
Concurrency

Franck van Breugel

March 18, 2018

1 The dining philosophers problem
In the dining philosophers problem, due to Dijkstra, five philosophers are seated around a round
table. Each philosopher has a plate of spaghetti. A philosopher needs two forks to eat it. The
layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating and thinking. When philoso-
phers get hungry, they try to pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a while, then puts down the forks and
continues to think.

public class Philosopher extends Thread {
private int id;
private Table table;

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}

1



public void run() {
while (true) {
this.table.pickUp(id);
this.table.pickUp((id + 1) % 5);
// eat
this.table.putDown(id);
this.table.putDown((id + 1) % 5);

}
}

public class Table {
...
public Table() { ... }
public void pickUp(int id) { ... }
public void putDown(int id) { ... }

}

public class Philosophers {
public static void main(String[] args) {
Table table = new Table();
for (int p = 0; p < 5; p++) {
(new Philosopher(p, table)).start();

}
}

}

1. Of what information about the table and its forks should we keep track?

2. How do we represent this information?

3. Where and how do we initialize the attribute?

2



4. Implement the method pickUp(int id).

• When does a Philosopher have to wait?

• How does the array pickedUp need to be updated?

public synchronized void pickUp(int id) {

}

5. Implement the method putDown(int id).

• How does the array pickedUp need to be updated?

• Do Philosophers need to be notified?

public synchronized void putDown(int id) {

}

3


