
Welcome to
Mission Critical Systems

EECS 4315

wiki.eecs.yorku.ca/course/4315/

1/57

wiki.eecs.yorku.ca/course/4315/

Instructor

Name: Franck van Breugel

Email: franck@eecs.yorku.ca

Office: Lassonde Building, room 3046

Office hours: Monday and Wednesday, 10:30-11:30 or by
appointment

2/57

Evaluation

3 quizzes (5% each)

midterm (15%)

final exam (30%)

project (40%)

3/57

Evaluation

3 quizzes (5% each)

January 11: programming (during lab)

January 21: written (during lecture)

February 8: programming (during lab)

4/57

Evaluation

Midterm (15%)

February 27: written (during lecture)

5/57

Evaluation

Final exam (30%)

written (15%)

programming (15%)

Exam period

6/57

Evaluation

Project (40%)

January 25: install JPF (5%)

February 15: draft proposal (2%)

February 25: proposal (3%)

March 8: first progress report (5%)

March 22: second progress report (5%)

Exam period: deliverables (20%)

7/57

Labs

Lassonde Building, room 1004

Friday, 10:00-11:00

Two quizzes will be held during the labs.

8/57

Quizzes and midterm

Students with a documented reason for missing a quiz or the
midterm, such as illness, compassionate grounds, etc., will
have the weight of the missed quizzes and midterm shifted to
an extra exam. This extra exam will cover all the material
covered in the course.

During quizzes, the midterm and the final exam, students are
expected to do their own work. Looking at someone else’s
work during a test, talking during a test, using aids not
permitted (such as a phone) during a test, and impersonation
are all examples of academically dishonest behaviour.

9/57

Drop deadline

March 8

Until this date you can drop the course without getting a grade for
it.

https://registrar.yorku.ca/enrol/dates/fw18 contains
important dates.

10/57

https://registrar.yorku.ca/enrol/dates/fw18

Academic honesty

”If you put your name on something, then it is your work, unless
you explicitly say that it is not.”

Examples of academic dishonesty include

copying code,

looking at someone else’s work during a quiz,

talking during a quiz,

using aids not permitted (such as a phone) during a quiz,

impersonation.

Read http://secretariat-policies.info.yorku.ca/

policies/academic-honesty-senate-policy-on/ for more
details.

11/57

http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/
http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/

Academic honesty

Academic honest behaviour of students increases the value of your
degree.

The instructors will do their best to design quizzes and
policies that promote honest behaviour.

The students are expected to behave honestly.

12/57

Textbook

Christel Baier and Joost-Pieter
Katoen. Principles of Model
Checking. The MIT Press,
2008.

Source: mitpress.mit.edu

13/57

Textbook

The textbook is required for this course.

Studying only the slides and your lecture notes may not be
sufficient. There may be questions on quizzes, midterm and final
exam about material that is not covered in class. Therefore, you
should study the textbook.

Although you need to memorize some material, most of the
material you have to understand.

14/57

Notes

Franck van Breugel. Java
PathFinder: a tool to detect
bugs in Java code. 2019.

15/57

Other reading material

Will be posted on the course wiki.

16/57

Students are expected to . . .

attend the lectures (3 hours per week)

attend the lab (1 hour per week)

prepare for the lab (2 hours per week)

study the textbook and other reading material, and work on
the project (3 hours per week)

17/57

Expected learning outcomes

The ability to explain the importance of safety-, mission-,
business-, and security-critical systems.

Demonstrated knowledge of the importance of good software
engineering practices for critical systems.

The ability to use rigorous software engineering methods to
develop dependable software applications that are
accompanied by certification evidence for their safety and
correctness.

Knowledge of the method and tools using deductive
approaches (such as theorem proving).

Knowledge of methods and tools for algorithmic approaches
(such as model checking, bounded satisfiability) etc.

Knowledge of the theory underlying deductive and algorithmic
approaches.

The ability to use industrial strength tools associated with the
methods on large systems.

18/57

Expected learning outcomes

The ability to explain the importance of safety-, mission-,
business-, and security-critical systems.

Demonstrated knowledge of the importance of good software
engineering practices for critical systems.

The ability to use rigorous software engineering methods to
develop dependable software applications that are
accompanied by certification evidence for their safety and
correctness.

Knowledge of the method and tools using deductive
approaches (such as theorem proving).

Knowledge of methods and tools for algorithmic approaches
(such as model checking, bounded satisfiability) etc.

Knowledge of the theory underlying deductive and algorithmic
approaches.

The ability to use industrial strength tools associated with the
methods on large systems.

19/57

Main topics

Model checking.

Java PathFinder.

Concurrent programming in Java.

20/57

Model checking

property

code

model checker

yes

no

21/57

Java PathFinder (JPF)

property

Java code

JPF

yes

no

Properties: uncaught exceptions, deadlocks, data races, . . .

22/57

Concurrent programming in Java

In Operating System Fundamentals (EECS 3221), the following
topics are covered:

Threads (multi-thread programming, multi-core systems,
thread libraries and implementations).

Process Synchronization (critical section problem, deadlocks,
software and hardware solutions, mutex locks, semaphores,
monitors, classic problems).

We will review this material in the context of Java (EECS 3221
uses C), consider other concurrency primitives, and apply model
checking to concurrent Java code.

23/57

System Specification and Refinement (EECS 3342)

In EECS 3342, you

construct high level, abstract mathematical models of a
system (consisting of both the system and its environment)
amenable to formal reasoning.

In this course, you

work with models that are automatically generated from Java
bytecode.

24/57

System Specification and Refinement (EECS 3342)

In EECS 3342, you

apply set theory and predicate logic to express properties.

In this course, you

implement listeners in Java to check properties.

25/57

System Specification and Refinement (EECS 3342)

In EECS 3342, you

use practical tools for constructing and reasoning about the
models.

In this course, you

use, modify and extend practical tools for checking properties
of the models.

26/57

System Specification and Refinement (EECS 3342)

In EECS 3342, you

use a theorem prover (which often needs input from you).

In this course, you

use a model checker (which needs no input from you).

27/57

System Specification and Refinement (EECS 3342)

In EECS 3342, you

focus on designing code that is correct by construction.

In this course, you

focus on finding bugs in code.

28/57

Bugs are everywhere
EECS 4315

www.eecs.yorku.ca/course/4315/

29/57

www.eecs.yorku.ca/course/4315/

What is verification?

”Have you made what you were trying to make?”

Source: Paragon Innovations
30/57

What is Verification?

”Have you made what you were trying to make?”
”Does the code satisfy (all the properties of) its specification?”

Source: Paragon Innovations

31/57

In contrast to . . .

”Have you made the right thing?”
Is the specification of the system correct?
which is also known as validation.

Source: Paragon Innovations

32/57

Why do we verify?

Bugs are everywhere.

Source: Bruce Campbell
33/57

Classic bug

1968 Brazilian Beetle

Source: Dan Palatnik
34/57

Classic bug

”A clear example of the risks of poor
programming and verification techniques
is the tragic story of the Therac-25 —
one in a series of radiation therapy ma-
chines developed and sold over a num-
ber of years by Atomic Energy Canada
Limited (AECL). As a direct result of
inadequate programming techniques and
verification techniques, at least six pa-
tients received massive radiation over-
doses which caused great pain and suf-
fering and from which three died.”
Peter Roosen-Runge. Software Verification Tools.

Source: unknown

35/57

Classic bug

A computer malfunction at Bank of New
York brought the Treasury bond mar-
ket’s deliveries and payments systems to
a near standstill for almost 28 hours . . . it
seems that the primary error occurred in
a messaging system which buffered mes-
sages going in and out of the bank. The
actual error was an overflow in a counter
which was only 16 bits wide, instead of
the usual 32. This caused a message
database to become corrupted. The pro-
grammers and operators, working under
tremendous pressure to solve the problem
quickly, accidentally copied the corrupt
copy of the database over the backup,
instead of the other way around.”
Wall Street Journal, November 25, 1985.

Source: unknown

36/57

Classic bug

”To correct an anomaly that caused in-
accurate results on some high-precision
calculations, Intel Corp. last week con-
firmed that it had updated the floating-
point unit (FPU) in the Pentium micro-
processor. The company said that the
glitch was discovered midyear and was
fixed with a mask change in recent sil-
icon. “This was a very rare condition
that happened once every 9 to 10 billion
operand pairs” said Steve Smith, a Pen-
tium engineering manager at Intel.”
EE Times, November 7, 1994.

Source: Konstantin Lanzet

37/57

Classic bug

”On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a failure.
Only about 40 seconds after initiation
of the flight sequence, at an altitude of
about 3700 meters, the launcher veered
off its flight path, broke up and exploded.
. . . The reason why the active SRI 2 did
not send correct attitude data was that
the unit had declared a failure due to a
software exception. The data con-
version instructions (in Ada code) were
not protected from causing an operand
error, although other conversions of com-
parable variables in the same place in the
code were protected.”
Report of the Ariane Inquiry Board

Source: unknown

38/57

Bug of the 21st century

2012 Beetle

Source: unknown

39/57

Bug of the 21st century

The Toronto skyline

Source: unknown

40/57

Bug of the 21st century

The Toronto skyline on August 14, 2003

Source: unknown
41/57

Bug of the 21st century

The first known death caused by a self-
driving car was disclosed by Tesla Mo-
tors on Thursday, a development that is
sure to cause consumers to second-guess
the trust they put in the booming au-
tonomous vehicle industry. . . . Against a
bright spring sky, the car’s sensors sys-
tem failed to distinguish a large white
18-wheel truck and trailer crossing the
highway, Tesla said. The car attempted
to drive full speed under the trailer, with
the bottom of the trailer impacting the
windshield of the Model S, Tesla said.”
Danny Yadron and Dan Tynan, The Guardian, July 1, 2016

Source: Daily Mail

42/57

Bug of the 21st century

”“A Model 787 airplane that has been
powered continuously for 248 days can
lose all alternating current electrical
power due to the generator control units
simultaneously going into failsafe mode,”
the FAA said in a statement warning of
the flaw. . . . Most importantly, the com-
pany’s already working on an update that
will patch the software vulnerability.”
engadget.com, 2015.

Source: engadget.com

43/57

Bug of the 21st century

”The Knight Capital Group announced
on Thursday that it lost $440 million
when it sold all the stocks it accidentally
bought Wednesday morning because a
computer glitch. . . . The company said
the problems happened because of new
trading software that had been installed.
The event was the latest to draw atten-
tion to the potentially destabilizing effect
of the computerized trading that has in-
creasingly dominated the nation’s stock
markets.”
Nathaniel Popper, The New York Times, August 2, 2012.

Source: Brendan McDermid

44/57

Bug of the 21st century

https://www.youtube.com/watch?v=FZ1st1Vw2kY

45/57

https://www.youtube.com/watch?v=FZ1st1Vw2kY

Why do we verify?

Ask Jessie J!

Source: unknown

It’s all about the money money money.

46/57

What’s the price tag?

Bank of New York bug: $ 5 million
Pentium bug: $ 475 million
Ariane bug: $ 500 million
Blackout bug: $ 6 billion
Knight bug: $ 440 million

”The cost of software bugs to the U.S. economy is estimated at
$ 60 billion per year.’
National Institute of Standards and Technology, 2002

”Wages-only estimated cost of debugging: US $312 billion per
year.”
Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak and Tomer Katzenellenbogen, 2013

47/57

Why are bugs introduced?

Hardware and software systems are among the most complex
artifacts ever produced by humans.

48/57

Pentium 4 microprocessor

Source: unknown

transistors:
55 million

area:
146 mm2

49/57

If . . .

. . . the connections on a microprocessor were roads in the GTA, . . .

Area of microprocessor: 146 mm2

Area of GTA: 7,124 km2

Scale: 12 mm / 84 km ≈ 1 / 70,000,000

. . . then, since each connection is 0.13 µm wide, the roads in the
GTA would be 3 feet wide, 3 feet apart and eight layers deep!

50/57

When are bugs introduced and detected?

Peter Liggesmeyer, Martin Rothfelder, Michael Rettelbach, and
Thomas Ackermann. Qualitätssicherung
Software-basiertertechnischer Systeme – Problembereiche und
Lösungsansätze. Informatik-Spektrum, 21(5):249–258, October
1998

51/57

When are bugs introduced and detected?

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press. 2008.

52/57

How are bugs detected?

Peer review

Simulation

Testing

Verification

53/57

Limitations of peer review

Catches on average only 60% of the bugs.

Is labour intensive (250 lines per hour).

54/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?

2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?

3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?

1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?

2 × 1059

55/57

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2 × 1077

2 How many can we check in one second?
3 × 109

3 How many seconds does it take?
1.2 × 1077/3 × 109 = 4 × 1067

4 How many years is that?
2 × 1059

55/57

Limitations of testing

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra. Notes on structured programming. Report
70-WSK-03, Technological University Eindhoven, April 1970.

56/57

Edsger Wybe Dijkstra (1930–2002)

Member of the Royal Netherlands
Academy of Arts and Sciences
(1971)

Distinguished Fellow of the British
Computer Society (1971)

Recipient of the Turing Award
(1972)

Foreign Honorary Member of the
American Academy of Arts and
Sciences (1975)

My scientific uncle (the supervisor
of my supervisor was also Dijkstra’s
supervisor)

Source: Hamilton Richard

57/57

