
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/55

www.eecs.yorku.ca/course/4315/

Reader class

public class Reader extends Thread {

private Database database;

public Reader(Database database) {

this.database = database;

}

public void run() {

this.database.read();

}

}

2/55

Writer class

public class Writer extends Thread {

private Database database;

public Writer(Database database) {

this.database = database;

}

public void run() {

this.database.write();

}

}

3/55

Database class

public class Database {

private boolean writing;

private boolean reading;

public Database() {

this.reading = false;

this.writing = false;

}

}

4/55

Write method

private synchronized void beginWrite() {

if (this.writing || this.reading) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

public void write() {

this.beginWrite();

this.writing = true;

// write

this.writing = false;

...

} 5/55

Read method

private synchronized void beginRead() {

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

public void read() {

this.beginRead();

this.reading = true;

// read

this.reading = false;

...

} 6/55

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

7/55

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

7/55

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

7/55

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

7/55

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

7/55

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}

8/55

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}

8/55

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

9/55

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

9/55

The reading attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

10/55

The reading attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

10/55

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we “wake up” these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

11/55

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we “wake up” these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

11/55

Waking up waiting readers

private synchronized void endWrite() {

this.writing = false;

this.notifyAll(); // notify all threads that are

// waiting on this database

}

12/55

Waking up waiting writers

Question

Writers may be waiting because a writer is writing or readers are
reading. Where and how do we “wake up” a waiting writer?

Answer

Use the notifyAll once the last reader is done with reading.

13/55

Waking up waiting writers

Question

Writers may be waiting because a writer is writing or readers are
reading. Where and how do we “wake up” a waiting writer?

Answer

Use the notifyAll once the last reader is done with reading.

13/55

Waking up waiting writers

private synchronized void endRead() {

this.readers--:

if (this.readers == 0) {

this.notifyAll(); // notify all threads that are

// waiting on this database

}

}

14/55

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

Let us use JPF to try to find bugs in the Database class.

15/55

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

Let us use JPF to try to find bugs in the Database class.

15/55

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

Let us use JPF to try to find bugs in the Database class.

15/55

Configuration file

target=concurrency.ReadersAndWriters

classpath=/courses/4315/workspace/concurrency/bin/

16/55

JPF report

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

concurrency.ReadersAndWriters.main()

== search started: 3/10/18 11:15 AM

== results

no errors detected

== statistics

elapsed time: 00:00:11

states: new=28983,visited=64764,backtracked=93747,end=57

search: maxDepth=49,constraints=0

choice generators: thread=28983 (signal=2517,lock=8221,sharedRef=8919,threadApi=4,reschedule=9322), data=0

heap: new=400,released=157142,maxLive=386,gcCycles=73538

instructions: 470903

max memory: 372MB

loaded code: classes=61,methods=1381

== search finished: 3/10/18 11:15 AM
17/55

No writer

Question

How can we use JPF to check that there is no writer writing when
a reader is reading?

Answer

Add assert !this.writing in the read method where the
database is read. If the assertion fails, an exception is thrown. JPF
detects exceptions that are thrown and not caught.

18/55

No writer

Question

How can we use JPF to check that there is no writer writing when
a reader is reading?

Answer

Add assert !this.writing in the read method where the
database is read. If the assertion fails, an exception is thrown. JPF
detects exceptions that are thrown and not caught.

18/55

JPF report

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

concurrency.ReadersAndWriters.main()

== search started: 3/10/18 11:25 AM

== error 1

gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

java.lang.AssertionError

at concurrency.Database.read(concurrency/Database.java:28)

at concurrency.Reader.run(concurrency/Reader.java:25)

== snapshot #1

thread concurrency.Reader:{id:2,name:Thread-2,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

call stack:

at concurrency.Database.read(Database.java:28)

at concurrency.Reader.run(Reader.java:25)

thread concurrency.Writer:{id:4,name:Thread-4,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

call stack:

at concurrency.Database.beginWrite(Database.java:78)

at concurrency.Database.write(Database.java:61)

at concurrency.Writer.run(Writer.java:25)

== results

error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.AssertionError

at concurrency.Database...."

== statistics

elapsed time: 00:00:01

states: new=399,visited=361,backtracked=733,end=21

search: maxDepth=33,constraints=0

choice generators: thread=398 (signal=41,lock=117,sharedRef=119,threadApi=4,reschedule=117), data=0

heap: new=416,released=934,maxLive=386,gcCycles=667

instructions: 8449

max memory: 61MB

loaded code: classes=65,methods=1423

== search finished: 3/10/18 11:25 AM

19/55

Smallest instance

Try to find the smallest instance for which the error occurs.

READER = 1

WRITERS = 1

no errors detected

READER = 2

WRITERS = 1

no errors detected

READER = 1

WRITERS = 2

error

20/55

Smallest instance

Try to find the smallest instance for which the error occurs.

READER = 1

WRITERS = 1

no errors detected

READER = 2

WRITERS = 1

no errors detected

READER = 1

WRITERS = 2

error

20/55

Locating the error

== error 1

gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

java.lang.AssertionError

at concurrency.Database.read(concurrency/Database.java:28)

at concurrency.Reader.run(concurrency/Reader.java:25)

Line 28 of the Database class.

assert !this.writing;

21/55

jpf-visual

22/55

Trace

main: running

final int READERS = 1;

final int WRITERS = 2;

Database database = new Database();

for (int r = 0; r < READERS; r++) {

(new Reader(database)).start();

}

main: running, Reader: runnable

23/55

Trace

main: running, Reader: runnable

for (int w = 0; w < WRITERS; w++) {

(new Writer(database)).start();

}

main: running, Reader: runnable, Writer: runnable,
Writer: runnable

24/55

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

this.database.read();

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

25/55

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

this.beginRead();

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

26/55

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

this.database.write();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

27/55

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

this.beginWrite();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

28/55

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.writing = true;

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

29/55

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

main: runnable, Reader: blocked, Writer: runnable,
Writer: runnable

30/55

Trace

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

assert this.readers == 0;

this.endWrite();

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

31/55

Trace

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

this.writing = false;

this.notifyAll();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

32/55

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

this.database.write();

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

33/55

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

this.beginWrite();

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

34/55

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.writing = true;

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

35/55

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

this.readers++;

assert !this.writing;

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

36/55

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

Although the attribute waiting was false when the state of the
Reader thread changed from blocked to runnable, it was not any
more when the state of the Reader thread changed from runnable
to running.

37/55

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

Question

How do we modify the above code so that we check that waiting
is false when the state of the Reader thread changed from
runnable to running?

38/55

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

Answer

Replace if with while.

39/55

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

Answer

Replace if with while.

39/55

No reader

Question

How can we use JPF to check that there is no reader reading when
a writer is writing?

Answer

Add assert this.readers == 0 in the write method where
the database is written.

40/55

No reader

Question

How can we use JPF to check that there is no reader reading when
a writer is writing?

Answer

Add assert this.readers == 0 in the write method where
the database is written.

40/55

No other writer

Question

How can we use JPF to check that there is no other writer writing
when a writer is writing?

Answer

Add attribute writers.

Initialize writers to zero.

Increment and decrement writers in the write method.

Add assert this.writers == 1 in the write method
where the database is written.

41/55

No other writer

Question

How can we use JPF to check that there is no other writer writing
when a writer is writing?

Answer

Add attribute writers.

Initialize writers to zero.

Increment and decrement writers in the write method.

Add assert this.writers == 1 in the write method
where the database is written.

41/55

Synchronized blocks

public void read() {

synchronized(this) {

while (this.writing) {

this.wait();

}

this.readers++;

}

// read

assert !this.writing;

synchronized (this) {

this.readers--;

if (this.readers == 0) {

this.notifyAll();

}

}

}
42/55

The dining philosophers problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each philosopher
has a plate of spaghetti. A philosopher needs two forks to eat it.
The layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating
and thinking. When philosophers get hungry, they try to pick up
their left and right fork, one at a time, in either order. If successful
in picking up both forks, the philosopher eats for a while, then puts
down the forks and continues to think.

43/55

The dining philosophers problem

public class Philosopher extends Thread {

private int id;

private Table table;

public Philosopher(int id, Table table) {

this.id = id;

this.table = table;

}

public void run() {

while (true) {

this.table.pickUp(id);

this.table.pickUp((id + 1) % 5);

// eat

this.table.putDown(id);

this.table.putDown((id + 1) % 5);

}

}

}

44/55

The dining philosophers problem

public class Table {

public Table() { ... }

public void pickUp(int id) { ... }

public void putDown(int id) { ... }

}

45/55

The dining philosophers problem

public class Philosophers {

public static void main(String[] args) {

Table table = new Table();

for (int p = 0; p < 5; p++) {

(new Philosopher(p, table)).start();

}

}

}

46/55

Table

Question

Of what information about table and its forks should we keep
track?

Answer

Which forks have been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

47/55

Table

Question

Of what information about table and its forks should we keep
track?

Answer

Which forks have been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

47/55

Table

Question

Of what information about table and its forks should we keep
track?

Answer

Which forks have been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

47/55

Table

Question

Of what information about table and its forks should we keep
track?

Answer

Which forks have been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

47/55

Table

Question

Where and how do we initialize the attribute?

Answer

private boolean[] pickedUp;

public Table() {

this.pickedUp = new boolean[5]; // all false

}

48/55

Table

Question

Where and how do we initialize the attribute?

Answer

private boolean[] pickedUp;

public Table() {

this.pickedUp = new boolean[5]; // all false

}

48/55

Table

Question

Implement the method pickUp(int id).

When does a Philosopher have to wait?

How does the array pickedUp need to be updated?

Answer

while (this.pickedUp[id]) {

this.wait();

}

this.pickedUp[id] = true;

49/55

Table

Question

Implement the method pickUp(int id).

When does a Philosopher have to wait?

How does the array pickedUp need to be updated?

Answer

while (this.pickedUp[id]) {

this.wait();

}

this.pickedUp[id] = true;

49/55

Table

Question

Implement the method putDown(int id).

How does the array pickedUp need to be updated?

Do Philosophers need to be notified?

Answer

this.pickedUp[id] = false;

this.notifyAll();

50/55

Table

Question

Implement the method putDown(int id).

How does the array pickedUp need to be updated?

Do Philosophers need to be notified?

Answer

this.pickedUp[id] = false;

this.notifyAll();

50/55

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

51/55

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

51/55

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

51/55

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

51/55

JPF

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

concurrency.Philosophers.main()

== search started: 3/18/19 5:58 PM

== error 1

gov.nasa.jpf.vm.NotDeadlockedProperty

deadlock encountered:

thread concurrency.Philosopher:{id:1,name:Thread-1,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:2,name:Thread-2,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:3,name:Thread-3,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:4,name:Thread-4,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:5,name:Thread-5,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

...
52/55

jpf-visual

target=Philosophers

classpath=<path to Philosophers.class>

sourcepath=<path to Philosophers.java>

@using=jpf-visual

report.errorTracePrinter.property_violation=trace

report.publisher+=,errorTracePrinter

report.errorTracePrinter.class=ErrorTracePrinter

shell=gov.nasa.jpf.shell.basicshell.BasicShell

shell.panels+=,errorTrace

shell.panels.errorTrace=ErrorTracePanel

53/55

jpf-visual

54/55

Bug

All five philosophers pick up their left fork first and then all wait
for their right fork.

Solutions:

One left handed philosophers (picks up left fork first) and four
right handed philosophers (pick up right forks first)

Only allow at most four philosophers to enter the dining room

Keep track of each philosopher (thinking, hungry, eating)

55/55

