Concurrency

EECS 4315

www.eecs.yorku.ca/course/4315/

1/25

www.eecs.yorku.ca/course/4315/

How many different executions?

One thread prints 1 one. Another thread prints 1 two. How many
different executions are there?

2/25

How many different executions?

One thread prints 1 one. Another thread prints 1 two. How many
different executions are there?

2/25

How many different executions?

One thread prints 2 ones. Another thread prints 2 twos. How
many different executions are there?

3/25

How many different executions?

One thread prints 2 ones. Another thread prints 2 twos. How
many different executions are there?

3/25

How many different executions?

One thread prints 3 ones. Another thread prints 3 twos. How
many different executions are there?

4/25

How many different executions?

One thread prints 3 ones. Another thread prints 3 twos. How
many different executions are there?

4/25

How many different executions?

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

5/25

How many different executions?

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

Answer

204815162698948971433516250298082504439642488798139
703382038263767174818620208375582893299418261020620
146476631999802369241548179800452479201804754976926
157856301289663432064714851152395251651227768588611
539546256147907378668464154444533617613770073855673
814589630071306510455959514479888746206368718514551
828551173166276253663773084682932255389049743859481
431755030783796444370810085163724827462791417016619
883764840843541430817785947037746565188475514680749
694674923803033101818723298009668567458560252549910
118113525353465888794196665367490451130611009631190
6270342502293155911108976733963991149120.

5/25

How many executions?

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

6/25

How many executions?

One thread prints 1000 ones. Another thread prints 1000 twos.
How many different executions are there?

~ 1000!1000! -

(2000) 2000!

1000

6/25

How many executions?

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

7/25

How many executions?

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

At most (2,7") :

7/25

How many executions?

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

At most (2,7") :

Can there be fewer? l

7/25

How many executions?

One thread executes n instructions. Another thread executes n
instructions. How many different executions are there?

At most (2,7") :

Can there be fewer? l

Yes. For example, if each instruction is x = 1 then there is only
one execution.

7/25

How many executions?

There are k threads. Each thread executes n instructions. How
many different executions are there?

8/25

How many executions?

(7))

9/25

How many executions?

kn
n

)57 ()

(kn)! ((k—1)n)!

(2n)!

n'((k —1)n)! n!((k — 2)n)!

n'n!

9/25

How many executions?

(kn) ((k — 1)n> <2n>
: (Zn)! ((kn— Ln)! (2n)!
Ak — D)l al((k— 21 alnl
(kn)!
(n1)*

9/25

How many executions?

(kn) ((k - 1)n> <2n>
(kn)! (k=1)m)! (2n)!
n'((k —1)n)! n!((k — 2)n)! n'n!
(kn)!
(nh)k
(kn)(kn—1)---(kn—n+1) 2n(2n—1)-(n+1)n!
n! n! n!

9/25

How many executions?

kn\ ((k—=1)n\ (2n
()" ()
(kn)! (k=1)m)! (2n)!
n'((k —1)n)! n!((k — 2)n)! n'n!
(kn)!
(nh)k
(kn)(kn—1)---(kn—n+1) 2n(2n—1)-(n+1)n!
n! n! n!
. <2n(2n —1)-(n+ 1)>k1

n!

9/25

How many executions?

(kn) ((k - l)n) <2n>
() (k=) (2n)
n'((k = 1)n)! n!((k — 2)n)! nln!
(kn)!
(n)k
(k)(kn—l) (kn—n+1)”.2n(2n_1).(n+1)n7!
n! n!

2n(2n—1)kl

< k—1
<2n(2n —1) 1)>

n(n—l

9/25

How many executions?

(kn) ((k - l)n) <2n>
’ (Zn)! ((kn— n)! (2n)!
nl((k— 1)) nl((k —2)m)l " nlnl

_ (kn)!

()

(5)(kn—l) (kn—n+1)”.2n(2n—1)-(n—|—1)n7!

N n! n!
2n2n—1 =1

> <)
2n(2n—1 +1) k=1

a (n(n—l >

> nk

9/25

How many executions?

There are k threads. Each thread executes n instructions. How
many different executions are there?

In the worst case, more than nk—1.

The number of different executions may grow exponential in the
number of threads.

10/25

Java code

Assume that a Printer prints its name once.

public static void main(String[] args) {
Printer one = new Printer("1i");
one.run() ;

}

11/25

Executions

Draw the state-transition diagram. I

12/25

Executions

13/25

Java code

public static void main(String[] args) {
Printer one = new Printer("1");
Printer two new Printer("2");
one.start();
two.start();

}

14/25

Executions

Draw the state-transition diagram. I

15/25

Executions

16/25

Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

17/25

Counter class

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

| A\

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

A\

17/25

Counter class

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

| A\

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

\

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

17/25

Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

18/25

Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {
this.value++;

¥

18/25

Resource class

Problem

Implement the class Resource with attribute available,
initialized to true, and the methods acquire and release.

19/25

Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object's
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

20/25

Wait and notify

The Object class contains the following three methods:

@ wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

o notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

@ notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

20/25

States of a thread

blocked

21/25

User class

public class User extends Thread {
private Resource resource;

public User(Resource resource) {
super () ;
this.resource = resource;

}

public void run() {
super.run() ;
this.resource.acquire(Q);
this.resource.release();

}
}

22/25

final Resource resource = new Resource();

final int USERS = 2;

final User[] users = new User [USERS];

for (int i = 0; i < USERS; i++) {
users[i]

}

for (int i = 0; i < USERS; i++) {
users[i] .start();

}

new User(resource);

23/25

Configuration file

target=Main

classpath=<folder that contains Main.class>

listener=listeners.StateSpaceWithThreadInfo

native_classpath=<folder that contains
listener/StateSpaceWithThreadInfo.class>

24/25

State space

25 /25

