[i] |= g ∧ ∀1 ≤ j < i : p[j] |= f))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : ∃i ≥ 0 : p[i + 1] |= g ∧ ∀0 ≤ j < i : p[j + 1] |= f))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : ∃i ≥ 0 : p[1][i] |= g ∧ ∀0 ≤ j < i : p[1][j] |= f))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : ∃q ∈ Paths(p[1]) : ∃i ≥ 0 : q[i] |= g ∧ ∀0 ≤ j < i : q[j] |= f))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : ∃q ∈ Paths(p[1]) : q |= f U g))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : p[1] |= ∃(f U g)))

iff s |= g ∨ (s |= f ∧ (∃p ∈ Paths(s) : p |=©∃(f U g)))

iff s |= g ∨ (s |= f ∧ s |= ∃© ∃(f U g))

iff s |= g ∨ (f ∧ ∃© ∃(f U g))
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Marking scheme: 0.25 mark for expanding the definition of ∃. 0.25 mark for expanding the
definition of U. 0.25 mark for expanding the definition of©. 0.25 mark for the remainder
of the proof.

(d) ∀(f U g) ≡ f ∧ ∀♦g
Answer: The formulas are not equivalent. For f and g we choose the atomic propostions a
and b, respectively. We consider the following transition system.

1 2 3

and the following labelling function

`(1) = {a}
`(2) = ∅
`(3) = {b}

This transition system satisfies a ∧ ∀♦b since state 1 has label a and state 3 has label b.
However, the transition system does not satisfy ∀(a U b) since state 2 is not labelled b.

Marking scheme: 0.25 mark for choosing appropriate choices for f and g. 0.5 mark for
an appropriate transition system. 0.25 mark for arguing why the transition satisfies the one
property but not the other.

9 (1 mark)
We extend the syntax of CTL with the operator ∃!. Let g be a path formula. Then the state formula
∃!g captures that there exists a unique path satisfying g. Formally,

s |= ∃!g iff ∃p ∈ Paths(s) : p |= g ∧ ∀q ∈ Paths(s) : q 6= p⇒ q 6|= g

Recall that Sat(f) = { s ∈ S | s |= f }. Express Sat(∃!© f) in terms of Sat(f).

Answer: Sat(∃!© f) = { s ∈ S | |succ(s) ∩ Sat(f)| = 1 }.

Marking scheme: 0.5 mark for considering successors. 0.5 mark for limiting to one element.

10 (2 marks)
Consider the following method.

1 public void example(int x, int y) {
2 if (x >= 0) {
3 if (y > x) {
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4 System.out.println("y is positive");
5 } else {
6 System.out.println("x is nonnegative");
7 }
8 } else {
9 System.out.println("x is nonnegative");

10 }
11 }

Assume that both x and y are symbolic. Draw the symbolic execution tree and for each node of
the tree provide the corresponding path condition.

Answer: The symbolic execution tree looks like the following.

1

2 3

4 5

true false

true false

The corresponding path conditions are the following.
state path condition
1 true
2 x ≥ 0
3 x < 0
4 x ≥ 0 ∧ y > x
5 x ≥ 0 ∧ ¬(y > x)

Marking scheme: 1 mark for a tree of the right shape. 0.2 mark for each correct path condition.

11 (1 mark)

Give an estimate of the (yearly world-wide) cost of debugging.

Answer: US $312 billion.

Marking scheme: 1 mark for something in the order of 100’s of billions of US $.
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12 (1 bonus mark)

(a) From left to right (circle the correct answer):

– Dijkstra, Clarke, Emerson, Sifakis, Lamport, Pnueli

– Sifakis, Clarke, Pnueli, Dijkstra, Lamport, Emerson

– Lamport, Clarke, Emerson, Sifakis, Dijkstra, Pnueli

– Dijkstra, Clarke, Pnueli, Sifakis, Lamport, Emerson

– Lamport, Pnueli, Emerson, Sifakis, Dijkstra, Clarke

Answer: The last combination.

Marking scheme: 0.5 mark for the correct answer.

(b) Which award have they all won?

Answer: The Turing award.

Marking scheme: 0.5 for the correct answer.
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Reader class

1 public class Reader extends Thread {
2 private Database database;
3

4 public Reader(Database database) {
5 super();
6 this.database = database;
7 }
8

9 public void run() {
10 this.database.read();
11 }
12 }

Writer class

1 public class Writer extends Thread {
2 private Database database;
3

4 public Writer(Database database) {
5 super();
6 this.database = database;
7 }
8

9 public void run() {
10 this.database.write();
11 }
12 }

Database class

1 public class Database {
2 private boolean writing;
3 private int readers;
4

5 public Database() {
6 this.writing = false;
7 this.readers = 0;
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8 }
9

10 public void read() {
11 synchronized(this) {
12 while (this.writing) {
13 try {
14 this.wait();
15 } catch (InterruptedException e) {
16 e.printStackTrace();
17 }
18 }
19 }
20 // read
21 synchronized(this) {
22 this.readers--;
23 if (this.readers == 0) {
24 this.notifyAll();
25 }
26 }
27 }
28

29 public void write() {
30 synchronized(this) {
31 while (this.writing || this.readers > 0) {
32 try {
33 this.wait();
34 } catch (InterruptedException e) {
35 e.printStackTrace();
36 }
37 }
38 this.writing = true;
39 }
40 // write
41 synchronized(this) {
42 this.writing = false;
43 this.notifyAll();
44 }
45 }
46 }
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Definitions
Definition 1. A transition system is a tuple 〈S, L, I,→, `〉 consisting of

• a set S of states,

• a set L of labels,

• a set I ⊆ S of initial states,

• a transition relation→ ⊆ S × S, and

• a labelling function ` : S → 2L.

Definition 2. Linear temporal logic (LTL) is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

where a ∈ L.

We use the following syntactic sugar.

f ∨ g = ¬(¬f ∧ ¬g)
true = a ∨ ¬a
♦f = true U f (eventually f )
�f = ¬♦¬f (always f )

Definition 3. Paths(s) is the set of (execution) paths starting in state s. Let p ∈ Paths(s) and
n ≥ 0. Then p[n] is the (n + 1)th state of the path p and p[n..] is the suffix of p starting with the
(n + 1)th state.

Definition 4. The relation |= is defined by

p |= a iff a ∈ `(p[0])
p |= f ∧ g iff p |= f and p |= g
p |= ¬f iff not(p |= f)
p |=©f iff p[1..] |= f

p |= f U g iff ∃i ≥ 0 : p[i..] |= g and ∀0 ≤ j < i : p[j..] |= f

and
〈S, L, I,→, `〉 |= f iff ∀s ∈ I : ∀p ∈ Paths(s) : p |= f

Definition 5. Computation tree logic (CTL) is defined as follows. The state formulas are defined
by

f ::= a | f ∧ f | ¬f | ∃g | ∀g
where a ∈ L. The path formulas are defined by

g ::=©f | f U f
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Definition 6. The relation |= is defined by

s |= a iff a ∈ `(s)
s |= f ∧ g iff s |= f and s |= g
s |= ¬f iff not(s |= f)
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and
p |=©f iff p[1] |= f

p |= f U g iff ∃i ≥ 0 : p[i] |= g and ∀0 ≤ j < i : p[j] |= f

and
〈S, L, I,→, `〉 |= f iff ∀s ∈ I : s |= f

Definition 7. The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Definition 8. LTL/CTL formulas f and g are equivalent, denoted f ≡ g, if 〈S, L, I,→, `〉 |= f iff
〈S, L, I,→, `〉 |= g for all transition systems 〈S, L, I,→, `〉.
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