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Model checking CTL

Definition

The satisfaction set Sat(f ) is defined by

Sat(f ) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f ) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f ).

Alternative view

Label each state with the subformulas of f that it satisfies.
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Model checking CTL

Sat(a) = { s ∈ S | a ∈ `(s) }
Sat(f ∧ g) = Sat(f ) ∩ Sat(g)

Sat(¬f ) = S \ Sat(f )

Sat(∃© f ) = { s ∈ S | succ(s) ∩ Sat(f ) 6= ∅ }
Sat(∀© f ) =?

Sat(∃(f U g)) =?

Sat(∀(f U g)) =?
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Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∀ © f | ∃(f U f ) | ∀(f U f )

Question

What is Sat(∀© f )?

Answer

Sat(∀© f ) = { s ∈ S | succ(s) ⊆ Sat(f ) }.

Alternative view

Labels those states, with all direct successors labelled with f , with
∀© f .
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Example

∀© red

1

3 2

1 7→ {∀© red}
2 7→ {red, ∀© red}
3 7→ {red}
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Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∀ © f | ∃(f U f ) | ∀(f U f )

Question

What is Sat(∃(f U g))?
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Model checking CTL

s ∈ Sat(∃(f U g))

iff s |= ∃(f U g)

iff ∃p ∈ Paths(s) : p |= f U g

iff ∃p ∈ Paths(s) : ∃i ≥ 0 : p[i ] |= g ∧ ∀0 ≤ j < i : p[j ] |= f

iff ∃p ∈ Paths(s) : p[0] |= g ∨ (∃i ≥ 1 : p[i ] |= g ∧ ∀0 ≤ j < i : p[j ] |= f )

iff ∃p ∈ Paths(s) : p[0] |= g∨
(p[0] |= f ∧ ∃i ≥ 1 : p[i ] |= g ∧ ∀1 ≤ j < i : p[j ] |= f )

iff s |= g ∨ (s |= f ∧ ∃s → t : t |= ∃(f U g))

iff s ∈ Sat(g) ∨ (s ∈ Sat(f ) ∧ ∃t ∈ succ(s) : t ∈ Sat(∃(f U g)))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }
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Model checking CTL

As we have seen

s ∈ Sat(∃(f U g))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

Hence, the set Sat(∃(f U g)) is a subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ∩ T 6= ∅ }

Proposition

The set Sat(∃(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ∩ T 6= ∅ }

Question

Does such a smallest subset exist?
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Smallest subset

Definition

A function G : 2S → 2S is monotone if for all T , U ∈ 2S ,

if T ⊆ U then G (T ) ⊆ G (U).

Knaster’s fixed point theorem

If the set S is finite and the function G : 2S → 2S is monotone,
then there exists a smallest T ∈ 2S such that G (T ) = T .

This smallest T ∈ 2S is known as the least fixed point of G .
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Bronislaw Knaster (1893–1980)

Polish mathematician

Received his Ph.D.
degree from University of
Warsaw

Proved his fixed point
theorem in 1928

Source: Konrad Jacobs
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Knaster’s fixed point theorem

Definition

For each n ∈ N, the set Gn is defined by

Gn =

{
∅ if n = 0
G (Gn−1) otherwise

Proposition

For all n ∈ N, Gn ⊆ Gn+1.

Proof

We prove this by induction on n. In the base case, n = 0, we have
that

G0 = ∅ ⊆ G1.

In the inductive case, we have n ≥ 1. By induction, Gn−1 ⊆ Gn.
Since G is monotone, we have that

Gn = G (Gn−1) ⊆ G (Gn) = Gn+1.
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Knaster’s fixed point theorem

Proposition

Gn = Gn+1 for some n ∈ N.

Proof

Suppose that S contains m elements. Towards a contradiction,
assume that Gn 6= Gn+1 for all n ∈ N. Then Gn ⊂ Gn+1 for all
n ∈ N. Hence, Gn contains at least n elements. Therefore, Gm+1

contains more elements than S . This contradicts that Gm+1 ⊆ S .

We denote the Gn with Gn = Gn+1 by fix(G ).
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Knaster’s fixed point theorem

Proposition

For all T ⊆ S , if G (T ) = T then fix(G ) ⊆ T .

Proof

First, we prove that for all n ∈ N, Gn ⊆ T by induction on n. In
the base case, n = 0, we have that G0 = ∅ ⊆ T . In the inductive
case, we have n ≥ 1. By induction, Gn−1 ⊆ T . Since G is
monotone, Gn = G (Gn−1) ⊆ G (T ) = T . Since fix(G ) = Gn for
some n ∈ N, we can conclude that fix(G ) ⊆ T .

Corollary

fix(G ) is the smallest subset T of S such that G (T ) = T .
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Smallest subset

Definition

The function F : 2S → 2S is defined by

F (T ) = Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ∩ T 6= ∅ }

Proposition

F is monotone.

Proof

Let T , U ∈ 2S . Assume that T ⊆ U. Let s ∈ F (T ). It remains to
prove that s ∈ F (U). Then s ∈ Sat(g) or s ∈ Sat(f ) and
succ(s) ∩ T = ∅. We distinguish two cases. If s ∈ Sat(g) then
s ∈ F (U). If s ∈ Sat(f ) and succ(s) ∩ T = ∅ then
succ(s) ∩ U = ∅ since T ⊆ U. Hence, s ∈ F (U).
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Model checking CTL

Sat(f ):
switch (f ) {

case a : return { s ∈ S | a ∈ `(s) }
case f ∧ g : return Sat(f ) ∩ Sat(g)
case ¬f : return S \ Sat(f )
case ∃© f : return { s ∈ S | succ(s) ∩ Sat(f ) 6= ∅ }
case ∀© f : return { s ∈ S | succ(s) ⊆ Sat(f ) }
case ∃(f U g) : T = ∅

while T 6= F (T )
T = F (T )

return T
case ∀(f U g) : . . .
}
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Model checking CTL

case ∃(f U g) :

E = Sat(g)
T = E
while E 6= ∅
let t ∈ E
E = E \ {t}
for all s ∈ pred(t)
if s ∈ Sat(f ) \ T
E = E ∪ {s}
T = T ∪ {s}

return T
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Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∀ © f | ∃(f U f ) | ∀(f U f )

Question

What is Sat(∀(f U g))?

Answer

The set Sat(∀(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f ) | succ(s) ⊆ T }
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Size of a CTL formula

|a| = 1
|f ∧ g | = 1 + |f |+ |g |
|¬f | = 1 + |f |

|∃ © f | = 1 + |f |
|∃(f U g)| = 1 + |f |+ |g |
|∀ © f | = 1 + |f |

|∀(f U g)| = 1 + |f |+ |g |
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The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the
textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system TS , with N states and K transitions, and a
CTL formula f , the model checking problem TS |= f can be
decided in time O((N + K )|f |).

Theorem

For a transition system TS , with N states and K transitions, and a
LTL formula g , the model checking problem TS |= f can be
decided in time O((N + K )2|g |).

Theorem

If P 6= NP then there exist LTL formulas gn whose size is a
polynomial in n, for which equivalent CTL formulas exist, but not
of size polynomial in n.
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Course evaluation

The course evaluation for this course can now be completed at
https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete
the course evaluation. Your feedback allows me to improve the
course for future students.

Since 13 students have already completed the evaluation, I will
bring cup cakes for the last lecture.
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