
Quiz 2: grade distribution

50-60 60-70 70-80 80-90 90-100

1

2

3

4

5

Average: 73%

1/49

Quiz 2: Questions with low average scores

Question 2b: 36%
How is this entity (an annotation) used in the class?

Question 4c: 21%
Give an estimate of the (yearly world-wide) cost of debugging.

Question 8a: 46%
Mention two advantages of model checking (in comparison with
theorem proving).

Question 8b: 54%
Mention two disadvantages of model checking (in comparison with
theorem proving).

2/49

Running JPF in Eclipse

Create the following app.

public class RunJPF {

public static void main(String[] args) {

// location of .jpf directory

final String HOME = "/courses/4315/";

System.setProperty("user.home", HOME);

gov.nasa.jpf.tool.RunJPF.main(args);

}

}

3/49

Eclipse: Run → Run Configurations ...

4/49

Eclipse: Run → Run Configurations ... → Main

5/49

Eclipse: Run → Run Configurations ... → Arguments

6/49

Viewing .dot files

https://www.graphviz.org/

7/49

https://www.graphviz.org/

Project

January 25: install JPF (5%)

February 15: draft proposal (2%)

February 25: proposal (3%)

March 8: first progress report (5%)

March 22: second progress report (5%)

Exam period: deliverables (20%)

8/49

Project

Very brief descriptions of the last three years’ projects can be
found here.

Students can work alone or in groups of two on their project.

Students are expected to work on average two hours per week on
their projects from now on.

9/49

https://wiki.eecs.yorku.ca/course_archive/2018-19/W/4315/projects

Mini models
EECS 4315

www.eecs.yorku.ca/course/4315/

10/49

www.eecs.yorku.ca/course/4315/

Mini model

Question

What do the model and the mini model have in common?

Answer

The initial state.

The final states.

The branching structure.

The language: (finite and infinite) sequences of actions.a

aSimilar to the language accepted by a finite automaton, as discussed in
EECS 2001 Introduction to Theory of Computation.

11/49

Mini model

Question

What do the model and the mini model have in common?

Answer

The initial state.

The final states.

The branching structure.

The language: (finite and infinite) sequences of actions.a

aSimilar to the language accepted by a finite automaton, as discussed in
EECS 2001 Introduction to Theory of Computation.

11/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which is the initial state?

Answer

State 0.

12/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which is the initial state?

Answer

State 0.

12/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which is the initial state?

Answer

State 0.

12/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which are the final states?

Answer

State 4.

13/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which are the final states?

Answer

State 4.

13/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which are the branching states?

Answer

State 2.

14/49

Model

0 1 2

3

4

a b

c

d

e

Question

Which are the branching states?

Answer

State 2.

14/49

Model

0 1 2

3

4

a b

c

d

e

Question

What is the language?

Answer

{abd , abcebd , abcebcebd , . . . , abcebcebce . . .}.

15/49

Model

0 1 2

3

4

a b

c

d

e

Question

What is the language?

Answer

{abd , abcebd , abcebcebd , . . . , abcebcebce . . .}.

15/49

Mini model

Question

What is the corresponding mini model?

0 2

4

ab

d

ceb

16/49

Mini model

Question

What is the corresponding mini model?

0 2

4

ab

d

ceb

16/49

Model

Definition

A labelled transition system is a tuple 〈S ,A,→, s〉 consisting of

a set S of states,

a set A of actions,

a set of transitions → ⊆ S × A× S , and

a start state s ∈ S .

17/49

From model to mini model

Problem

Given a model, expressed as a labelled transition system, construct
the corresponding mini model, also expressed as a labelled
transition system.

18/49

States

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Which states do we keep?

Answer

Initial state, final states, and all branching states.

19/49

States

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Which states do we keep?

Answer

Initial state, final states, and all branching states.

19/49

Labelled transition systems: successors

Definition

The set succ(s) of successors of the state s is defined by

succ(s) = { t ∈ S | ∃a ∈ A : s
a−→ t }.

20/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) =

{1}
succ(1) = {2}
succ(2) = {3, 4}
succ(3) = {1}
succ(4) = ∅

21/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) = {1}
succ(1) =

{2}
succ(2) = {3, 4}
succ(3) = {1}
succ(4) = ∅

21/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) = {1}
succ(1) = {2}
succ(2) =

{3, 4}
succ(3) = {1}
succ(4) = ∅

21/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) = {1}
succ(1) = {2}
succ(2) = {3, 4}
succ(3) =

{1}
succ(4) = ∅

21/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) = {1}
succ(1) = {2}
succ(2) = {3, 4}
succ(3) = {1}
succ(4) =

∅

21/49

Labelled transition systems: successors

0 1 2

3

4

a b

c

d

e

succ(0) = {1}
succ(1) = {2}
succ(2) = {3, 4}
succ(3) = {1}
succ(4) = ∅

21/49

Labelled transition systems: predecessors

Definition

The set pred(s) of predecessors of the state s is defined by

pred(s) = { t ∈ S | ∃a ∈ A : t
a−→ s }.

22/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) =

∅
pred(1) = {0, 3}
pred(2) = {1}
pred(3) = {2}
pred(4) = {2}

23/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) = ∅
pred(1) =

{0, 3}
pred(2) = {1}
pred(3) = {2}
pred(4) = {2}

23/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) = ∅
pred(1) = {0, 3}
pred(2) =

{1}
pred(3) = {2}
pred(4) = {2}

23/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) = ∅
pred(1) = {0, 3}
pred(2) = {1}
pred(3) =

{2}
pred(4) = {2}

23/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) = ∅
pred(1) = {0, 3}
pred(2) = {1}
pred(3) = {2}
pred(4) =

{2}

23/49

Labelled transition systems: predecessors

0 1 2

3

4

a b

c

d

e

pred(0) = ∅
pred(1) = {0, 3}
pred(2) = {1}
pred(3) = {2}
pred(4) = {2}

23/49

States

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Given a labelled transition system 〈S ,A,→, s0〉, which states do we
keep?

Answer

S+ = {s0} ∪ {s ∈ S | |succ(s)| 6= 1 }.

24/49

States

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Given a labelled transition system 〈S ,A,→, s0〉, which states do we
keep?

Answer

S+ = {s0} ∪ {s ∈ S | |succ(s)| 6= 1 }.
24/49

Actions

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Given a labelled transition system 〈S ,A,→, s0〉, what are the
actions of the labelled transition system of the corresponding mini
model?

Answer

A+: nonempty and finite sequences of actions.

25/49

Actions

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Given a labelled transition system 〈S ,A,→, s0〉, what are the
actions of the labelled transition system of the corresponding mini
model?

Answer

A+: nonempty and finite sequences of actions.

25/49

Transitions

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Question

Given a labelled transition system 〈S ,A,→, s0〉, what are the
transitions of the labelled transition system of the corresponding
mini model?

26/49

Transitions

0 1 2

3

4

a b

c

d

e

0 2

4

ab

d

ceb

Answer

s1
a1...an−−−−→

+
sn+1 if

s1 ∈ S+ ∧ sn+1 ∈ S+∧
∃s2, . . . , sn ∈ S \ S+ : ∀1 ≤ i < n : si

ai−−→ si+1∧
∀1 ≤ i , j ≤ n : si = sj ⇒ i = j

27/49

From model to mini model

Problem

Given a model, expressed as a labelled transition system
〈S ,A,→, s0〉, construct the corresponding mini model, also
expressed as a labelled transition system.

Solution

〈S+,A+,→+, s0〉.

28/49

From model to mini model

Problem

Given a model, expressed as a labelled transition system
〈S ,A,→, s0〉, construct the corresponding mini model, also
expressed as a labelled transition system.

Solution

〈S+,A+,→+, s0〉.

28/49

Search

0

1 2

3 4

5 6

Task 1

Develop a Java app that prints some output. When checking the
Java app by JPF with depth-first search (DFS) the output should
be different from the output for breadth-first search (BFS).

29/49

Search

Random random = new Random();

System.out.println("0");

if (random.nextBoolean()) {

System.out.println("2");

} else {

System.out.println("1");

if (random.nextBoolean()) {

System.out.println("4");

} else {

System.out.println("3");

if (random.nextBoolean()) {

System.out.println("6");

} else {

System.out.println("5");

}

}

} 30/49

Search

Task 2

Verify your program using JPF with BFS and DFS. To do that,
you need to create an application properties file (.jpf file) for your
Java app developed in Task 1. Configure the search property to be
gov.nasa.jpf.search.heuristic.BFSHeuristic or
gov.nasa.jpf.search.heuristic.DFSHeuristic.

31/49

Search

target=Traversal

classpath=.

cg.enumerate_random=true

search=gov.nasa.jpf.search.heuristic.BFSHeuristic

32/49

Search

== system under test

Traversal.main()

== search started: 1/30/16 10:23 AM

0

1

3

5

6

4

2

===

33/49

Search

That is not breadth first search!

Question

Have we set the search property correctly? How can we check
that?

Answer

Use the following command line arguments

-log: lists the order in which properties files got loaded

-show: prints all configuration entries after the initialization is
complete

34/49

Search

That is not breadth first search!

Question

Have we set the search property correctly? How can we check
that?

Answer

Use the following command line arguments

-log: lists the order in which properties files got loaded

-show: prints all configuration entries after the initialization is
complete

34/49

Log option

loading property file: /eecs/home/franck/.jpf/site.properties

loading property file: /eecs/fac/pkg/jpf/jpf-core/jpf.properties

loading property file: Example.jpf

collected native_classpath=/eecs/fac/pkg/jpf/jpf-core/build/jpf.jar,/eecs/fac/pkg/jpf/jpf-core/build/jpf-annotations.jar

collected native_libraries=null

35/49

Show option

...

search = gov.nasa.jpf.search.heuristic.BFSHeuristic

search.class = gov.nasa.jpf.search.DFSearch

...

36/49

Search

target=Traversal

classpath=.

cg.enumerate_random=true

search.class=gov.nasa.jpf.search.heuristic.BFSHeuristic

37/49

Search

== system under test

Traversal.main()

== search started: 1/30/16 10:23 AM

0

1

2

3

4

5

6

===

38/49

Search

target=Traversal

classpath=.

cg.enumerate_random=true

search.class=gov.nasa.jpf.search.heuristic.DFSHeuristic

39/49

Search

== system under test

Traversal.main()

== search started: 1/30/16 10:23 AM

0

1

2

3

4

5

6

===

40/49

Search

That is not depth first search!

Let’s try instead gov.nasa.jpf.search.DFSearch.

41/49

Search

That is not depth first search!

Let’s try instead gov.nasa.jpf.search.DFSearch.

41/49

Search

target=Traversal

classpath=.

cg.enumerate_random=true

search.class=gov.nasa.jpf.search.DFSearch

42/49

Search

== system under test

Traversal.main()

== search started: 1/30/16 10:23 AM

0

1

3

5

6

4

2

===

43/49

Search

Task 3

Generate the state space diagram for BFS and DFS. To do this you
need to set the listener to StateSpaceDot.

44/49

BFS

45/49

DFS

46/49

Search

Task 4

Verify your program using RS. RS can explore several random
executions and in JPF you have the freedom to set the maximum
number of executions you would like RS to explore. Firstly, set
your search strategy to gov.nasa.jpf.search.RandomSearch.
Secondly, set the search.RandomSearch.path_limit property to
be any integer larger than 0. Compare the resulting state space
diagrams.

47/49

Search

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

Traversal.main()

== search started: 1/21/18 8:46 PM

0

1

3

5

48/49

Search

No space diagram has been produced.

Bugs are everywhere, even in JPF!

49/49

Search

No space diagram has been produced.

Bugs are everywhere, even in JPF!

49/49

