
Listen
EECS 4315

www.eecs.yorku.ca/course/4315/

1/24

www.eecs.yorku.ca/course/4315/


2/24



Generator and listeners

*

StarPrinter

+ process()

PlusPrinter

+ process()

ValuePrinter

+ process(int)

Generator

listeners : List〈Listener〉

+ run()
+ addListener(Listener)

�interface�
Listener

+ process()
+ process(int)
+ stop()

ListenerAdapter

+ process()
+ process(int)
+ stop()

SumPrinter

+ process(int)
+ stop()

3/24



JPF and listeners

*

SimpleDot VarTracker

JPF
�interface�
JPFListener

�interface�
SearchListener

�interface�
VMListener

ListenerAdapter

4/24



JPFListener

The interface JPFListener is empty.

Question

Why introduce an empty interface?

Answer

JPF has a collection of JPFListeners, some can be
SearchListeners and others can be VMListeners.

5/24



JPFListener

The interface JPFListener is empty.

Question

Why introduce an empty interface?

Answer

JPF has a collection of JPFListeners, some can be
SearchListeners and others can be VMListeners.

5/24



JPFListener

The interface JPFListener is empty.

Question

Why introduce an empty interface?

Answer

JPF has a collection of JPFListeners, some can be
SearchListeners and others can be VMListeners.

5/24



SearchListener

public interface SearchListener extends JPFListener {

void stateAdvanced(Search search);

void stateBacktracked(Search search);

void stateProcessed(Search search);

void statePurged(Search search);

void stateRestored(Search search);

void stateStored(Search search);

void searchProbed(Search search);

void propertyViolated(Search search);

void searchConstraintHit(Search search);

void searchStarted(Search search);

void searchFinished(Search search);

} 6/24



State space

Implement a listener which prints the states and transitions visited
by the search in the following simple format:

0 -> 1

1 -> 2

0 -> 3

3 -> 4

4 -> 2

7/24



State space

Question

Which methods of the SearchListener interface are relevant?

Answer

stateAdvanced, stateBacktracked, and stateRestored.

8/24



State space

Question

Which methods of the SearchListener interface are relevant?

Answer

stateAdvanced, stateBacktracked, and stateRestored.

8/24



State space

Question

In order to print a transition, what information do we need?

Answer

The ID of the source and target state.

Question

How do we store that information?

Answer

As attributes.

private int previous;

private int current;

9/24



State space

Question

In order to print a transition, what information do we need?

Answer

The ID of the source and target state.

Question

How do we store that information?

Answer

As attributes.

private int previous;

private int current;

9/24



State space

Question

In order to print a transition, what information do we need?

Answer

The ID of the source and target state.

Question

How do we store that information?

Answer

As attributes.

private int previous;

private int current;

9/24



State space

Question

In order to print a transition, what information do we need?

Answer

The ID of the source and target state.

Question

How do we store that information?

Answer

As attributes.

private int previous;

private int current;

9/24



State space

Question

In order to print a transition, what information do we need?

Answer

The ID of the source and target state.

Question

How do we store that information?

Answer

As attributes.

private int previous;

private int current;

9/24



State space

public void stateAdvanced(Search search) {

this.previous = ???;

this.current = ???;

}

Question

How do we update this.previous?

Answer

this.previous = this.current.

10/24



State space

public void stateAdvanced(Search search) {

this.previous = ???;

this.current = ???;

}

Question

How do we update this.previous?

Answer

this.previous = this.current.

10/24



State space

public void stateAdvanced(Search search) {

this.previous = ???;

this.current = ???;

}

Question

How can we use the Search parameter of the stateAdvanced

method to update this.current?

Answer

Use a method of the Search class that returns the ID of the
current state (getStateId).

11/24



State space

public void stateAdvanced(Search search) {

this.previous = ???;

this.current = ???;

}

Question

How can we use the Search parameter of the stateAdvanced

method to update this.current?

Answer

Use a method of the Search class that returns the ID of the
current state (getStateId).

11/24



State space

Question

Where do we initialize the attributes current and previous?

Answer

In the constructor.

Question

How do we initialize the attributes current and previous?

Answer

Set them to −1, the ID of the initial state.

12/24



State space

Question

Where do we initialize the attributes current and previous?

Answer

In the constructor.

Question

How do we initialize the attributes current and previous?

Answer

Set them to −1, the ID of the initial state.

12/24



State space

Question

Where do we initialize the attributes current and previous?

Answer

In the constructor.

Question

How do we initialize the attributes current and previous?

Answer

Set them to −1, the ID of the initial state.

12/24



State space

Question

Where do we initialize the attributes current and previous?

Answer

In the constructor.

Question

How do we initialize the attributes current and previous?

Answer

Set them to −1, the ID of the initial state.

12/24



State space

Question

How do we print the transition in stateAdvanced?

Answer

System.out.printf("%d -> %d\n", this.previous, this.current);

13/24



State space

Question

How do we print the transition in stateAdvanced?

Answer

System.out.printf("%d -> %d\n", this.previous, this.current);

13/24



State space

Question

How do we implement stateBacktracked?

Answer

this.current = search.getStateId();

14/24



State space

Question

How do we implement stateBacktracked?

Answer

this.current = search.getStateId();

14/24



State space

Question

How do we implement stateRestored?

Answer

this.current = search.getStateId();

15/24



State space

Question

How do we implement stateRestored?

Answer

this.current = search.getStateId();

15/24



Compiling a listener

To compile the listener, make sure that jpf.jar is part of the
classpath.

16/24



JPF as a JVM

JPF

JVM

JPF is a JVM.

Since JPF is written in Java, it runs on a JVM.

JPF model checks Java bytecode.

JVM executes Java bytecode.

17/24



JPF as a JVM

JPF

JVM

JPF is a JVM.

Since JPF is written in Java, it runs on a JVM.

JPF model checks Java bytecode.

JVM executes Java bytecode.

17/24



JPF as a JVM

Each JVM has a classpath which tells the JVM where to look for
classes.

JPF

JVM native classpath

classpath

classpath of JPF: where JPF looks for classes to model check

native classpath of JPF: where the JVM looks for classes to
execute (as part of JPF)

18/24



JPF as a JVM

Each JVM has a classpath which tells the JVM where to look for
classes.

JPF

JVM native classpath

classpath

classpath of JPF: where JPF looks for classes to model check

native classpath of JPF: where the JVM looks for classes to
execute (as part of JPF)

18/24



State space

Implement a listener which creates a dot file representing the the
states and transitions visited by the search.

digraph statespace {

0 -> 1

1 -> 2

0 -> 3

3 -> 4

4 -> 2

}

19/24



State space

Question

Where do we open a file for writing?

Answer

In the constructor.

20/24



State space

Question

Where do we open a file for writing?

Answer

In the constructor.

20/24



State space

Question

Where do we print digraph statespace {?

Answer

In the method searchStarted.

Question

Where do we print the final }?

Answer

In the method searchFinished.

21/24



State space

Question

Where do we print digraph statespace {?

Answer

In the method searchStarted.

Question

Where do we print the final }?

Answer

In the method searchFinished.

21/24



State space

Question

Where do we print digraph statespace {?

Answer

In the method searchStarted.

Question

Where do we print the final }?

Answer

In the method searchFinished.

21/24



State space

Question

Where do we print digraph statespace {?

Answer

In the method searchStarted.

Question

Where do we print the final }?

Answer

In the method searchFinished.

21/24



State space

Implement a listener which creates a dot file representing the the
states and transitions visited by the search. Colour the initial state
green and the final states red.

digraph statespace {

0 [fillcolor=green]

0 -> 1

1 -> 2

2 [fillcolor=red]

0 -> 3

3 -> 4

4 -> 2

}

22/24



State space

Question

The initial state always has ID 0. Where do we print
0 [fillcolor=green]?

Answer

In the method searchStarted.

23/24



State space

Question

The initial state always has ID 0. Where do we print
0 [fillcolor=green]?

Answer

In the method searchStarted.

23/24



State space

Question

The class Search has a method isEndState. How can this
method be used?

Answer

To indicate that the final (end) states are red.

24/24



State space

Question

The class Search has a method isEndState. How can this
method be used?

Answer

To indicate that the final (end) states are red.

24/24


