
Invariants

Definition

The class of LTL formulas that capture invariants is defined by �g
where

g ::= a | g ∧ g | ¬g .

Example

�¬red

1/36

Invariants

Definition

The class of LTL formulas that capture invariants is defined by �g
where

g ::= a | g ∧ g | ¬g .

Example

�¬red

1/36

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

2/36

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

2/36

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

2/36

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

3/36

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

3/36

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

3/36

Leslie Lamport

Won the Turing award in
2013.

Won the Dijkstra prize
three times (2000, 2005,
2014).

Elected Fellow of the
ACM in 2014.

Source: Leslie Lamport

4/36

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, “Always a state satisfying a can be reached.”

5/36

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, “Always a state satisfying a can be reached.”

5/36

Expressiveness of LTL

Theorem

There does not exists an LTL formula f with TS |= f iff

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a

6/36

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸
♦a

7/36

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a

8/36

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a︸ ︷︷ ︸
�∃♦a

9/36

How to modify the logic?

∀s ∈ I :

∀�∃♦a︷ ︸︸ ︷
∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a︸ ︷︷ ︸
�∃♦a

10/36

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

11/36

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

11/36

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

11/36

Computational Tree Logic
EECS 4315

www.eecs.yorku.ca/course/4315/

12/36

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

13/36

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

13/36

Computation tree logic

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In,
Dexter Kozen, editor, Proceedings of Workshop on Logic of
Programs, volume 131 of Lecture Notes in Computer Science,
pages 52–71. Yorktown Heights, NY, USA, May 1981.
Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in CESAR. In, Mariangiola
Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the
5th International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337–351. Torino, Italy,
April 1982. Springer-Verlag.

14/36

Syntactic sugar

∃♦f = ∃(true U f)
∀♦f = ∀(true U f)
∃�f = ¬∀(true U ¬f)
∀�f = ¬∃(true U ¬f)

15/36

Example

Question

How to express “Each red light is preceded by an amber light” in
CTL?

Answer

¬red ∧ ∀�(amber ∨ ∀© ¬red)

16/36

Example

Question

How to express “Each red light is preceded by an amber light” in
CTL?

Answer

¬red ∧ ∀�(amber ∨ ∀© ¬red)

16/36

Example

Question

How to express “The light is infinitely often green” in CTL?

Answer

∀�∀♦green

17/36

Example

Question

How to express “The light is infinitely often green” in CTL?

Answer

∀�∀♦green

17/36

Semantics of CTL

s |= a iff a ∈ `(s)
s |= f1 ∧ f2 iff s |= f1 ∧ s |= f2

s |= ¬f iff s 6|= f
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and

p |=©f iff p[1] |= f
p |= f1 U f2 iff ∃i ≥ 0 : p[i] |= f2 ∧ ∀0 ≤ j < i : p[j] |= f1

18/36

Semantics of CTL

Question

Recall that
∃♦f = ∃(true U f).

How is
s |= ∃♦f

defined?

Answer

∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

19/36

Semantics of CTL

Question

Recall that
∃♦f = ∃(true U f).

How is
s |= ∃♦f

defined?

Answer

∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

19/36

Semantics of CTL

Question

Recall that
∀♦f = ∀(true U f).

How is
s |= ∀♦f

defined?

Answer

∀p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

20/36

Semantics of CTL

Question

Recall that
∀♦f = ∀(true U f).

How is
s |= ∀♦f

defined?

Answer

∀p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

20/36

Semantics of CTL

Question

Recall that
∃�f = ¬∀(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∃p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

21/36

Semantics of CTL

Question

Recall that
∃�f = ¬∀(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∃p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

21/36

Semantics of CTL

Question

Recall that
∀�f = ¬∃(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∀p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

22/36

Semantics of CTL

Question

Recall that
∀�f = ¬∃(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∀p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

22/36

Semantics of CTL

TS |= f iff ∀s ∈ I : s |= f .

23/36

Expressiveness of LTL and CTL

Theorem

The property

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a

cannot be captured by LTL, but is captured by the CTL formula
∀�∃♦a.

24/36

Expressiveness of LTL and CTL

Theorem

The property

∀s ∈ I : ∀p ∈ Paths(s) : ∃i ≥ 0 : ∀j ≥ i : p[j ..] |= a

cannot be captured by CTL, but is captured by the LTL formula
♦�a.

25/36

Model checking CTL

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

26/36

Model checking CTL

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

26/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(a)?

Answer

Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view

Label each state s satisfying a ∈ `(s) with a.

27/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(a)?

Answer

Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view

Label each state s satisfying a ∈ `(s) with a.

27/36

Example

red

1

3 2

1 7→ ∅
2 7→ {red}
3 7→ {red}

28/36

Example

red

1

3 2

1 7→ ∅
2 7→ {red}
3 7→ {red}

28/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(f ∧ g)?

Answer

Sat(f ∧ g) = Sat(f) ∩ Sat(g)

Alternative view

Label states, that are labelled with both f and g , also with f ∧ g .

29/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(f ∧ g)?

Answer

Sat(f ∧ g) = Sat(f) ∩ Sat(g)

Alternative view

Label states, that are labelled with both f and g , also with f ∧ g .

29/36

Example

red ∧ blue

1

3 2

1 7→ {blue}
2 7→ {red}
3 7→ {red, blue, red ∧ blue}

30/36

Example

red ∧ blue

1

3 2

1 7→ {blue}
2 7→ {red}
3 7→ {red, blue, red ∧ blue}

30/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(¬f)?

Answer

Sat(¬f) = S \ Sat(f)

Alternative view

Label each state, that is not labelled with f , with ¬f .

31/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(¬f)?

Answer

Sat(¬f) = S \ Sat(f)

Alternative view

Label each state, that is not labelled with f , with ¬f .

31/36

Example

¬(red ∧ blue)

1

3 2

1 7→ {blue,¬(red ∧ blue)}
2 7→ {red,¬(red ∧ blue)}
3 7→ {red, blue, red ∧ blue}

32/36

Example

¬(red ∧ blue)

1

3 2

1 7→ {blue,¬(red ∧ blue)}
2 7→ {red,¬(red ∧ blue)}
3 7→ {red, blue, red ∧ blue}

32/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∃© f)?

Answer

Sat(∃© f) = { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ } where
succ(s) = { t ∈ S | s → t }.

Alternative view

Labels those states, that have a direct successor labelled with f ,
with ∃© f .

33/36

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∃© f)?

Answer

Sat(∃© f) = { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ } where
succ(s) = { t ∈ S | s → t }.

Alternative view

Labels those states, that have a direct successor labelled with f ,
with ∃© f .

33/36

Example

∃© red

1

3 2

1 7→ {∃© red}
2 7→ {red, ∃© red}
3 7→ {red}

34/36

Example

∃© red

1

3 2

1 7→ {∃© red}
2 7→ {red, ∃© red}
3 7→ {red}

34/36

Second progress report

Submit the second progress report before Saturday March 30. If
you submit your progress report before the deadline and you have
made good progress with your project since the first progress
report, you will receive 5 towards the mark for your project (40 in
total).

35/36

Course evaluation

The course evaluation for this course can now be completed at
https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete
the course evaluation. Your feedback allows me to improve the
course for future students.

If at least 80 of the students in the course (that is, 12) complete
the evaluation, I will bring cup cakes for the last lecture.

36/36

https://courseevaluations.yorku.ca

