
Testing on Steriods
EECS 4315

wiki.eecs.yorku.ca/course/4315/

1/32

wiki.eecs.yorku.ca/course/4315/

How to test code?

code
input output

Provide the input.

Run the code.

Compare the output with the expected output.

2/32

White box testing

public class . . .
input output

3/32

Black box testing

public class . . .
input output

4/32

Java code and Java bytecode

Java code Java bytecode

compile

decompile

5/32

Why black box testing?

A Java archive (JAR) file usually only contains the bytecode and
not the Java code.

Developers can obfuscate JAR files so that a user of the JAR file
does not get much information regarding the original Java code.

6/32

Which test cases?

Likely cases (black box and white box testing).

Boundary cases (black box and white box testing).

Cases that cover all branches (white box testing only).

Cases that cover all execution paths (white box testing only).

7/32

Unit testing

A unit test is designed to test a single unit of code, for example, a
method.

Such a test should be automated as much as possible; ideally, it
should require no human interaction in order to run, should assess
its own results, and notify the programmer only when it fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

8/32

JUnit

JUnit is a Java unit testing framework developed by Kent Beck
and Erich Gamma.

JUnit is available at http://junit.org/junit5/.

9/32

http://junit.org/junit5/

Kent Beck

Kent Beck is an American software
engineer and the creator of the Ex-
treme Programming and Test Driven
Development software development.
He works at Facebook.

source: Three Rivers Institute

10/32

Erich Gamma

Erich Gamma is a Swiss computer
scientist and member of the “Gang
of Four” who wrote the influential
software engineering textbook “De-
sign Patterns: Elements of Reusable
Object-Oriented Software.” He works
at Microsoft.

source: Pearson

11/32

Java annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang
and,therefore, need not be imported.)

JUnit contains annotations such as

@Test

(The annotation type Test is part of org.junit.jupiter.api
and, therefore, needs to be imported.)

An annotation can include elements and their values:

@EnabledIfSystemProperty(named="os.arch", matches=".*64.*")

(The annotation type EnabledIfSystemProperty is part of
org.junit.jupiter.api.condition.)

12/32

A test case

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

public class ... {

@Test

public void ...() {

...

}

@Test

public void ...() {

...

}

}

13/32

Names of test methods

It is good practice to use descriptive names for the test methods.
This makes tests more readable when they are looked at later.

14/32

Assertions in test methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assertions class of the
org.junit.jupiter.api package.

Do not confuse these assertions with Java’s assert statement.

15/32

https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html

Methods of the Assert class

assertEquals(long, long)

assert that the two are the same.

assertEquals(long, long, String)

assert that the two are the same; if not, the message is used.

16/32

Methods of the Assert class

assertEquals(double, double, double)

assertEquals(double, double, double, String)

The method invocation

Assert.assertEquals(expectedValue, actualValue, delta)

asserts
|expectedValue− actualValue| < delta

17/32

Methods of the Assert class

assertEquals(Object, Object)

assertEquals(Object, Object, String)

asserts that the objects are equal according to the equals method.

assertSame(Object, Object)

assertSame(Object, Object, String)

asserts that the objects are equal according to the == operator.

18/32

Methods of the Assert class

assertTrue(boolean)

assertTrue(boolean, String)

asserts that the condition is true.

assertFalse(boolean)

assertFalse(boolean, String)

asserts that the condition is false.

19/32

Methods of the Assert class

assertNull(Object)

assertNull(Object, String)

asserts that the object is null.

assertNotNull(Object)

assertNotNull(Object, String)

asserts that the object is not null.

20/32

Timeout

Cause a test to fail if it takes longer than a specified time in
milliseconds:

@Test

public void ...() {

Assertions.assertTimeout(ofMillis(1000), () -> {

...

});

}

21/32

Exceptions

Cause a test to fail if a specified exception is not thrown:

@Test

public void ... () {

Assertions.assertThrows(NumberFormatException.class, () -> {

...

});

}

22/32

Body of unit test method

1 Create some objects.

2 Invoke methods on them.

3 Check the results using a method of the Assertions class.

23/32

Test case

For each method and constructor (from simplest to most complex)

1 Study its API.

2 Create unit tests.

24/32

Creating a JUnit test case in eclipse

25/32

Creating a JUnit test case in eclipse

26/32

Creating a JUnit test case in eclipse

27/32

Creating a JUnit test case in eclipse

28/32

Running a JUnit test case in eclipse

29/32

Running a JUnit test case in eclipse

30/32

Running a JUnit test case in eclipse

31/32

Running a JUnit test case in eclipse

32/32

