
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/25

www.eecs.yorku.ca/course/4315/


How many different executions?

Question

One thread prints 1 one. Another thread prints 1 two. How many
different executions are there?

Answer

2.

2/25



How many different executions?

Question

One thread prints 1 one. Another thread prints 1 two. How many
different executions are there?

Answer

2.

2/25



How many different executions?

Question

One thread prints 2 ones. Another thread prints 2 twos. How
many different executions are there?

Answer

6.

3/25



How many different executions?

Question

One thread prints 2 ones. Another thread prints 2 twos. How
many different executions are there?

Answer

6.

3/25



How many different executions?

Question

One thread prints 3 ones. Another thread prints 3 twos. How
many different executions are there?

Answer

20.

4/25



How many different executions?

Question

One thread prints 3 ones. Another thread prints 3 twos. How
many different executions are there?

Answer

20.

4/25



How many different executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

Answer

204815162698948971433516250298082504439642488798139
703382038263767174818620208375582893299418261020620
146476631999802369241548179800452479201804754976926
157856301289663432064714851152395251651227768588611
539546256147907378668464154444533617613770073855673
814589630071306510455959514479888746206368718514551
828551173166276253663773084682932255389049743859481
431755030783796444370810085163724827462791417016619
883764840843541430817785947037746565188475514680749
694674923803033101818723298009668567458560252549910
118113525353465888794196665367490451130611009631190
6270342502293155911108976733963991149120.

5/25



How many different executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

Answer

204815162698948971433516250298082504439642488798139
703382038263767174818620208375582893299418261020620
146476631999802369241548179800452479201804754976926
157856301289663432064714851152395251651227768588611
539546256147907378668464154444533617613770073855673
814589630071306510455959514479888746206368718514551
828551173166276253663773084682932255389049743859481
431755030783796444370810085163724827462791417016619
883764840843541430817785947037746565188475514680749
694674923803033101818723298009668567458560252549910
118113525353465888794196665367490451130611009631190
6270342502293155911108976733963991149120.

5/25



How many executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

Answer(2000
1000

)
= 2000!

1000!1000! .

6/25



How many executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

Answer(2000
1000

)
= 2000!

1000!1000! .

6/25



How many executions?

Question

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

Answer

At most
(2n
n

)
.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is x = 1 then there is only
one execution.

7/25



How many executions?

Question

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

Answer

At most
(2n
n

)
.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is x = 1 then there is only
one execution.

7/25



How many executions?

Question

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

Answer

At most
(2n
n

)
.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is x = 1 then there is only
one execution.

7/25



How many executions?

Question

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

Answer

At most
(2n
n

)
.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is x = 1 then there is only
one execution.

7/25



How many executions?

Question

There are k threads. Each thread executes n instructions. How
many different executions are there?

8/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)

=
(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Answer

(
kn

n

)(
(k − 1)n

n

)
· · ·

(
2n

n

)
=

(kn)!

n!((k − 1)n)!

((k − 1)n)!

n!((k − 2)n)!
· · · (2n)!

n!n!

=
(kn)!

(n!)k

=
(kn)(kn − 1) · · · (kn − n + 1)

n!
· · · 2n(2n − 1) · (n + 1)

n!

n!

n!

≥
(

2n(2n − 1) · (n + 1)

n!

)k−1

=

(
2n(2n − 1) · (n + 1)

n(n − 1) · · · 2

)k−1

≥ nk−1

9/25



How many executions?

Question

There are k threads. Each thread executes n instructions. How
many different executions are there?

Answer

In the worst case, more than nk−1.

Conclusion

The number of different executions may grow exponential in the
number of threads.

10/25



Java code

Assume that a Printer prints its name once.

public static void main(String[] args) {

Printer one = new Printer("1");

one.run();

}

11/25



Executions

Question

Draw the state-transition diagram.

12/25



Executions

13/25



Java code

public static void main(String[] args) {

Printer one = new Printer("1");

Printer two = new Printer("2");

one.start();

two.start();

}

14/25



Executions

Question

Draw the state-transition diagram.

15/25



Executions

16/25



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

17/25



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

17/25



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

17/25



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {

this.value++;

}

18/25



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {

this.value++;

}

18/25



Resource class

Problem

Implement the class Resource with attribute available,
initialized to true, and the methods acquire and release.

19/25



Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

20/25



Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

20/25



States of a thread

runnable scheduler running

blocked

waitnotify

21/25



User class

public class User extends Thread {

private Resource resource;

public User(Resource resource) {

super();

this.resource = resource;

}

public void run() {

super.run();

this.resource.acquire();

this.resource.release();

}

}

22/25



Main method

final Resource resource = new Resource();

final int USERS = 2;

final User[] users = new User[USERS];

for (int i = 0; i < USERS; i++) {

users[i] = new User(resource);

}

for (int i = 0; i < USERS; i++) {

users[i].start();

}

23/25



Configuration file

target=Main

classpath=<folder that contains Main.class>

listener=listeners.StateSpaceWithThreadInfo

native_classpath=<folder that contains

listener/StateSpaceWithThreadInfo.class>

24/25



State space

25/25


