
Java PathFinder: a tool to detect bugs in Java code

Franck van Breugel

January 1, 2019

c©2019 Franck van Breugel

2

Abstract

It is well known that software contains bugs. Since Java is among the most popular programming languages, it is
essential to have tools that can detect bugs in Java code. Although testing is the most used technique to detect bugs, it
has its limitations, especially for nondeterministic code. Concurrency and randomization are the two main sources of
nondeterminism. To find bugs in nondeterministic code, testing needs to be complemented with other techniques such
as model checking. Java PathFinder (JPF) is the most popular model checker for Java code. In this book, we describe
how to install, configure, run and extend JPF.

3

4

Preface

According to a 2002 study commissioned by the US Department of Commerce’s National Institute of Standards and
Technology, “estimates of the economic costs of faulty software in the US range in the tens of billions of dollars
per year and have been estimated to represent approximately just under one percent of the nation’s gross domestic
product.” Since software development has not changed drastically in the last decade, but the footprint of software
in our society has increased considerably, it seems reasonable to assume that this number has increased as well and
ranges in the hundreds of billions of dollars per year on a world wide scale. This was confirmed by a recent study
[BJC+13] which included that “wages-only estimated cost of debugging is US $312 billion per year” Hence, tools to
detect bugs in software can impact the software industry and even the world economy. The topic of this book is such
a tool.

The TIOBE programming community index1, the transparent language popularity index2, the popularity of pro-
gramming language index3, the RedMonk programming language rankings4, and Trendy Skills5, all rank Java among
the most popular programming languages. Popularity of the language and impact of a tool to detect bugs of software
written in that language go hand in hand. Therefore, we focus on a popular language in this book, namely Java.

Testing is the most commonly used method to detect bugs. However, for nondeterministic code testing may be
less effective. Code is called nondeterministic if it gives rise to different executions even when all input to the code is
fixed. Randomization and concurrency both give rise to nondeterminism. Since concurrency is generally considered
more intricate than randomization, our examples will predominantly focus on the latter. Chapter ?? will concentrate
on concurrency. To illustrate the limitations of testing when it comes to nondeterministic code, let us consider the
following Java application.

1 import java.util.Random;
2

3 public class Example {
4 public static void main(String[] args) {
5 Random random = new Random();
6 System.out.print(random.nextInt(10));
7 }
8 }

The above application may result in ten different executions, since it prints a randomly chosen integer in the interval
[0, 9]. Now, let us replace line 6 with

System.out.print(1 / random.nextInt(9));

In 80% of the cases, the application prints zero, in 10% it prints one, and in the remaining 10% it crashes because of an
uncaught exception due to a division by zero. Of course, it may take more than ten executions before we encounter the
exception. In case we choose an integer in the interval [0, 999999] it may take many executions before encountering

1www.tiobe.com
2lang-index.sourceforge.net
3pypl.github.io/PYPL.html
4redmonk.com/sogrady/2018/08/10/language-rankings-6-18/
5trendyskills.com

5

http://www.tiobe.com
http://lang-index.sourceforge.net
http://pypl.github.io/PYPL.html
https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/
http://trendyskills.com

system under test JPF

configuration files

reports

Figure 1: Overview of JPF.

the exception. If we execute the application one million times, there is still a 37% chance that we do not encounter the
exception.6

In the presence of nondeterminism, testing does not guarantee that all different executions are checked. Further-
more, if a test detects a bug in nondeterministic code, it may be difficult to reproduce. Therefore, in that case methods
which complement testing are needed. Model checking is such an alternative. It aims to check all potential executions
of nondeterministic code in a systematic way.

We will not discuss model checking in much detail. Instead, we refer the interested reader to textbooks such as
[BK08], [CGK+18] and [BBF+01]. In this book, we introduce the reader to a model checker, a tool that implements
model checking. In particular, we focus on a model checker for Java.

Although there are several model checkers for Java, including Bandera [CDH+00] and Bogor [RDH03] to name
a few, Java PathFinder (JPF) is the most popular one. Its popularity is reflected by several statistics. For example,
the conference paper [VHBP00] and its extended journal version [VHB+03] have been cited more than 1700 times
according to Google scholar, making it the most cited work on a Java model checker. In this book, we focus on JPF.
Although JPF can do much more than detect bugs, we concentrate on that functionality.

Overview of JPF
In Figure 1 we provide a high level overview of JPF. It takes as input a system under test and configuration files and
produces reports as output. The system under test is the application, a Java class with a main method, we want to
check for bugs. JPF not only checks that main method but also all other code that is used by that main method. JPF
can only check a closed system, that is, a system for which all input is provided, be it obtained from the keyboard,
the mouse, a file, a URL, et cetera. Handling such input can be far from trivial and we will come back to this in
Chapter ??.

JPF can be configured in two different ways: by command line arguments or in configuration files. We will
concentrate on the second option. There are three different types of configuration file. We will discuss them in
Chapter 3.

The reports that JPF produces can take different forms. For example, a report can be written to the console or to a
file, and it can be text or XML. In the configuration files one can specify what type of reports should be produced by
JPF. We will discuss this in more detail in Chapter ??.

Overview of the Book
This book has been written for both students and developers who are interested in tools that can help them with
detecting bugs in their Java code. In Chapter 1 we discuss how to install JPF. How to run JPF is the topic of Chapter 2.

6The probability of choosing zero is 1
1000000

. The probability of not choosing zero is 1− 1
1000000

= 99999
1000000

. The probability of not choosing
zero one million times in a row is (99999

1000000
)1000000 ≈ 0.37.

6

Chapter 1

Installing JPF

As we have already discussed in the preface, JPF is a tool to detect bugs in Java code. Since the reader is interested
in JPF, we feel that it is safe to assume that the reader is familiar with Java and has installed the Java development kit
(JDK). The JDK should be at least version 8. JPF can be installed in several different ways on a variety of operating
systems. A road map for Section 1.1–1.8 can be found in Figure 1.1.

Since changes are made to JPF on a regular basis, it is best to obtain its souces from JPF’s GitHub repository.
GitHub a web-based hosting service for version control. Information about GitHub can be found at github.com. We
describe three different ways to install (and update) the sources of JPF’s GitHub repository: au naturel, within Eclipse,
and within NetBeans, in Section 1.1 (and 1.2), 1.3 (and 1.4), and 1.6 (and 1.7), respectively. For those using Eclipse
or NetBeans, the latter two options are more convenient. Also, there are JPF plugins for Eclipse or NetBeans. How
to install those is discussed in Section 1.5 and 1.8, respectively. How to use these plugins to run JPF is discussed in
Chapter 2.

Use Eclipse?

Use NetBeans?

Read Section 1.1–1.2

Read Section 1.3–1.5

Read Section 1.6–1.8

yesno

yesno

Figure 1.1: Road map for Section 1.1–1.8.

As we already mentioned in the preface, JPF is easily extensible. Therefore, it should come as no surprise that
there are numerous extensions of JPF. In Section 1.9 we will discuss how to install such an extension.

1.1 Installing Sources with Git
How to install Git is beyond the scope of this book. We refer the reader to git-scm.com. We assume that the path to the
git command is already part of the system environment variable PATH (see Section 1.1.3). To install the JPF sources
with Git, follow the seven steps below.

1. Create a directory named jpf.

7

https://github.com/
https://git-scm.com/

2. To get the JPF sources with Git, open a shell (Linux and OS X) or command prompt (Windows), go to the jpf
directory and type

git clone https://github.com/javapathfinder/jpf-core.git

This results in output similar to the following.

Cloning into ’jpf-core’...
remote: Enumerating objects: 2784, done.
remote: Total 2784 (delta 0), reused 0 (delta 0), pack-reused 2784
Receiving objects: 100% (2784/2784), 1.86 MiB | 12.19 MiB/s, done.
Resolving deltas: 100% (1324/1324), done.

3. Set the user environment variable JAVA_HOME as described in Section 1.1.1.

4. Run Gradle as described in Section 1.1.2.

5. Set the user environment variable JPF_HOME to the path of jpf-core. For example, if the jpf directory, cre-
ated in step 1, has path /cs/home/franck/jpf, then the path of jpf-core is /cs/home/franck/jpf/
jpf-core. Similarly, if the jpf directory has path C:\Users\ franck\jpf, then the path of jpf-core
is C:\Users\franck\jpf\jpf-core.

6. Add the path of the jpf command to the system environment variable PATH as described in Section 1.1.3.

7. Create the site.properties file as described in Section 1.1.4.

Once the above steps have been successfully completed, the reader can move on to Chapter 2 and run JPF.

1.1.1 Setting User Environment Variable JAVA_HOME

Linux

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will
be a subdirectory of /usr/java. Inside that directory will be one or more subdirectories whose name starts
with jdk, such as jdk1.8.0_181. Choose the latest version. For example, if the directory contains both
jdk1.6.0_37 and jdk1.8.0_181, then the JDK install path is /usr/java/jdk1.8.0_181.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK by using the set or setenv
command in a startup script. For more details, do a web search for how to set an environment variable in Linux.

Windows

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will be a
subdirectory of C:\Program Files\Java. Inside that directory will be one or more subdirectories whose
name starts with jdk, such as jdk1.8.0_181. Choose the latest version. For example, if the directory con-
tains both jdk1.6.0_37 and jdk1.8.0_181, then the JDK install path is C:\Program Files\Java\
jdk1.8.0_181.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK. For more details, do a web
search for how to set an environment variable in Windows.

8

http://www.google.com/search?q=how+to+set+an+environment+variable+in+Linux
http://www.google.com/search?q=how+to+set+an+environment+variable+in+Windows

OS X

1. Locate the directory of the JDK. Unless the install path for the JDK was changed during installation, it will
be a subdirectory of /Library/Java/JavaVirtualMachines. Inside that directory will be one or
more subdirectories whose name starts with jdk, such as jdk1.8.0_181. Choose the latest version. For
example, if the directory contains both jdk1.6.0_37 and jdk1.8.0_181, then the JDK install path is
/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home.

2. Set the user environment variable named JAVA_HOME to the directory of the JDK by using the set or setenv
command in a startup script. For more details, do a web search for how to set an environment variable in OS X.

1.1.2 Running Gradle
How to install Gradle is beyond the scope of this book. We refer the reader to gradle.org. We assume that the path to
the gradle command is already part of the system environment variable PATH (see Section 1.1.3).

Linux

In a shell, go to the subdirectory jpf-core of the created directory jpf. The directory jpf-core contains the file
gradlew. To run this Gradle script, type ./gradlew. This results in a lot of output, including something similar
to the following.

> Task :compileJava
...

> Task :compileClassesJava
...

> Task :compilePeersJava
...

> Task :compileTestJava
...

BUILD SUCCESSFUL in 41s
15 actionable tasks: 15 executed

Windows

In a command prompt, go to the subdirectory jpf-core of the created directory jpf. The directory jpf-core
contains the file gradlew.bat. To run this Gradle script, type gradlew. This results in a lot of output, including
something similar to the following.

> Task :compileJava
...

> Task :compileClassesJava
...

> Task :compilePeersJava
...

> Task :compileTestJava
...

9

http://www.google.com/search?q=how+to+set+an+environment+variable+in+OS+X
https://gradle.org/

BUILD SUCCESSFUL in 53s
15 actionable tasks: 15 executed

OS X

1.1.3 Adding to the System Environment Variable PATH
The system environment variable PATH consists of a list of directories in which programs are located. Below, we
discuss how to add the directory containing the jpf command can be added to PATH.

Linux

Add to the system environment variable named PATH the directory of the jpf command by changing the set or
setenv command for PATH in a startup script. If the jpf directory has path /cs/home/franck/jpf, then add
/cs/home/franck/jpf/jpf-core/bin to the system environment variable PATH. For more details, do a web
search for how to change an environment variable in Linux.

Windows

In Windows, environment variables are not case sensitive. Hence, the system environment variable PATH can also be
named, for example, Path or path. If the jpf directory has path C:\Users\franck\jpf, then add C:\Users\
franck\jpf\jpf-core\bin to the system environment variable PATH. For more details, do a web search for
how to change an environment variable in Windows.

OS X

If the jpf directory has path /Users/franck/jpf, then add /Users/franck/jpf/ jpf-core/bin to the
system environment variable PATH. For more details, do a web search for how to change an environment variable in
OS X.

1.1.4 Creating the site.properties File
1. Find the value of the standard Java system property user.home by running the following Java application.

public class PrintUserHome {
public static void main(String[] args) {
System.out.println("user.home = " + System.getProperty("user.home"));

}
}

2. Create a directory named .jpf within the directory user.home1.

3. Create in the directory user.home/.jpf a file named site.properties2. Assuming, for example, that
jpf-core is a subdirectory of user.home/jpf, the file site.properties has the following content.

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

Next, we provide a few examples.
1To create a directory named .jpf in Windows Explorer, use .jpf. as its name. The dot at the end is necessary, and will be removed by

Windows Explorer.
2To create a file named site.properties in Window Explorer, configure Windows Explorer so that file extensions are visible, create a text

file named site.txt with the above content, and rename the file to site.properties. For more details, do a web search for how to change
a file extension in Windows.

10

http://www.google.com/search?q=how+to+change+an+environment+variable+in+Linux
http://www.google.com/search?q=how+to+change+an+environment+variable+in+Windows
http://www.google.com/search?q=how+to+change+an+environment+variable+in+OS+X
http://www.google.com/search?q=how+to+change+an+environment+variable+in+OS+X
http://www.google.com/search?q=how+to+change+a+file+extension+in+Windows
http://www.google.com/search?q=how+to+change+a+file+extension+in+Windows

Linux

Assume that the jpf directory has path /cs/home/franck/jpf and user.home is /cs/home/ franck. Then
site.properties is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

If the jpf directory has path /cs/packages/jpf and user.home is /cs/home/franck, then site.properties
is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=/cs/packages/jpf/jpf-core
extensions=${jpf-core}

Windows

Assume that the jpf directory has path C:\Users\franck\jpf and user.home is C:\Users\ franck. Then
site.properties is located in the directory C:\Users\franck\.jpf and its content is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

Note that we use / instead of \ in the path. If the jpf directory has path C:\Program Files\jpf and user.home
is C:\Users\franck, then site.properties is located in the directory C:\Users\franck\.jpf and its
content is

JPF site configuration
jpf-core=C:/Program Files/jpf/jpf-core
extensions=${jpf-core}

OS X

Assume that the jpf directory has path /Users/franck/jpf and user.home is /Users/franck. Then site.properties
is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

If the jpf directory has path /System/Library/jpf and user.home is /Users/franck, then site.properties
is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=/System/Library/jpf/jpf-core
extensions=${jpf-core}

1.2 Updating Sources with Git
Since the sources of JPF change regularly, one should update JPF regularly as well. This can be done as follows.

1. Open a shell (Linux and OS X) or command prompt (Windows), go to the jpf-core directory and type

git pull

11

We distinguish two cases. If the above command results in output similar to the following, then the sources of
JPF have not changed and, hence, we are done.

Already up to date.

Otherwise, the above command results in output similar to the following, which indicates that the source of JPF
have changed and, therefore, we continue with the next step.

remote: Enumerating objects: 48, done.
remote: Counting objects: 100% (48/48), done.
remote: Compressing objects: 100% (19/19), done.
remote: Total 48 (delta 29), reused 42 (delta 23), pack-reused 0
Unpacking objects: 100% (48/48), done.
From https://github.com/javapathfinder/jpf-core

28c066f..c42e4fc master -> origin/master
Updating 28c066f..c42e4fc
Fast-forward
build.gradle | 24 +++++--
.../gov/nasa/jpf/vm/JPF_java_lang_Runtime.java | 8 +++
.../gov/nasa/jpf/test/java/lang/RuntimeTest.java | 16 +++++
5 files changed, 191 insertions(+), 7 deletions(-)

2. Run Gradle as described in Section 1.1.2.

1.3 Installing Sources with Git within Eclipse
How to install Eclipse, Git and Gradle is beyond the scope of this book. We refer the reader to eclipe.org, git-scm.com
and gradle.org, respectively. We assume that Eclipse, Git and Gradle have been installed. Eclipse should at least be
version 4.6 and it should use at least Java version 8. We assume that the paths to the git and gradle commands are
already part of the system environment variable PATH (see Section 1.1.3). To install the JPF sources with Git within
Eclipse, follow the ten steps below.

1. In Eclipse, select File from the menu and select Import...

2. In the Select window, select Projects from Git, and press Next.

12

http://eclipe.org
https://git-scm.com
https://gradle.org/

3. In the Select Repository Source window, select Clone URI, and press Next.

4. In the Source Git Repository window, enter https://github.com/javapathfinder/jpf-core.git
in the URI field, and press Next. The fields Host and Repository path are populated automatically.

13

5. In the Branch Selection window, select master, and press Next.

6. In the Location Destination window, modify the Directory to C:\Users\franck\jpf\jpf-core, that is,
replace git with jpf, and press Next.

14

7. In the wizard selection window, select Import as general project, and press Next.

8. In the Imports window, click Finish.

15

9. Run Gradle as described in Section 1.1.2.

10. Create the site.properties file as described in Section 1.1.4. Assuming that the jpf-core direc-
tory has path C:\Users\franck\jpf\jpf-core and user.home is C:\Users\franck, the content
of site.properties is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

1.4 Updating Sources with Git within Eclipse

To update the sources with Git within Eclipse, follow the three steps below.

1. Right click on the jpf-core project in the Package Explorer and select Team and subsequently select Pull.

16

2. In the Pull Result window, click Close.

3. Run Gradle as described in Section 1.1.2.

1.5 Installing JPF Plugin for Eclipse
As we will discuss in Chapter 2, the JPF plugin can be used to run JPF within Eclipse.

Linux

1. Locate the directory of Eclipse. Unless the install path for Eclipse was changed during installation, it will be
/usr/local. This directory contains a directory named dropins. In this directory dropins, create a
directory named plugins.

2. Download the file eclipse-jpf_1.0.7.jar from www.eecs.yorku.ca/∼franck/jpf. Save the jar file in the
created plugins directory.

Windows

1. Locate the directory of Eclipse. Unless the install path for Eclipse was changed during installation, it will be
C:\Program Files\eclipse. This directory contains a directory named dropins. In this directory
dropins, create a directory named plugins.

17

http://www.eecs.yorku.ca/~franck/jpf

2. Download the file eclipse-jpf_1.0.7.jar from www.eecs.yorku.ca/∼franck/jpf. Save the jar file in the
created plugins directory.

OS X

1.6 Installing Sources with Git within NetBeans

How to install NetBeans and Git is beyond the scope of this book. We refer the reader to netbeans.org and git-scm.com,
respectively. We assume that NetBeans and Git have been installed. NetBeans should at least be version 8.0 and it
should use at least Java version 8. To install the JPF sources with Git within NetBeans, follow the ten steps below.

1. In NetBeans, select Team from the menu and select Clone...

2. In the Clone Repository window, enter the Repository URL https://github.com/javapathfinder/
jpf-core.git, set Clone into to C:\Users\franck\jpf, and press Next.

3. In the Clone Repository window, select the master branch, and press Next.

18

http://www.eecs.yorku.ca/~franck/jpf
https://netbeans.org
https://git-scm.com

4. In the Clone Repository window, press Finish.

5. In the Clone Completed window, press Close.

6. Download the file netbeans.zip from www.eecs.yorku.ca/∼franck/jpf. Save the file in the directory C:\Users\
franck\jpf\jpf-core. Extract all the files from netbeans.zip.

7. In NetBeans, select File from the menu and select Open Project...

19

http://www.eecs.yorku.ca/~franck/jpf

8. In the Open Project window, select the jpf-core project in the C:\\Users\franck\jpf directory, and
press Open Project.

9. Right click on the jpf-core project and select Build.

10. Create the site.properties file as described in Section 1.1.4. Assuming that the jpf-core project has
path C:\Users\franck\jpf and user.home is C:\Users\franck, the content of site.properties
is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

1.7 Updating Sources with Git within NetBeans

To update the sources with Git within NetBeans, follow the two steps below.

1. Right click on the jpf-core project, select Git, Checkout, and Checkout Files.

20

2. Right click on the jpf-core project and select Build.

1.8 Installing JPF Plugin for NetBeans

As we will discuss in Chapter 2, the JPF plugin can be used to run JPF within NetBeans. This plugin can be installed
as follows.

1. Download the file github.com/javapathfinder/jpf-core/wiki/install/gov-nasa-jpf-netbeans-runjpf.nbm.

2. In NetBeans, select Tools from the menu and the select Plugins.

3. Select the Downloaded tab. Press on Add Plugins...

21

https://github.com/javapathfinder/jpf-core/wiki/install/gov-nasa-jpf-netbeans-runjpf.nbm

4. Select the gov-nasa-jpf-netbeans-runjpf.nbm file that was downloaded in step 1, and press Open.

5. In the Plugins window, press Install.

22

6. In the NetBeans IDE Installer window, press Next.

7. In the NetBeans IDE Installer window, accept the license agreement, and press Install.

23

8. Restart NetBeans.

1.9 Installing an Extension of JPF

As running example, we consider the extension jpf-shell. This extension provides a graphical user interface for
JPF. We assume that the reader has already successfully installed jpf-core.

1.9.1 Installing Sources with Mercurial

How to install Mercurial is beyond the scope of this book. We refer the reader to www.mercurial-scm.org. We assume
that the path to the hg command is already part of the system environment variable PATH (see Section 1.1.3). To
install the JPF sources with Mercurial, follow the three steps below.

1. To get the jpf-shell sources with Mercurial, open a shell (Linux and OS X) or command prompt (Windows),
go to the jpf directory, assumed here to be C:\Users\franck\jpf, and type

hg clone https://jpf.byu.edu/hg/jpf-shell

This results in output similar to the following.

destination directory: jpf-shell
requesting all changes
adding changesets
adding manifests
adding file changes
added 194 changesets with 953 changes to 232 files (+1 heads)
new changesets f3ac7d4188ec:c785dfae0b01
updating to branch default
131 files updated, 0 files merged, 0 files removed, 0 files unresolved

2. Run ant as described in Section 1.9.2.

3. Update the site.properties file as described in Section 1.9.3.

24

http://www.mercurial-scm.org

1.9.2 Running Ant

Ant is a Java library and command-line tool that can be used to compile the sources of JPF and its extensions, test them,
generate jar files, et cetera. For more information about Ant, we refer the reader to ant.apache.org. We assume that the
reader has already installed Ant (see ant.apache.org for installation instructions) and has added the ant command to
the PATH environment variable (see Section 1.1.3).

For example, to install the JPF extension jpf-shell, open a shell (Linux and OS X) or command prompt
(Windows) and go to the subdirectory jpf-shell of the directory jpf. The directory jpf-shell contains the
file build.xml. To run ant, type ant test. This results in a lot of output, the beginning and end of which are
similar to the following.

Buildfile: C:\Users\franck\jpf\jpf-shell\build.xml

-init:
[mkdir] Created dir: C:\Users\franck\jpf\jpf-shell\build

...

-min:
[jar] Building jar: C:\Users\franck\jpf\jpf-shell\build\jpf-shell-min.jar

build:

BUILD SUCCESSFUL
Total time: 13 seconds

1.9.3 Updating the site.properties File

Whenever we install an extension of JPF, we need to update the site.properties file.

Linux

Assume that the jpf directory has path /cs/home/franck/jpf and user.home is /cs/home/ franck. Then
site.properties is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
jpf-shell=${user.home}/jpf/jpf-shell
extensions=${jpf-core}

If the jpf directory has path /cs/packages/jpf and user.home is /cs/home/franck, then site.properties
is located in the directory /cs/home/franck/.jpf and its content is

JPF site configuration
jpf-core=/cs/packages/jpf/jpf-core
jpf-shell=/cs/packages/jpf/jpf-shell
extensions=${jpf-core}

Windows

Assume that the jpf directory has path C:\Users\franck\jpf and user.home is C:\Users\ franck. Then
site.properties is located in the directory C:\Users\franck\.jpf and its content is

25

http://ant.apache.org
http://ant.apache.org

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
jpf-shell=${user.home}/jpf/jpf-shell
extensions=${jpf-core}

Note that we use / instead of \ in the path. If the jpf directory has path C:\Program Files\jpf and user.home
is C:\Users\franck, then site.properties is located in the directory C:\Users\franck\.jpf and its
content is

JPF site configuration
jpf-core=C:/Program Files/jpf/jpf-core
jpf-shell=C:/Program Files/jpf/jpf-shell
extensions=${jpf-core}

OS X

Assume that the jpf directory has path /Users/franck/jpf and user.home is /Users/franck. Then site.properties
is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
jpf-shell=${user.home}/jpf/jpf-shell
extensions=${jpf-core}

If the jpf directory has path /System/Library/jpf and user.home is /Users/franck, then site.properties
is located in the directory /Users/franck/.jpf and its content is

JPF site configuration
jpf-core=/System/Library/jpf/jpf-core
jpf-shell=/System/Library/jpf/jpf-shell
extensions=${jpf-core}

1.9.4 Updating Sources with Mercurial
To update the sources with Mercurial, follow the two steps below.

1. Open a shell (Linux and OS X) or command prompt (Windows), go to the jpf-shell directory and type

hg pull -u

We distinguish two cases. If the above command results in output similar to the following, then the sources of
jpf-shell have not changed and, hence, we are done.

pulling from https://jpf.byu.edu/hg/jpf-shell
searching for changes
no changes found

Otherwise, the above command results in output similar to the following, which indicates that the source of
jpf-shell have changed and, therefore, we continue with the next step.

pulling from https://jpf.byu.edu/hg/jpf-shell
searching for changes
adding changesets
adding manifests
adding file changes
added 4 changesets with 23 changes to 7 files
7 files updated, 0 files merged, 1 files removed, 0 files unresolved

2. Run ant as described in Section 1.9.2.

26

1.9.5 Installing Sources with Mercurial within Eclipse

How to install Mercurial is beyond the scope of this book. We refer the reader to www.mercurialscm.org. We assume
that the path to the hg command is already part of the system environment variable PATH (see Section 1.1.3). To
install the JPF extension jpf-shell within Eclipse with Mercurial, follow the 11 steps below.

1. In Eclipse, select Help from then menu item and then select Eclipse Marketplace ...

2. In the Eclipse Marketplace window, enter mercurial in the Find textbox, hit enter, and press Install.

3. In the Review Licences window, press Finish.

27

http://www.mercurialscm.org

4. In the Security Warning window, press Install anyway.

5. After Eclipse restarts, in the Preferences window, check that the path to the Mercurial Executable is correct and
press Apply and Close.

6. In Eclipse, select File from the menu item and then select Import.

28

7. In the Import window, select Mercurial and Clone Existing Mercurial Repository, and press Next.

8. In the Clone repository window, enter URL https://jpf.byu.edu/hg/jpf-shell, and press Next.

29

9. In the Select working directory revision, check that the default revision is selected, and press Next.

10. In the Import projects window, press Finish.

30

11. Update the site.properties file as described in Section 1.9.3.

1.9.6 Updating Sources with Mercurial within Eclipse
Simply build the project jpf-shell: select Project from the menu and then select Build Project.

1.9.7 Installing Sources with Mercurial within NetBeans
How to install Mercurial is beyond the scope of this book. We refer the reader to www.mercurial-scm.org. We assume
that the path to the hg command is already part of the system environment variable PATH (see Section 1.1.3). To
install the JPF extension jpf-shell within NetBeans with Mercurial, follow the eight steps below.

1. In NetBeans, select Tools from the menu item and then select Options.

31

http://www.mercurial-scm.org

2. In the Options window, select the Team icon and the Versioning tab. Ensure that the Mercurial Executable Path
is set correctly. Press OK.

3. In NetBeans, select Team from the menu, then select Mercurial, and finally select Clone Other ...

4. In the Clone Extenal Expository window, enter the Repository URL https://jpf.byu.edu/hg/jpf-shell
and press Next.

5. In the Clone Extenal Expository window, press Next.

32

6. In the Clone External Expository window, set the Parent Directory, and press Finish.

7. In the Clone Completed window, press Open Project.

8. Update the site.properties file as described in Section 1.9.3.

1.9.8 Updating Sources with Mercurial within NetBeans
Simply build the project jpf-shell: select Run from the menu and then select Build Project.

33

34

Chapter 2

Running JPF

Now that we have discussed how to install JPF, let us focus on how to run JPF. It can be run in several different ways.
In Section 2.1 and 2.2 we first show how to run JPF in a shell (Linux and OS X) or command prompt (Windows). How
to run JPF within Eclipse and NetBeans are the topics of Section 2.3 and 2.4, respectively.

2.1 Running JPF within a Shell or Command Prompt
Let us use the notorious “Hello World” example to show how to run JPF in its most basic form. Consider the following
Java application.

public class HelloWorld {
public static void main(String [] args) {
System.out.println("Hello World!");

}
}

Assume that the file HelloWorld.class can be found in the directory /cs/home/franck/examples. We
create the application properties file named HelloWorld.jpf1 with the following content.

target=HelloWorld
classpath=/cs/home/franck/examples

The key target has the name of the application to be checked by JPF as its value. The key classpath has JPF’s
classpath as its value. It is important not to mix up JPF’s classpath with Java’s classpath. We will come back to this
later.

In case we create the application properties file HelloWorld.jpf in the same directory as the file HelloWorld.class,
it has the following content.

target=HelloWorld
classpath=.

In this case, JPF’s classpath is set to the current directory.
To run JPF on this example, open a shell (Linux and OS X) or command prompt (Windows) in the directory that

contains the application properties file HelloWorld.jpf, and type

jpf HelloWorld.jpf

This results in output similar to the following.

1Although the name of the application properties file does not have to match the name of the Java application—we could have called it, for
example, Test.jpf—we will use that convention in this book.

35

1 JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights
2

3

4 == system under test
5 HelloWorld.main()
6

7 == search started: 6/20/18 1:25 PM
8 Hello World!
9

10 == results
11 no errors detected
12

13 == statistics
14 elapsed time: 00:00:00
15 states: new=1, visited=0, backtracked=1, end=1
16 search: maxDepth=1, constraints hit=0
17 choice generators: thread=1 (signal=0, lock=1, shared ref=0), data=0
18 heap: new=366, released=14, max live=0, gc-cycles=1
19 instructions: 4158
20 max memory: 236MB
21 loaded code: classes=61, methods=1195
22

23 == search finished: 6/20/18 1:25 PM

Line 1 contains general information. It tells us that we used version 8.0 of JPF. The United States Government
holds the copyright of JPF. The remainder of the output is divided into several parts. The number of parts, their
headings and content can be configured. The above output is produced by the default configuration. The first part,
line 4–5, describes the system under test. In this case, it is the main method of the HelloWorld class. The second
part, line 7–8, contains the output produced by the system under test and the date and time when JPF was started. In this
case, the output is Hello World! If the output I won’t say it! is produced instead, the classpath has not
been set correctly and, as a consequence, JPF checks the HelloWorld application which is part of jpf-core. The
third part, line 10–11, contains the results of the model checking effort by JPF. In this case, no errors were detected.
By default, JPF checks for uncaught exceptions and deadlocks. The fourth and final part, line 13–21, contains some
statistics. We will discuss them below. The output ends with line 23 which contains the date and time when JPF
finished.

It remains to discuss the statistics part. Line 14 describes the amount of time it took JPF to model check the
HelloWorld application. Since it took less than one second, JPF reports zero hours, zero minutes and zero seconds.

Line 15 categorizes the states visited by JPF. A state is considered new the first time it is visited by JPF. If a state
is visited again, it is counted as visited. The final states are also called end states. Those states reached as a result of a
backtrack are counted as backtrack. In the above example, JPF visits a state which is an end state (1) and subsequently
backtracks to the initial state (0) as can be seen in Figure 2.1. We will come back to this classification of states in
Chapter 9.

0 1

Figure 2.1: State-transition diagram.

Line 16 provides us with some data about the search for bugs by JPF. The search of JPF is similar to the traversal
of a directed graph. The states of JPF correspond to the vertices of the graph and the transitions of JPF correspond to
the edges of the graph. In a search, the depth of a state is the length of the partial execution, a sequence of transitions,
along which the state is discovered. From the above diagram, we can conclude that the maximal depth is one in our

36

example. During the search, JPF checks some constraints. By default, it checks two constraints. Firstly, it checks that
the depth of the seach is smaller than or equal to the value of the key search.depth_limit. By default, its value
is 231 − 1. This JPF property can be configured as we will discuss in Chapter 5. Secondly, it checks that the amount
of remaining memory is smaller than or equal to the value of the key search.min_free. By default, its value is
220. Also this JPF property can be configured. In our example, no constraints are violated and, hence, the number of
constraint hits is zero.

Line 17 contains information about the choice generators. These capture the nondeterministic choices, either
caused by randomization or concurrency, and will be discussed in more detail in Chapter ??. Some statistics about the
heap of JPF’s virtual machine are given in line 18.

Line 19 specifies the number of bytecode instructions that have been checked by JPF. The maximum amount of
memory used by JPF is given in line 20. Line 21 contains the number of classes and methods that have been checked
by JPF.

If the class HelloWorld were part of the package test and the file HelloWorld.class could be found
in the directory /cs/home/franck/examples/test, then the application properties file would contain the
following.

target=test.HelloWorld
classpath=/cs/home/franck/examples

2.2 Detecting Bugs with JPF
Let us now present some examples of JPF detecting a bug. The examples are kept as simple as possible. As a
consequence, they are not realistic representatives of applications on which one might want to apply JPF. However,
they allow us to focus on detecting bugs with JPF.

Recall that JPF checks for uncaught exceptions and deadlock by default. Consider the following system under test.

1 public class UncaughtException {
2 public static void main(String [] args) {
3 System.out.println(1 / 0);
4 }
5 }

Obviously, line 3 throws an exception that is not caught. Running JPF on this example results in output similar to
the following.

1 JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights
2

3

4 == system under test
5 UncaughtException.main()
6

7 == search started: 08/07/18 7:05 PM
8

9 == error 1
10 gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
11 java.lang.ArithmeticException: division by zero
12 at UncaughtException.main(UncaughtException.java:3)
13

14

15 == snapshot #1
16 thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,
17 lockCount:0,suspendCount:0}
18 call stack:

37

19 at UncaughtException.main(UncaughtException.java:3)
20

21

22 == results
23 error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
24 "java.lang.ArithmeticException: division by zero a..."
25

26 == statistics
27 elapsed time: 00:00:00
28 states: new=1, visited=0, backtracked=0, end=0
29 search: maxDepth=1, constraints hit=0
30 choice generators: thread=1 (signal=0, lock=1, shared ref=0), data=0
31 heap: new=380, released=0, max live=0, gc-cycles=0
32 instructions: 3312
33 max memory: 90MB
34 loaded code: classes=65, methods=1226
35

36 == search finished: 08/07/18 7:05 PM

Line 9–12 report the bug detected. JPF can be configured to detect multiple errors, as we will discuss in Chapter 5.
By default, JPF finishes after detecting the first bug. Line 10 describes the type of bug detected. In this case, the
NoUncaughtExceptionProperty is violated and, hence, an exception has not been caught. Line 11 and 12 pro-
vide the stack trace. From this stack trace we can deduce that the uncaught exception is an ArithmeticException
and it occurs in line 3 of the main method of the UncaughtException class. Line 15–19 provides some infor-
mation for each relevant thread. In this case, there is only a single thread. For each thread JPF records a unique
identifier, its name, its status, its priority and two counters. Furthermore, it prints the stack trace of each relevant
thread. Line 22-24 summarize the results.

If an assertion, specified by the assert statement, fails, an AssertionError is thrown. Hence, JPF can detect
these. Consider the following application.

1 public class FailingAssertion {
2 public static void main(String[] args) {
3 int i = 0;
4 assert i == 1;
5 }
6 }

The output produced by JPF for this example is very similar to that produced for the previous example. JPF reports
that an uncaught AssertionError occurs in line 4 of the main method of the FailingAssertion class.

2.3 Running JPF within Eclipse

We assume that the reader has installed the JPF plugin (see Section 1.5). Let us also assume that we have created an
Eclipse project named examples which contains the class HelloWorld in the default package. If we installed JPF
as described in Section 1.3, then the file HelloWorld.java can be found in the directory /cs/home/franck/
workspace/examples/src (Linux and OS X) and C:\Users\franck\workspace\examples\src (Win-
dows). The corresponding file HelloWorld.class can be found in the directory /cs/home/franck/workspace/
examples/bin (Linux and OS X) and C:\Users\franck \workspace\examples\bin (Windows).

Next, we create the HelloWorld.jpf file. Although this file can be placed in any directory, it is most convenient
to place it in the same directory as the HelloWorld.java file. As before, the most basic application properties
file only contains two keys: target and classpath. In this case, the value of classpath is the directory that
contains HelloWorld.class. For example, for Windows the content of HelloWorld.jpf becomes

38

target=HelloWorld
classpath=C:/Users/franck/workspace/examples/bin

Finally, to run JPF on this example within Eclipse, right click on HelloWorld.jpf in the package explorer and
select the option Verify...

It results in the output similar to what we have seen in the previous section, preceded by something like

Executing command: java -jar C:\Users\franck\jpf\jpf-core\build\RunJPF.jar
+shell.port=4242 C:\Users\franck\workspace\examples\src\HelloWorld.jpf

2.4 Running JPF within NetBeans
We assume that the reader has installed the JPF plugin (see Section 1.8). Let us also assume that we have created a Net-
Beans project named examples which contains the class HelloWorld in the default package. If we installed JPF
as described in Section 1.6, then the file HelloWorld.java can be found in the directory /cs/home/franck/
NetBeansProjects/examples/src (Linux and OS X) and C:\Users\franck\NetBeansProjects
\examples\src (Windows). The corresponding file HelloWorld.class can be found in the directory /cs/home/
franck/NetBeansProjects/examples/build/classes (Linux and OS X) and C:\Users\franck\
NetBeansProjects\examples\build\classes (Windows).

Next, we create the HelloWorld.jpf file. Although this file can be placed in any directory, it is most convenient
to place it in the same directory as the HelloWorld.java file. As before, the most basic application properties
file only contains two keys: target and classpath. In this case, the value of classpath is the directory that
contains HelloWorld.class. For example, for Windows the content of HelloWorld.jpf becomes

target=HelloWorld
classpath=C:/Users/franck/NetBeansProjects/examples/build/classes

Finally, to run JPF on this example within NetBeans, right click on HelloWorld.jpf and select the option
Verify...

It results in the output similar to what we have seen in the previous section, preceded by something like

39

Executing command: java -jar C:\Users\franck\jpf\jpf-core\build\RunJPF.jar
+shell.port=4242 C:\Users\franck\NetBeansProjects\examples\src\HelloWorld.jpf

40

Chapter 3

Configuring JPF

Since JPF has been designed so that it can be easily extended, it should come as no surprise that little is “hard wired”
in JPF. As a consequence, there is a need for a mechanism that allows us to configure JPF. How to configure JPF is the
topic of this chapter.

3.1 Properties Files

JPF can be configured by command line arguments and properties files. We focus here only on the latter. A property
file defines properties. Each property consists of a key and a (string) value, separated by an = sign. For example,
target=HelloWorld assigns to the key target the value HelloWorld. We distinguish between three different
types of properties file:

1. the site properties file,

2. the projects properties files, and

3. the applications properties files.

In general, these files are loaded in the above order. To determine the exact order, one can use the command line
argument -log. For example, typing jpf -log HelloWorld.jpf in a shell or command prompt produces the
output as seen in Section 2.1 preceeded by output similar to the following.

loading property file: /cs/home/franck/.jpf/site.properties
loading property file: /cs/home/franck/jpf/jpf-core/jpf.properties
loading property file: HelloWorld.jpf
collected native_classpath=/cs/home/franck/jpf/jpf-core/build/jpf.jar,
/cs/home/franck/jpf/jpf-core/build/jpf-annotations.jar,
collected native_libraries=null

First, the site properties file is loaded. After that, the properties file of jpf-core is loaded. And finally, the applica-
tion properties file HelloWorld.jpf is loaded. We will discuss the native_classpath and native_libraries
later in this chapter. Next, we will discuss each type of properties file in some detail.

3.1.1 The Site Properties File

This file is named site.properties. In Section 1.1.4 we already discussed how to create this file. It contains the
key extensions, whose value is the directory where jpf-core can be found. For example, site.properties
may look like

41

JPF site configuration
jpf-core=${user.home}/jpf/jpf-core
extensions=${jpf-core}

Note that the properties file contains two keys: jpf-core and extensions. In the above file, ${jpf-core}
represents the value associated with the key jpf-core, that is, it is the directory in which jpf-core can be found.

3.1.2 The Project Properties Files
Each project, such as jpf-core and jpf-shell, has its own properties file. This file is named jpf.properties.
The file can be found in the root directory of the project. This file is not only used to configure the project. It is also
used to build the project.

The first entry of jpf.properties consists of the project’s name as key and ${config path} as value. The
value of the key config_path is the directory of the jpf.properties file. For example, the jpf.properties
file of the project jpf-shell starts with

jpf-shell=${config_path}

JPF is implemented as a Java virtual machine (JVM). Therefore, JPF has a classpath. JPF’s classpath should
contain the Java bytecode of the classes that need to be model checked. That is, it should contain the bytecode of the
system under test and any classes used by it.

Since JPF is implemented in Java, it runs on top of a JVM, which we will call the host JVM. This host JVM
has a classpath as well. This classpath should contain the bytecode of the classes that are needed to run JPF and its
extensions. To distinguish this classpath from JPF’s classpath, we call it the native classpath. Both classpaths may
contain directories and jar files.

In general, each project adds the examples it includes to the classpath. For example, jpf-core includes
HelloWorld as an example. This class is part of the classpath of jpf-core. It also adds those classes needed to
run the project to the native classpath. For example, the jar file /cs/home/franck/jpf/jpf-shell/build
jpf-shell.jar, which contains Java classes that are needed to run jpf-shell, is part of the native classpath of
jpf-shell.

Each project has its own classpath and native classpath. To distinguish them, they are prefixed by the project’s
name. For example, the classpath of jpf-core is named jpf-core.classpath and the native classpath of
jpf-shell is named jpf-shell.native_classpath. Furthermore, each project may also have its own
sourcepath. This path contains the Java source code of the classes that are model checked. Although JPF checks Java
bytecode, it uses the Java source code to generate feedback to the user when it detects a bug. In particular, it refers to
the line numbers of the source code, which makes it easier for the user to locate the bug. For example, the directory
/cs/home/franck/jpf/jpf-core/src/examples, which contains the Java source code of the examples of
the jpf-core project, is part of the source path of jpf-core. How the classpaths, the native classpaths and the
source paths are combined will be discussed later in this chapter.

The jpf.properties file of the jpf-core contains the following.

jpf-core.classpath=\
${jpf-core}/build/jpf-classes.jar;\
${jpf-core}/build/examples

jpf-core.native_classpath=\
${jpf-core}/build/jpf.jar;\
${jpf-core}/build/jpf-annotations.jar

jpf-core.sourcepath=\
${jpf-core}/src/examples

The classpath of jpf-core contains the jar file ${jpf-core}/build/jpf-classes.jar. This file contains
the bytecode of the classes that model some classes of the Java standard library such as java.io.File. These
classes are known as peer classes. When model checking an application that uses any of these classes, JPF checks

42

the peer class rather than the original class of the Java standard library. We will discuss peer classes in more detail
in Chapter 10. The classpath of jpf-core also contains the directory ${jpf-core}/build/examples which
contains the bytecode of the examples of jpf-core.

The native classpath of jpf-core consists of two jar files. The file ${jpf-core}/build/jpf.jar contains
the bytecode of the classes that make up the core of JPF. The file ${jpf-core}/build/annotations.jar
contains the bytecode of JPF’s annotation classes.

The source path of jpf-core solely consists of the directory ${jpf-core}/src/examples which contains
the source code of the examples of jpf-core.

The jpf.properties file of jpf-core defines more than one hundred other properties. Some of them we
will discuss in Section 3.2. Many others we will encounter in the remainder of this book.

3.1.3 The Application Properties Files

As we have already seen in Chapter 2, to run jpf we have to write an application properties file. In this file we need to
provide values for the keys target and classpath. The former is the name of the system under test and the latter
is part of JPF’s classpath. In the application properties file we can set other properties as well.

3.2 JPF Properties

There are a large number of JPF properties that can be set. To determine which JPF properties have been set, one
can use the -show command line argument. For example, typing jpf -show HelloWorld.jpf in a shell or
command prompt produces the output as seen in Section 2.1 preceeded by output whose beginning and end are similar
to the following.

----------- Config contents
branch_start = 1
cg.boolean.false_first = true
cg.break_single_choice = false
...
vm.tree_output = true
vm.untracked = true
vm.verify.ignore_path = true

3.2.1 Randomization

Consider the following app.

import java.util.Random;

public class Choice {
public static void main(String[] args) {
Random random = new Random();
if (random.nextBoolean()) {
System.out.println("if");

} else {
System.out.println("else");

}
}

}

If we only set the properties target and classpath to the appropriate values, JPF produces the following output.

43

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Choice.main()

== search started: 11/30/18 8:22 AM
if

== results
no errors detected
...

Although the above app has two potential executions, one printing “if” and the other printing “else,” JPF only executes
one of them, namely printing “if,” as reflected by the above output. If we run JPF multiple times, it will take the if
branch every time.

The cg.enumerate_random Property

In order the unleash the power of JPF, we have to set the property cg.enumerate_random to true (its default value
is false). In that case, JPF checks both branches as illustrated by the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Choice.main()

== search started: 11/30/18 8:56 AM
else
if

== results
no errors detected
...

The prefix cg stands for choice generator. A choice generator represents a nondeterministic choice in the code. Such a
choice, be it the result of randomization or concurrency, is captured by the class ChoiceGenerator of the package
gov.nasa.jpf.vm. We will return to this class later in this book. For now, we focus on the properties related to
choice generators.

The cg.boolean.false_first Property

By default, the value of the property cg.boolean.false_first is true, that is, if cg.enumerate_random is
set to true and a random boolean is chosen in the code, then JPF considers the false value first. That explains why else
appears before if in the above output. If we set cg.enumerate_random to false, then JPF produces the following
output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Choice.main()

44

== search started: 11/30/18 9:35 AM
if
else

== results
no errors detected
...

The cg.randomize_choices and cg.seed Properties

Consider the following app.

import java.util.Random;

public class Choice {
public static void main(String[] args) {
Random random = new Random();
final int ALTERNATIVES = 3;
switch (random.nextInt(ALTERNATIVES)) {
case 0 :
System.out.println("0");
break;

case 1 :
System.out.println("1");
break;

case 2 :
System.out.println("2");
break;

}
}

}

If the property cg.enumerate_random is set to true, then JPF produces the following output for the above app.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Choice.main()

== search started: 11/30/18 12:19 PM
0
1
2

== results
no errors detected
...

The order in which the alternatives related to a random choice are considered by JPF can be customized by the using
the property cg.randomize_choices. This property can take three different values. By default, this property has
the value NONE, that is, the alternatives are not randomized. If we set the property cg.randomize_choices
to VAR_SEED and the property cg.enumerate_random true then the alternatives are randomized. That is, JPF
randomly determines the order in which the alternatives are considered. For the above example, JPF produces a random

45

permutation of 0, 1 and 2. The third possible value for the property cg.randomize_choices is FIXED_SEED.
In this case, JPF determines the order in which the alternatives are considered based on a fixed seed. This seed is
captured by the property cg.seed. Its default value is 42. In that case, JPF gives rise to the permutation 1, 0, 2. If
we set the property cg.seed to 41, then JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Choice.main()

== search started: 11/30/18 12:26 PM
0
2
1

== results
no errors detected
...

The cg.break_single_choice Property

Now consider the following app.

1 import java.util.Random;
2

3 public class Choice {
4 public static void main(String[] args) {
5 Random random = new Random();
6 random.nextInt(1);
7 }
8 }

Note that the choice in line 6 only has a single branch. If we run JPF for the above app, it produces the following
statistics.

1 == statistics
2 elapsed time: 00:00:00
3 states: new=1,visited=0,backtracked=1,end=1
4 search: maxDepth=1,constraints=0
5 choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=0
6 heap: new=354,released=12,maxLive=0,gcCycles=1
7 instructions: 3182
8 max memory: 240MB
9 loaded code: classes=62,methods=1341

In line 5, the number of created choice generators is reported. A distinction is made between those related to concur-
rency (thread) and randomization (data). We will get to the former in Chapter ??. Note that, by default, a choice
with a single branch does not give rise to the creation of a choice generator, since there are zero data choice generators
created. However, if we set the property cg.break_single_choice to true (its default value is false), then JPF
produces the following statistics for the above app.

== statistics
elapsed time: 00:00:00
states: new=27,visited=0,backtracked=27,end=1

46

search: maxDepth=27,constraints=0
choice generators: thread=26 (signal=0,lock=26,sharedRef=0,threadApi=0,reschedule=0), data=1
heap: new=354,released=12,maxLive=352,gcCycles=25
instructions: 3208
max memory: 240MB
loaded code: classes=62,methods=1341

In this case, one data choice generator has been created, which corresponds to the choice in line 6 of the above app.

3.3 Using an Extension of JPF

To use an extension, we set the @using property in the application properties file. For example, to use the jpf-shell
extension when checking the HelloWorld app, we set the @using property as follows.

@using=jpf-shell

target=HelloWorld
classpath=.

If we run JPF with the -show option, then a number of new properties and their values, including the following,
are output.

...
shell.commands = test,verify
shell.commands.test = gov.nasa.jpf.shell.commands.TestCommand
shell.commands.verify = gov.nasa.jpf.shell.commands.VerifyCommand
shell.panels = properties,config,site,report,test,verify,logging
shell.panels.config = gov.nasa.jpf.shell.panels.ConfigPanel
shell.panels.logging = gov.nasa.jpf.shell.panels.LoggingPanel
shell.panels.properties = gov.nasa.jpf.shell.panels.PropertiesPanel
shell.panels.report = gov.nasa.jpf.shell.panels.ReportPanel
shell.panels.site = gov.nasa.jpf.shell.panels.SitePanel
shell.panels.test = gov.nasa.jpf.shell.panels.TestConsolePanel
shell.panels.verify = gov.nasa.jpf.shell.panels.VerifyConsolePanel
...

To use the jpf-shell extension, one has to set the shell property as follows.

@using=jpf-shell

target=HelloWorld
classpath=.

shell=gov.nasa.jpf.shell.basicshell.BasicShell

When we run JPF with the above application properties file, the window below appears.

47

If we click the arrow button, then the app is tested, that is, its code is run. If we click the check mark button, then
the app verified, that is, JPF is run. The output of the former can be found under the Test Output tab.

The output of the latter can be found under the Verify Output tab.

48

This information, though formatted differently, can also be found under the Report tab.

The window can be configured by setting properties. For example, consider the following application properties
file.

@using=jpf-shell

target=HelloWorld
classpath=.

shell=gov.nasa.jpf.shell.basicshell.BasicShell
shell.commands=verify
shell.panels=report,verify

We only specify a single command, namely verify. As a consequence, the window only contains the check mark
button. As panels, we select report and verify. As a result, the window has only two tabs: Report and Verify

49

Output.

3.4 Paths
As we already mentioned before, each project may define its own classpath, native classpath, and source path. These
paths can also be defined in the application properties file. Next, we will discuss how these are combined.

Assume that the extensions jpf-numeric and jpf-shell have both been installed. Consider the following
application properties file.

@using=jpf-numeric
@using=jpf-shell

target=Test
classpath=/cs/home/franck/examples

Assume that the project property files of the extensions jpf-numeric and jpf-shell define the properties
jpf-numeric.classpath and jpf-shell.classpath, respectively. When JPF is run with the above appli-
cation properties file, to find the bytecode of the Test app, it first looks in /cs/home/franck/examples. If it
cannot find it there, then it looks in the directories and jar files assigned to jpf-shell.classpath. If it cannot
find it there either, then it looks in the directories and jar files assigned to jpf-numeric.classpath. If it cannot
find it there either, then it looks in the directories and jar files assigned to jpf-core.classpath. If it cannot find
it there either, then JPF produces the following output.

[SEVERE] cannot load application class Test

Hence, JPF’s classpath consists of a combination of all values of the properties that end in .classpath. Similarly,
the native classpath and source path are combined.

50

Chapter 4

Using a Listener

To extract information from JPF during its verification effort, JPF uses event driven programming. We assume that
reader is already familiar with this programming paradigm. In JPF, events signal, for example, that a bytecode in-
struction has been executed, that a class has been loaded, or that the garbage collector has started. To handle these
events, JPF contains a number of listeners. Such a listener is registered with JPF by setting the value of the key
listener to the class implementing the listener in the application properties file. For example, extracting a rep-
resentation of the state space in the DOT format by means of the StateSpaceDot listener, which is part of the
package gov.nasa.jpf.listener, can be specified in the application properties file as follows.

listener=gov.nasa.jpf.listener.StateSpaceDot

The package gov.nasa.jpf.listener contains a number of listeners. Extensions of JPF, such as jpf-shell,
contain listeners as well. In the remainder of this chapter we discuss some of them.

4.1 Using the StateSpaceDot Listener
As mentioned above, the StateSpaceDot listener extracts a representation of the state space in DOT format. Con-
sider the application

import java.util.Random;

public class StateSpace {
public static void main(String[] args) {
Random random = new Random();
System.out.print("0 ");
if (!random.nextBoolean()) {
System.out.print("1 ");
if (!random.nextBoolean()) {
System.out.print("3 ");

} else {
System.out.print("4 ");
if (!random.nextBoolean()) {
System.out.print("5 ");

} else {
System.out.print("6 ");

}
}

} else {
System.out.print("2 ");

51

}
}

}

and the application properties file

target=StateSpace
classpath=.
listener=gov.nasa.jpf.listener.StateSpaceDot

When JPF is run with the above application properties file, it produces a file named jpf-state-space.dot and
also the usual output. This file can be viewed with the visualization software called Graphviz. More information about
Grapviz can be found at www.graphviz.org. We assume that the path to the dotty command is already part of the
system environment variable PATH (see Section 1.1.3). To view the generated file, type

dotty jpf-state-space.dot

This result in the following window.

In Section 7.3 we will develop a similar listener.

4.2 Using the BudgetChecker Listener
The listener BudgetChecker, which is part of the package gov.nasa.jpf.listener, allows us to set con-
straints for JPF. For example, one can set the maximum number of milliseconds used by JPF. If JPF takes more time
than this maximum when using this listener, JPF will terminate and will report that it took more than the set maximum.
Apart from the amount time used, we can also constrain the amount of heap space used, the number of instructions
executed, the depth of the search and the number of new states. To specify these constraints, the listener has several
properties that can be set in the application properties file, as we will show below.

To illustrate the BudgetChecker listener, we consider the following app.

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

public class Constraints {
public static void main(String[] args) {
Random random = new Random();
List<Integer> list = new ArrayList<Integer>();

52

http://www.graphviz.org/

for (int i = 0; random.nextBoolean(); i++) {
list.add(new Integer(i));

}
}

}

We can run the listener BudgetChecker without setting any of its properties and, hence, not setting any con-
straints, as shown in the application properties file below.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker

In this case, no constraints are set. As a result, JPF will run out of memory producing the following output

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraints.main()

== search started: 1/27/17 1:01 PM
[SEVERE] JPF out of memory
...

We can constrain the maximum amount time used by JPF to 1000 milliseconds as follows. We can assign any long
value to the property budget.max_time.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker
budget.max_time=1000

Since JPF cannot complete within one second, it stops after one second and produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraint.main()

== search started: 1/27/17 1:22 PM

== search constraint
max time exceeded: 00:00:01 >= 00:00:01
...

The amount of heap space used by JPF can be constrained to a maximum number of bits as follows. We can assign
any long value to the property budget.max_heap.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker
budget.max_heap=10000000

53

Note that 10000000 bits = 10000000 / (1024 * 1024) megabytes = 9.5 megabytes. Since JPF needs more heap space,
it stops and produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraints.main()

== search started: 1/27/17 1:36 PM

== search constraint
max heap exceeded: 10MB >= 9MB
...

One can constrain JPF from checking more than 100 bytecode instructions as follows. We can assign any long
value to the property budget.max_insn.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker
budget.max_insn=100

Since this constraint is violated, JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraints.main()

== search started: 1/27/17 1:47 PM

== search constraint
max instruction count exceeded: 100
...

We can also limit the number of states that JPF explores by setting the property budget.max_state. We can
assign any int value to this property.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker
budget.max_state=100

Since the statespace of this app consists of more than 100 states, JPF stops and produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraints.main()

== search started: 1/27/17 1:48 PM

54

== search constraint
max states exceeded: 100
...

We can also constrain the depth of the search. The corresponding property, budget.max_depth, can take any
int value.

target=Constraints
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.BudgetChecker
budget.max_depth=100

Since the depth of the search is greater than 100 for this app, JPF stops and produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
Constraints.main()

== search started: 1/27/17 1:53 PM

== search constraint
max search depth exceeded: 100
...

4.3 Using the EndlessLoopDetector Listener
The listener EndlessLoopDetector, which is part of the package gov.nasa.jpf.listener, tries to detect
nonterminating loops. Since termination and, hence, nontermination, is undecidable, this listener uses heuristics. As a
result, as we will see below, one has to be careful with interpreting the reports it produces.

Consider the following app.

public class Loop {
public static void main(String[] args) {
while (true) {}

}
}

If we run JPF with the application properties file

target=Loop
classpath=.
listener=gov.nasa.jpf.listener.EndlessLoopDetector

then it produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
Loop.main()

== search started: 11/26/18 3:58 PM
[WARNING] breaks transition on suspicious loop in thread: main

55

at Loop.main(Loop.java:3)
[WARNING] breaks transition on suspicious loop in thread: main

at Loop.main(Loop.java:3)

== results
error #1: gov.nasa.jpf.listener.EndlessLoopDetector
...

In the above example, we considered a while loop. The listener can also detect nonterminating for and do loops.
Now, consider the following app.

public class Loop {
public static void main(String[] args) {
for (int i = 0; i < 503; i++) {}

}
}

This app terminates. However, if JPF is run with the above application properties file, then it produces output very
similar to the above output. This shows that the listener produces false positives, that is, it reports an issue that
does not actually exist. Hence, whenever the listener reports a suspicious loop, we still have to check whether it a
nonterminating loop.

The listener EndlessLoopDetector can be customized by means of one property. The property idle.max_backjumps
provides a lower bound on the number of iterations for a loop to be suspicious. For example, if we run JPF for the
above app with the application properties file

target=Loop
classpath=.
listener=gov.nasa.jpf.listener.EndlessLoopDetector
idle.max_backjumps=1000

then JPF does not report any suspicious loops. The default value of the property idle.max_backjumps is 500.

56

Chapter 5

Using a Search Strategy

A search strategy determines in which order the states are visited and the transitions are traversed. Consider, for
example, the following app.

1 import java.util.Random;
2

3 public class StateSpace {
4 public static void main(String[] args) {
5 Random random = new Random();
6 System.out.print("0 ");
7 if (!random.nextBoolean()) {
8 System.out.print("1 ");
9 if (!random.nextBoolean()) {

10 System.out.print("3 ");
11 } else {
12 System.out.print("4 ");
13 if (!random.nextBoolean()) {
14 System.out.print("5 ");
15 } else {
16 System.out.print("6 ");
17 }
18 }
19 } else {
20 System.out.print("2 ");
21 }
22 }
23 }

The corresponding state space is depicted in Figure 5.1. Suppose that the system is in initial state 0. In this state, the
system executes line 5–7. If random.nextBoolean() of line 7 returns false, then the system transitions to state 1.
Otherwise, it transitions to state 2. In state 1, the system executes line 8–9. If random.nextBoolean() of line 9
returns false, then the system transitions to state 3. Otherwise, it transitions to state 4. In state 3, the system executes
line 10. In state 4, the system executes line 12–13. If random.nextBoolean() of line 13 returns false, then the
system transitions to state 5. Otherwise, it transitions to state 6. In state 5 and 6, the system executes line 14 and 16,
respectively. As a consequence, 0, 1, 2, 3, 4, 5 and 6 are printed when the system is in state 0, 1, 2, 3, 4, 5 and 6,
respectively.

57

0

1 2

3 4

5 6

Figure 5.1: State-transition diagram.

5.1 Depth-First and Breadth-First Search
The output produced by JPF for the above app provides us some insight in the order in which the states are visited.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
StateSpace.main()

== search started: 2/6/17 9:18 PM
0 1 3 4 5 6 2

== results
no errors detected
...

From the above we can conclude that JPF traverses the state space depth first. If we run JPF with the -show command
line argument, we notice that the JPF property search.class is set as follows.

----------- Config contents
...
search.class = gov.nasa.jpf.search.DFSearch
...

The class gov.nasa.jpf.search.DFSearch implements depth-first search. This is the default search strat-
egy. JPF also provides other search strategies. For example, the class BFSHeuristic, which is part of the
package gov.nasa.jpf.search.heuristic, implements breadth-first search. If we set the JPF property
search.class to gov.nasa.jpf.search.heuristic.BFSHeuristic, then JPF produces the following
output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
StateSpace.main()

== search started: 2/6/17 9:18 PM
0 1 2 3 4 5 6

== results

58

no errors detected
...

The packages gov.nasa.jpf.search and gov.nasa.jpf.search.heuristic contain a few other
search strategies.

5.2 Search Properties
There are a number of JPF properties that can be set for every search. With the JPF property search.depth_limit
we can limit the depth of the search. This property can be assigned any integer value. The default value is Integer.MAX_VALUE.
For example, if we set this property to 2 and use depth-first search, then JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
StateSpace.main()

== search started: 2/6/17 9:18 PM
0 1 3 4 2

== results
no errors detected
...

The JPF property search.min_free captures the minimal amount of memory, in bytes, that needs to remain
free. The default value is 1024 << 10. By leaving some memory free, JPF can report that it ran out of memory
and provide some useful statistics instead of simply throwing an OutOfMemoryError. For example, if we set this
property to 100000000 and use depth-first search, then JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights

== system under test
StateSpace.main()

== search started: 2/6/17 9:18 PM
0

== search constraint
memory limit reached
...

The JPF property search.multiple_errors tells us whether the search should report multiple errors (or
just the first one). The default value is false, that is, by default only the first error is reported after which the search
ends. Consider the following variation on the StateSpace app.

1 import java.util.Random;
2

3 public class StateSpace {
4 public static void main(String[] args) {
5 Random random = new Random();
6 System.out.print("0 ");
7 if (!random.nextBoolean()) {

59

8 System.out.print("1 ");
9 if (!random.nextBoolean()) {

10 System.out.print("3 ");
11 System.out.println(1 / 0);
12 } else {
13 System.out.print("4 ");
14 System.out.println(1 / 0);
15 if (!random.nextBoolean()) {
16 System.out.print("5 ");
17 } else {
18 System.out.print("6 ");
19 }
20 }
21 } else {
22 System.out.print("2 ");
23 }
24 }
25 }

This app differs from the one presented earlier in this chapter in line 11 and 14. In those lines, an exception is thrown.
Since this exception is not caught in the code and JPF by default checks for uncaught exceptions, JPF reports errors
for the above app. If the JPF property search.multiple_errors is not set in the application properties file, it
has the default value false and, hence, only the first error is reported. In this case, JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
StateSpace.main()

== search started: 11/28/18 5:05 PM
0 1 3
== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.RuntimeException

at StateSpace.main(StateSpace.java:11)

== snapshot #1
thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}
call stack:

at StateSpace.main(StateSpace.java:11)

== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.RuntimeException
at StateSpace.main(Sta..."
...

If the JPF property search.multiple_errors is set to true in the application properties file, JPF reports
both errors, as is illustrated by the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

60

== system under test
StateSpace.main()

== search started: 12/2/18 9:42 PM
0 1 3
== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: division by zero
at StateSpace.main(StateSpace.java:11)

== snapshot #1
thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}
call stack:
at StateSpace.main(StateSpace.java:11)

4
== error 2
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: division by zero
at StateSpace.main(StateSpace.java:14)

== snapshot #2
thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}
call stack:
at StateSpace.main(StateSpace.java:14)

2
== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.ArithmeticException: division by zero
a..."
error #2: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.ArithmeticException: division by zero
a..."
...

The JPF property search.properties specifies which properties are checked during the search. By de-
fault, this property has the values gov.nasa.jpf.vm.NotDeadlockedProperty and gov.nasa.jpf.vm.
NoUncaughtExceptionsProperty. The former checks that an application has no deadlocks. We will come
back to this in Chapter ??. The latter checks that an application does not throw an exception that is not caught. A
violation of this property indicates that an application throws an exception that is not caught. We have already seen
several examples of that phenomenon in this and earlier chapters.

The class NoOutOfMemoryErrorProperty, which is part of the package gov.nasa.jpf.vm, checks that
no OutOfMemoryError is thrown. We can add this property to search.properties by including in the
application properties file the following.

search.properties+=,gov.nasa.jpf.vm.NoOutOfMemoryErrorProperty

61

62

Chapter 6

Using a Reporter

Like most components of JPF, its reporting system can be configured by setting the appropriate JPF properties. First of
all, one has to set the report.publisher property. By default, its value is console. In that case, JPF produces
for the HelloWorld application the output as presented in Chapter 2. The other currently supported value is xml.
Consider the following application properties file.

target=HelloWorld
classpath=.
report.publisher=xml

JPF produces the output

Hello World!

and creates a file named report.xml with the content

<?xml version="1.0" ?>
<jpfreport>
</jpfreport>

In Chapter ?? we will show how new options for the report.publisher property can be added to JPF. Some
listeners modify the output produced by JPF’s reporting system. We will discuss an example in Section ??. How to
extend the reporting system within a listener is also covered in Chapter ??.

6.1 Console
The output produced by the console option can be further customized by JPF properties. These properties specify
what type of output is produced whenever an event is triggered by the search. In the table below, we provide the JPF
properties and the corresponding events.

event property
searchStarted report.console.start
stateAdvanced report.console.transition
searchProbed report.console.probe
propertyViolated report.console.property violation
searchConstraintHit report.console.constraint
searchFinished report.console.finished

If we set all the above properties to empty values, then this results in the following application properties file.

target=HelloWorld
classpath=.
report.publisher=console

63

report.console.start=
report.console.transition=
report.console.probe=
report.console.property_violation=
report.console.constraint=
report.console.finished=

When we run JPF, it produces the output

Hello World!

To each of the last six properties, we can assign several values. We will discuss these next.

6.1.1 The report.console.start Property
To the property report.console.start we can assign any combination of the following values: config, dtg,
jpf, platform, sut, and user. Let us first look at each separately.

The config Value

If the property report.console.start is set to config, then JPF produces the following output.

== JPF configuration
property source: /cs/home/franck/.jpf/site.properties
property source: /cs/home.franck/jpf/jpf-core/jpf.properties
property source: /cs/home/franck/examples/HelloWorld.jpf
properties:
branch_start=1
cg.boolean.false_first=true
...

== search started: 12/7/18 7:31 PM
Hello World!

Note that it produces output similar to that produced by the -log and -show command line arguments. It provides
an overview of how JPF has been configured.

The dtg Value

If the property report.console.start is set to dtg, then JPF produces the following output.

started: Fri Dec 07 19:54:16 EST 2018

== search started: 12/7/18 7:54 PM
Hello World!

DTG stands for date-time group and captures the current time and date in a particular format.

The jpf Value

If the property report.console.start is set to jpf, then JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== search started: 12/8/18 7:20 AM
Hello World!

Note that this is the banner we have seen at the start of every report.

64

The platform Value

If the property report.console.start is set to platform, then JPF produces output similar to the following.

== platform
hostname: indigo
arch: amd64/4
os: Linux/3.10.0-862.14.4.el7.x86_64
java: Oracle Corporation/1.8.0_181

== search started: 12/8/18 7:21 AM
Hello World!

The sut Value

If the property report.console.start is set to sut, short for system under test, then JPF produces the following
output.

== system under test
HelloWorld.main()

== search started: 12/8/18 7:21 AM
Hello World!

The user Value

If the property report.console.start is set to user, then JPF produces output similar to the following.

user: franck

== search started: 12/8/18 7:34 AM
Hello World!

The Default Value

By default, the property report.console.start is set to jpf,sut. In that case, JPF produces the following
output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
HelloWorld.main()

== search started: 12/8/18 7:48 AM
Hello World!

Note that the order in which the values are provided matters. For example, if we set the property report.console.start
is set to sut,jpf, then JPF produces the following output.

== system under test
HelloWorld.main()
JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

65

== search started: 12/8/18 7:49 AM
Hello World!

6.1.2 The report.console.transition Property

To the property report.console.transition we can only assign the value statistics if the property
report.statistics is set to true. In that case, JPF produces the following output.

Hello World!

== statistics
elapsed time: 00:00:00
states: new=1,visited=0,backtracked=0,end=1
search: maxDepth=1,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=0
heap: new=352,released=11,maxLive=0,gcCycles=1
instructions: 3175
max memory: 240MB
loaded code: classes=61,methods=1329

By default, the empty value is assigned to the report.console.transition property.

6.1.3 The report.console.probe Property

To the property report.console.probe we can only assign the value statistics. That is also the default
setting. If the property report.probe_interval is set to 1, that is, the search is probed every second, then JPF
applied to the Constraint application of the beginning of Chapter 4 produces the following output.

== statistics
elapsed time: 00:00:01
states: new=802,visited=798,backtracked=800,end=800
search: maxDepth=800,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=800
heap: new=1195,released=329212,maxLive=1182,gcCycles=1600
instructions: 63078
max memory: 240MB
loaded code: classes=70,methods=1657

== statistics
elapsed time: 00:00:02
states: new=2403,visited=2398,backtracked=2400,end=2400
search: maxDepth=2401,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=2401
heap: new=2799,released=2907615,maxLive=2782,gcCycles=4801
instructions: 181727
max memory: 303MB
loaded code: classes=70,methods=1657
...

That is, JPF outputs the statistics of the search every second.

66

6.1.4 The report.console.property_violation Property

To the property report.console.property_violation we can assign any combination of the following val-
ues: error, output, snapshot, statistics, and trace. By default, this property is set to error,snapshot.

To demonstrate this property we use the UncaughtException application of Chapter 2. We look at each value
separately.

The error Value

If the property report.console.property_violation is set to error, then JPF produces the following
output.

== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: division by zero
at UncaughtException.main(UncaughtException.java:3)

JPF outputs the type of property that has been violated and some of its details.

The output Value

If the property report.console.property_violation is set to output, then JPF indicates that the UncaughtException
application does not produce any output by producing the following output.

== output #1
no output

The snapshot Value

If the property report.console.property_violation is set to snapshot, then JPF produces the following
output.

== snapshot #1
thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}
call stack:
at UncaughtException.main(UncaughtException.java:3)

It describes the main thread and its call stack.

The statistics Value

To the property report.console.property_violation we can only assign the value statistics if the
property report.statistics is set to true. In that case, JPF produces the following output.

== statistics
elapsed time: 00:00:00
states: new=1,visited=0,backtracked=0,end=0
search: maxDepth=1,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=0
heap: new=366,released=0,maxLive=0,gcCycles=0
instructions: 3171
max memory: 240MB
loaded code: classes=65,methods=1359

67

report.console.show steps

report.console.show code report.console.show source

report.console.show locationreport.console.show method

Figure 6.1: Dependencies between properties.

The trace Value

Finally, we consider the value trace for the property report.console.constraint. In this case, the output
can be further refined by the following boolean properties: report.console.show_cg, report.console.show_code,
report.console.show_location, report.console.show_method, report.console.show_source,
and report.console.show_steps. There are some dependencies between these six properties, which are de-
picted in Figure 6.1. An arrow from one property to another indicates that the value of the latter property is only rele-
vant if the value of the former property is true. For example, the value of the property report.console.show_location
is only relevant if the properties report.console.show_steps and report.console.show_source are
both set to true. To illustrate these properties, we consider the StateSpace application of Section 5.2. We set the
sourcepath property to the directory that contains the source code of the StateSpace class. We discuss some
interesting combinations. As we will see in the examples below, the value trace ensures that a trace to the violation,
that is, an abstraction of a partial execution ending in a state that violates the property of interest, is output.

The report.console.show_cg Property

If we set the property report.console.show_cg to true and all the properties in Figure 6.1 to false, then JPF
produces the following output.

0 1 3
== trace #1
-- transition #0 thread: 0
gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"ROOT" ,1/1,isCascaded:false}
-- transition #1 thread: 0
gov.nasa.jpf.vm.BooleanChoiceGenerator[[id="verifyGetBoolean",isCascaded:false,{>false,true}]
-- transition #2 thread: 0
gov.nasa.jpf.vm.BooleanChoiceGenerator[[id="verifyGetBoolean",isCascaded:false,{>false,true}]

For each transition, only the choice generator, which captures a nondeterministic choice, is represented. The first
nondeterministic choice is related to concurrency and the other two are related to randomization.

The report.console.show_source Property

If we set the properties report.console.show_steps and report.console.show_source to true and
the properties report.console.show_code and report.console.show_location to false, then JPF
produces the following output.

0 1 3
== trace #1
-- transition #0 thread: 0

[3168 insn w/o sources]
Random random = new Random();
[2 insn w/o sources]

Random random = new Random();

68

System.out.print("0 ");
[2 insn w/o sources]

if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #1 thread: 0
[2 insn w/o sources]

if (!random.nextBoolean()) {
System.out.print("1 ");
[2 insn w/o sources]

if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #2 thread: 0
[2 insn w/o sources]

if (!random.nextBoolean()) {
System.out.print("3 ");
[2 insn w/o sources]

System.out.println(1 / 0);

The above trace consists of three transitions and for each transition the corresponding Java statements are output.

The report.console.show_location Property

If we set the properties report.console.show_steps, report.console.show_source, and
report.console.show_location to true and the property report.console.show_code to false, then
JPF produces the following output.

0 1 3
== trace #1
-- transition #0 thread: 0

[3168 insn w/o sources]
StateSpace.java:5 : Random random = new Random();
[2 insn w/o sources]

StateSpace.java:5 : Random random = new Random();
StateSpace.java:6 : System.out.print("0 ");
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #1 thread: 0
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
StateSpace.java:8 : System.out.print("1 ");
[2 insn w/o sources]

StateSpace.java:9 : if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #2 thread: 0
[2 insn w/o sources]

StateSpace.java:9 : if (!random.nextBoolean()) {
StateSpace.java:10 : System.out.print("3 ");
[2 insn w/o sources]

StateSpace.java:11 : System.out.println(1 / 0);

The only difference with the previous configuration is that JPF outputs the line numbers as well.

69

The report.console.show_code Property

If we set the properties report.console.show_steps and report.console.show_code to true and the
properties report.console.show_source and report.console.show_method to false, then JPF pro-
duces the following output.

0 1 3
== trace #1
-- transition #0 thread: 0
invokestatic java.lang.Boolean.<clinit>()V
new java.lang.Boolean@bc
dup
...

-- transition #1 thread: 0
executenative JPF_java_util_Random.nextBoolean____Z
nativereturn java.util.Random.nextBoolean()Z
ifne 104
...

-- transition #2 thread: 0
executenative JPF_java_util_Random.nextBoolean____Z
nativereturn java.util.Random.nextBoolean()Z
ifne 58
...

This configuration provides many more details of the trace. It abstracts at the level of bytecode instructions.

The report.console.show_method Property

If we set the properties report.console.show_steps, report.console.show_code, and
report.console.show_method to true and the property report.console.show_source to false, then
JPF produces the following output.

0 1 3
== trace #1
-- transition #0 thread: 0
java.lang.Boolean.[<clinit>]
invokestatic java.lang.Boolean.<clinit>()V

java.lang.Boolean.<clinit>()V
new java.lang.Boolean@bc
dup
...

-- transition #1 thread: 0
java.util.Random.nextBoolean()Z
executenative JPF_java_util_Random.nextBoolean____Z
nativereturn java.util.Random.nextBoolean()Z

StateSpace.main([Ljava/lang/String;)V
ifne 104
...

-- transition #2 thread: 0
java.util.Random.nextBoolean()Z
executenative JPF_java_util_Random.nextBoolean____Z
nativereturn java.util.Random.nextBoolean()Z

StateSpace.main([Ljava/lang/String;)V
ifne 58

70

...

The difference with the previous configuration is that invocations to constructors and methods are also included.

6.1.5 The report.console.constraint Property

To the property report.console.constraintwe can assign any combination of the following values: constraint,
output, snapshot, statistics, and trace. By default, this property is set to constraint,snapshot.

To demonstrate this property we use the StateSpace application of Chapter 5. The property search.depth_limit
is set to 2. As a result, the depth constraint is hit twice during the search.

The constraint Value

If the property report.console.constraint is set to constraint, then JPF produces the following output.

0 1
== search constraint
depth limit reached: 2
2
== search constraint
depth limit reached: 2

The output Value

If the property report.console.constraint is set to output, then JPF produces the following output.

0 1
== output
0 1
2
== output
0 2

Each time a constraint is hit, the output corresponding to the execution path leading to the constraint hit is output.

The snapshot Value

If the property report.console.constraint is set to snapshot, then JPF produces the following output.

0 1
== snapshot
thread java.lang.Thread:{id:0,name:main,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}
call stack:
at java.util.Random.nextBoolean(Random.java)
at StateSpace.main(StateSpace.java:9)

2
== snapshot
no live threads

Note that the second snapshot is taken at the end of the search when the main thread is not active any more.

71

The statistics Value

To the property report.console.constraint we can only assign the value statistics if the property
report.statistics is set to true. In that case, JPF produces the following output.

0 1
== statistics
elapsed time: 00:00:00
states: new=2,visited=0,backtracked=0,end=0
search: maxDepth=2,constraints=1
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=1
heap: new=358,released=2,maxLive=354,gcCycles=2
instructions: 3193
max memory: 240MB
loaded code: classes=62,methods=1341
2
== statistics
elapsed time: 00:00:00
states: new=3,visited=0,backtracked=1,end=1
search: maxDepth=2,constraints=2
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=1
heap: new=360,released=12,maxLive=356,gcCycles=3
instructions: 3203
max memory: 240MB
loaded code: classes=62,methods=1341

The trace Value

Finally, we consider the value trace for the property report.console.constraint. Similar to the property
report.console.property_violation, the output can be further refined by the following boolean proper-
ties: report.console.show_cg, report.console.show_code, report.console.show_location,
report.console.show_method, report.console.show_source, and report.console.show_steps.
Let us consider just one combination. If we set the properties report.console.show_steps,
report.console.show_source, and report.console.show_location to true and the property
report.console.show_code to false, then JPF produces the following output.

0 1
== trace
-- transition #0 thread: 0

[3168 insn w/o sources]
StateSpace.java:5 : Random random = new Random();
[2 insn w/o sources]

StateSpace.java:5 : Random random = new Random();
StateSpace.java:6 : System.out.print("0 ");
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #1 thread: 0
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
StateSpace.java:8 : System.out.print("1 ");
[2 insn w/o sources]

StateSpace.java:9 : if (!random.nextBoolean()) {

72

[1 insn w/o sources]
2
== trace
-- transition #0 thread: 0

[3168 insn w/o sources]
StateSpace.java:5 : Random random = new Random();
[2 insn w/o sources]

StateSpace.java:5 : Random random = new Random();
StateSpace.java:6 : System.out.print("0 ");
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
[1 insn w/o sources]

-- transition #1 thread: 0
[2 insn w/o sources]

StateSpace.java:7 : if (!random.nextBoolean()) {
StateSpace.java:22 : System.out.print("2 ");
[2 insn w/o sources]

StateSpace.java:24 : }
StateSpace.java:3 : public class StateSpace {

6.1.6 The report.console.finished Property
To the property report.console.finishedwe can assign any combination of the following values: statistics
and result. If the property report.console.finished is set to statistics, then JPF produces the fol-
lowing output.

Hello World!

== statistics
elapsed time: 00:00:00
states: new=1,visited=0,backtracked=1,end=1
search: maxDepth=1,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=0
heap: new=352,released=11,maxLive=0,gcCycles=1
instructions: 3175
max memory: 240MB
loaded code: classes=61,methods=1329

== search finished: 12/8/18 8:15 AM

If the property report.console.finished is set to result, then JPF produces the following output.

Hello World!

== results
no errors detected

== search finished: 12/8/18 8:15 AM

By default, the property report.console.finished is set to result,statistics.

73

74

Chapter 7

Implementing a Listener

As we already mentioned in Chapter 4, JPF relies on event driven programming. In JPF events signal, for example,
that a bytecode instruction has been executed, that a class has been loaded, or that the garbage collector has started.
To handle these events, we implement listeners.

Both the search and JPF’s virtual machine notify listeners of particular events. The methods corresponding to
those events can be found in the interfaces SearchListener and VMListener, which are part of the packages
gov.nasa.jpf.search and gov.nasa.jpf.vm, respectively. A listener implements either one of these or
both interfaces.

Since usually we are only interested in a few events, we can provide the methods corresponding to the remaining
events with a default implementation (since all methods are void, we can just provide a method with an empty body).
To avoid coding these methods, JPF has already provided the class SearchListenerAdapter and the abstract
class ListenerAdapter, which are part of the packages gov.nasa.jpf.search and gov.nasa.jpf, re-
spectively. The former provides default implementations for all the methods specified in the SearchListener
interface, and the latter provides default implementations for all the methods specified in the SearchListener and
VMListener interface.

The interface JPFListener, which is part of package gov.nasa.jpf, represents listeners of JPF. Both
SearchListener and VMListener extend this interface. The class JPF is the core of JPF. Among many other
objects, it creates the listeners. The relationships among the above mentioned interfaces and classes is captured in the
UML diagram depicted in Figure 7.1.

* JPF�interface�
JPFListener

�interface�
SearchListener

�interface�
VMListener

ListenerAdapterSearchListenerAdapter

Figure 7.1: UML diagram of the listener interfaces and related classes.

75

7.1 The SearchListener Interface

The SearchListener interface contains methods that are related to events triggered by JPF’s search. For example,
when JPF starts its search, the method searchStarted is invoked. The SearchListener contains the following
methods.

public interface SearchListener extends JPFListener {
void stateAdvanced(Search search);
void stateProcessed(Search search);
void stateBacktracked(Search search);
void statePurged(Search search);
void stateStored(Search search);
void stateRestored(Search search);

void searchProbed(Search search);

void propertyViolated(Search search);

void searchConstraintHit(Search search);

void searchStarted(Search search);
void searchFinished(Search search);

}

The first six methods are used by the search to signal something about the current state of the search. The method
stateAdvanced signals that the search just transitioned to the current state by executing the sequence of bytecode
instructions associated with the transition. The method stateProcessed signals that the search has fully explored
the current state. The method stateBacktracked signals that the search just backtracked to the current state. The
method statePurged signals that the current state has been purged from the search, so that it will not be visited in
the remainder of the search. The method stateStored signals that the current state has been stored, as happens,
for example, in breadth-first search. The method stateRestored signals that the current state, which was stored
earlier in the search, has just been restored.

The method searchProbed signals that there was a probe request. The method propertyViolated signals
that a violation of some property was detected while transitioning to the current state. The method searchConstraintHit
signals that a constraint has been reached. Constraints such as the depth of the search and the amount of memory used
by JPF are usually specified in a properties file. The methods searchStarted and searchFinished signal that
the search has started and finished, respectively.

Note that these methods receive a reference to a Search object as an argument. This Search object con-
tains information about the search of the state space by JPF. As we already mentioned, JPF invokes the method
searchStarted at the start of the search with a reference to a Search object. When implementing the searchStarted
in a listener, this Search object can be used to get information about the search of JPF.

7.2 Printing the State Space

As a first example, we implement a listener which prints the states and transitions visited by the search in the following
simple format:

0 -> 1
1 -> 2
0 -> 3
3 -> 4
4 -> 2

76

The above tells us that the search started in the initial state 0 and made a transition to a new state 1. From state 1 it
made a transition to a new state 2. Next, it made a transition from state 0 to state 2. Et cetera. We name our class
StateSpacePrinter. In our StateSpacePrinter, we are only interested in the events signalling a change of
state. Therefore, we implement the SearchListener interface. Since we are not interested in all event notifications
by the search, we start from default implementations by extending the SearchListenerAdapter class. Hence,
we arrive at the following method header.

public class StateSpacePrinter extends SearchListenerAdapter
implements SearchListener

The only three methods that signal a state change are stateAdvanced, stateBacktracked and stateRestored.
In order to print a transition, we need both the source and target state of the transition. We introduce attributes to keep
track of the source and target state. In JPF each state has a unique identifier, which is a nonnegative integer.1

private int source;
private int target;

We initialize these attributes in the constructor to an unknown state, which we represent by -1.

public StateSpacePrinter() {
this.source = -1;
this.target = -1;

}

We have left to implement the methods stateAdvanced, stateBacktracked and stateRestored.
These can be implemented in the following straightforward way.

public void stateAdvanced(Search search) {
this.source = this.target;
this.target = search.getStateId();
if (this.source != -1) {
System.out.printf("%d -> %d%n", source, target);

}
}

public void stateBacktracked(Search search) {
this.target = search.getStateId();

}

public void stateRestored(Search search) {
this.target = search.getStateId();

}

In our implementation of the methods we use the parameter search. In particular, we use search.getStateId()
to get the identifier of the current state of the search.

7.3 The State Space in DOT Format
Rather than printing the transitions in the terminal and, hence, interleaving them with the output produced by the
system under test, we can write the transitions to a file. Also, instead of representing them as text, we can save the
states and transitions in DOT format. This allows us to use tools such as Graphviz, as discussed in Section 4.1, to
layout and view the states and transitions. We will develop such a listener next. We colour the initial state green and
all final states red. The textual representation

1There is a state with identifier −1 and a transition from this state to the initial state 0. This transition captures the bytecode instructions that are
executed by the virtual machine until it reaches the beginning of the main method.

77

0 -> 1
1 -> 2
0 -> 3
3 -> 4
4 -> 2

where 0 is the initial state and 2 is a final state corresponds to the following DOT representation.

digraph statespace {
node [style=filled]
0 [fillcolor=green]
0 -> 1
1 -> 2
2 [fillcolor=red]
0 -> 3
3 -> 4
4 -> 2
2 [fillcolor=red]
}

This DOT representation gives rise to the graphical representation of the state space depicted below.

To write to a file, we introduce an attribute of type PrintWriter as follows.

private PrintWriter writer;

We initialize this attribute in the searchStarted method. As the name of the DOT file, we use the name of the
system under test with “.dot” as suffix. The name of the system under test can be obtained using the method invocation
search.getVM().getSUTName(). Whenever the creation of the PrintWriter fails, we want to print an error
message and subsequently terminate JPF. The latter is done using search.terminate().

When the search starts we also write

digraph statespace {
node [style=filled]
0 [fillcolor=green]

to the file. In JPF, 0 is the identifier of the initial state. This is accomplished as follows.

78

public void searchStarted(Search search) {
String name = search.getVM().getSUTName() + ".dot";
try {
this.writer = new PrintWriter(name);
this.writer.println("digraph statespace {");
this.writer.println("node [style=filled]");
this.writer.println("0 [fillcolor=green]");

} catch (FileNotFoundException e) {
System.out.println("Listener could not write to file " + name);
search.terminate();

}
}

The method stateAdvanced is modified as follows.

public void stateAdvanced(Search search) {
this.source = this.target;
this.target = search.getStateId();
if (this.source != -1) {
this.writer.printf("%d -> %d%n", source, target);

}
if (search.isEndState()) {
writer.printf("%d [fillcolor=red]%n", target);

}
}

When the search terminates, we write } to the file and close the PrintWriter object and release any system
resources associated with it. This is done by adding the following method.

public void searchFinished(Search search) {
this.writer.println("}");
this.writer.close();

}

7.4 The VMListener Interface
The VMListener interface contains methods that are related to events triggered by JPF’s virtual machine. For exam-
ple, whenever JPF executes a bytecode instruction, the method executeInstruction is invoked. The VMListener
contains the following methods.

public interface VMListener extends JPFListener {
void vmInitialized(VM vm);

void executeInstruction(VM vm, ThreadInfo currentThread,
Instruction instructionToExecute);

void instructionExecuted(VM vm, ThreadInfo currentThread,
Instruction nextInstruction, Instruction executedInstruction);

void threadStarted(VM vm, ThreadInfo startedThread);
void threadBlocked(VM vm, ThreadInfo blockedThread, ElementInfo lock);
void threadWaiting(VM vm, ThreadInfo waitingThread);
void threadNotified(VM vm, ThreadInfo notifiedThread);
void threadInterrupted(VM vm, ThreadInfo interruptedThread);

79

void threadTerminated(VM vm, ThreadInfo terminatedThread);
void threadScheduled(VM vm, ThreadInfo scheduledThread);

void loadClass(VM vm, ClassFile cf);
void classLoaded(VM vm, ClassInfo loadedClass);

void objectCreated(VM vm, ThreadInfo currentThread, ElementInfo newObject);
void objectReleased(VM vm, ThreadInfo currentThread, ElementInfo releasedObject);
void objectLocked(VM vm, ThreadInfo currentThread, ElementInfo lockedObject);
void objectUnlocked(VM vm, ThreadInfo currentThread, ElementInfo unlockedObject);
void objectWait(VM vm, ThreadInfo currentThread, ElementInfo waitingObject);
void objectNotify(VM vm, ThreadInfo currentThread, ElementInfo notifyingObject);
void objectNotifyAll(VM vm, ThreadInfo currentThread, ElementInfo notifyingObject);
void objectExposed(VM vm, ThreadInfo currentThread, ElementInfo fieldOwnerObject,
ElementInfo exposedObject);

void objectShared(VM vm, ThreadInfo currentThread, ElementInfo sharedObject);

void gcBegin(VM vm);
void gcEnd(VM vm);

void exceptionThrown(VM vm, ThreadInfo currentThread, ElementInfo thrownException);
void exceptionBailout(VM vm, ThreadInfo currentThread);
void exceptionHandled(VM vm, ThreadInfo currentThread);

void choiceGeneratorRegistered(VM vm, ChoiceGenerator<?> nextCG,
ThreadInfo currentThread, Instruction executedInstruction);

void choiceGeneratorSet(VM vm, ChoiceGenerator<?> newCG);
void choiceGeneratorAdvanced(VM vm, ChoiceGenerator<?> currentCG);
void choiceGeneratorProcessed(VM vm, ChoiceGenerator<?> processedCG);

void methodEntered(VM vm, ThreadInfo currentThread, MethodInfo enteredMethod);
void methodExited(VM vm, ThreadInfo currentThread, MethodInfo exitedMethod);

}

Rather than discussing all the above methods, we present a number of listeners that use some of those methods.

7.5 Printing the Bytecode Mnemonics

As a simple example, we implement a listener that prints the mnemonics of the bytecode instructions executed by JPF.
For example, if we apply this listener to the HelloWorld app, then JPF produces the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
HelloWorld.main()

== search started: 11/15/18 12:01 PM
invokeclinit
new
dup
iconst_1

80

invokespecial
aload_0
invokespecial
...

We name our listener Mnemonics. In this class, we are only interested in the events signalling the execution of
a bytecode instruction. Therefore, we implement the VMListener interface. Since we are only interested in a single
event, we start from default implementations by extending the ListenerAdapter class. Hence, we arrive at the
following class header.

public class Mnemonics extends ListenerAdapter implements VMListener

The method executeInstruction signals which instruction JPF will execute next. In JPF, instructions are
represented as instances of the class Instruction, which is part of the package gov.nasa.jpf.vm. The next
instruction is provided as an argument of the executeInstruction method. The class Instruction contains
the method getMnemonic that returns the mnemonic of the instruction. Hence, the executeInstruction
method can be implemented as follows.

public void executeInstruction(VM vm, ThreadInfo currentThread, Instruction instruction) {
System.out.println(instruction.getMnemonic());

}

7.6 Timing the Garbage Collector
Next, we develop a listener that times the garbage collector every time it is invoked by JPF. The methods gcBegin
and gcEnd signal the beginning and end of garbage collecting. Both are part of the VMListener interface. Hence,
we start with the following class header.

public class Garbage extends ListenerAdapter implements VMListener

To keep track of the current time (in milliseconds), we introduce the following attribute.

private long time;

Whenever the garbage collector begins, we save the current time in the attribute.

public void gcBegin(VM vm) {
this.time = System.currentTimeMillis();

}

Whenever the garbage collector ends, we use the current time and the time when the garbage collector began, saved in
the attribute, to compute the number of milliseconds the garbage collector has been active and print the result.

public void gcEnd(VM vm) {
System.out.printf("Garbage collection: %d milliseconds%n",
System.currentTimeMillis() - time);

}

7.7 Amount of Nondeterminism
In our next example, we determine the amount nondeterminism, that is, the maximum number of transitions that
leave a state. Since this information has to be extracted from JPF’s virtual machine, we implement the VMListener
interface. Since we can only print this information at the end of the search, we also implement the SearchListener
interface. Hence, we extend the ListenerAdapter class.

81

public class AmountOfNondeterminism extends ListenerAdapter
implements SearchListener, VMListener

We use the attribute max to keep track of the maximal amount of nondeterminism observed so far.

private int max;

In the constructor, we initialize this attribute to zero.

public AmountOfNondeterminism() {
this.max = 0;

}

Whenever JPF encounters a nondeterministic choice, its virtual machine sends a notification which amounts to
an invocation of the choiceGeneratorSet method. This method receives two arguments: a reference to JPF’s
virtual machine, represented by the VM class, and the ChoiceGenerator object that represents the nondetermin-
istic choice in JPF. The number of nondeterministic choices of this ChoiceGenerator is returned by the method
getTotalNumberOfChoices. Hence, the method choiceGeneratorSet can be implemented as follows.

public void choiceGeneratorSet(VM vm, ChoiceGenerator<?> newCG) {
this.max = Math.max(this.max, newCG.getTotalNumberOfChoices());

}

The end of the search is signalled by the searchFinished method of the SearchListener interface. To
print the maximum amount of nondeterminism, we implement the searchFinished method as follows.

public void searchFinished(Search search) {
System.out.printf("%n==%n");
System.out.printf("maximum amount of nondeterminism: %d choice(s)%n", this.max);

}

7.8 A Simple Profiler
Let us develop a listener that, at the end of the search, prints the (array) objects that have been created and the methods
that have been executed by JPF. For example, if we apply this listener to the HelloWorld app, then JPF produces
the following output.

JavaPathfinder core system v8.0 (rev ...) - (C) 2005-2014 United States Government. All rights reserved.

== system under test
HelloWorld.main()

== search started: 05/12/18 10:05 AM
Hello World!

Created arrays
120 char
2 java.lang.String
2 java.util.Hashtable$Entry
1 java.lang.Thread$State
...
Created other objects
116 java.lang.String
78 java.lang.Class
11 java.util.Hashtable$Entry

82

...
Invoked methods
24 <init> of java.lang.Object
12 hashCode of java.lang.String
11 put of java.util.Hashtable
...

== results
no errors detected
...

This tells us that 120 character arrays and 116 Strings have been created and the constructor of the Object class
has been executed 24 times.

In order to implement this listener, we need to keep track of several events: the creation of an object, the execution
of a method, and the end of the search. These are signalled by the methods objectCreated and methodEntered
of the interface VMListener, and the method searchFinished of the interface SearchListener. Since the
class ListenerAdapter provides default implementations for the interfaces VMListener and SearchListener,
we create the class Profiler with the following header.

public class Profiler extends ListenerAdapter implements
SearchListener, VMListener

In JPF, objects are represented by instances of the class ElementInfo and methods are represented by instances
of the class MethodInfo. The type of an object is represented in JPF by instances of the class ClassInfo. All
these classes are part of the package gov.nasa.jpf.vm. In order to keep track of the objects that have been created
and the methods that have been executed by JPF and the number of times that these objects have been created and
these methods have been executed, we introduce the following attributes.

private Map<ClassInfo, Integer> arrays;
private Map<ClassInfo, Integer> objects;
private Map<MethodInfo, Integer> methods;

As we will see later, for array objects we use their base types, represented by ClassInfo objects, as keys in the map
arrays. Initially, JPF has neither created any object nor executed any methods. Hence, we initialize the attributes
arrays, objects, and methods in the constructor of our Profiler class as follows.

public Profiler() {
this.arrays = new HashMap<ClassInfo, Integer>();
this.objects = new HashMap<ClassInfo, Integer>();
this.methods = new HashMap<MethodInfo, Integer>();

}

Whenever an object is created by JPF’s virtual machine, the method objectCreated method is invoked. This
method takes a ElementInfo object, representing the object that is created, as an argument. In our listener, we
implement this method by incrementing the number of objects that have been created of its given type. We distinguish
between objects that are arrays and that are not, using the method isArray of the class ElementInfo. To get
the type of an object, that is, to get the ClassInfo object corresponding to an ElementInfo object, we use
the method getClassInfo of the class ElementInfo. For a ClassInfo object that represents the type of an
array, its base type can be obtained by means of the getComponentClassInfo method of the ClassInfo class.
Hence, whenever an object is created, the attributes arrays and objects can be updated as follows.

public void objectCreated(VM vm, ThreadInfo currentThread, ElementInfo newObject) {
if (newObject.isArray()) {
ClassInfo clazz = newObject.getClassInfo().getComponentClassInfo();
if (this.arrays.containsKey(clazz)) {
this.arrays.put(clazz, this.arrays.get(clazz) + 1);

83

} else {
this.arrays.put(clazz, 1);

}
} else {
ClassInfo clazz = newObject.getClassInfo();
if (this.objects.containsKey(clazz)) {
this.objects.put(clazz, this.objects.get(clazz) + 1);

} else {
this.objects.put(clazz, 1);

}
}

}

Whenever a method is executed, the method methodEntered is triggered. This method takes a MethodInfo
object, representing the method that is executed, as an argument. Hence, whenever a method is executed the attribute
methods can be updated as follows.

public void methodEntered(VM vm, ThreadInfo thread, MethodInfo method) {
if (this.methods.containsKey(method)) {
this.methods.put(method, this.methods.get(method) + 1);

} else {
this.methods.put(method, 1);

}
}

In order to print the objects and methods from highest to lowest frequency, we need to sort the entries of the maps
by value. For that purpose, we pair their names and frequencies so that they can be sorted by frequency.

private class Pair implements Comparable<Pair> {
private final int frequency;
private final String name;

public Pair(int frequency, String name) {
this.frequency = frequency;
this.name = name;

}

public String toString() {
return this.frequency + "\t" + this.name;

}

public int compareTo(Pair other) {
return other.frequency - this.frequency;

}
}

The end of the search is signalled by the searchFinished method. At that point, we can print the desired
output as follows.

public void searchFinished(Search search) {
List<Pair> list = new ArrayList<Pair>();
for (ClassInfo clazz : this.arrays.keySet()) {
list.add(new Pair(this.arrays.get(clazz), clazz.getName()));

}
Collections.sort(list);

84

System.out.println("Created arrays");
for (Pair pair : list) {
System.out.println(pair);

}

list = new ArrayList<Pair>();
for (ClassInfo clazz : this.objects.keySet()) {
list.add(new Pair(this.objects.get(clazz), clazz.getName()));

}
Collections.sort(list);
System.out.println("Created other objects");
for (Pair pair : list) {
System.out.println(pair);

}

list = new ArrayList<Pair>();
for (MethodInfo method : this.methods.keySet()) {
list.add(new Pair(this.methods.get(method), method.getName() + " of " + method.getClassInfo().getName()));

}
Collections.sort(list);
System.out.println("Invoked methods");
for (Pair pair : list) {
System.out.println(pair);

}
}

7.9 Parametrizing a Listener
Now assume that we want to parametrize the listener, that is, we want to customize it by means of some JPF prop-
erty. Suppose we want to give the user the opportunity to specify which string is used to separate the states of
a transition in our StateSpacePrinter. By default, this separator is “->”. We introduce the JPF property
statespaceprinter.separator. This property can be set by the user in a properties file or as a command line
argument. For example, the user can add

statespaceprinter.separator=-->

to the application properties file. To our class, we add the attribute

private String separator;

We initialize this attribute in the constructor. Recall that a Config object contains the JPF properties. The
Config class contains methods to extract the values of JPF properties. For example, the method getString
extracts the string value of some JPF property. The method takes two arguments, the name of the JPF property and the
default value (in case the Config object does not contain any value for the JPF property). For example,

config.getString("statespaceprinter.separator", "->");

returns the value of the JPF property statespaceprinter.separator if that property is defined in the Config
object config, and returns “->” otherwise.

We change the signature of the constructor: we add a parameter of type Config. When JPF constructs a
StateSpacePrinter, it provides a Config object as argument to the constructor. Hence, our modified con-
structor now looks as follows.

public StateSpacePrinter(Config config) {

85

this.source = -1;
this.separator = config.getString("statespaceprinter.separator", "->");

}

A constructor of a listener can either take no arguments, one argument of type Config, or two arguments, the first of
type Config and the second of type VM. We have already seen examples of the first and second case above. We will
present an example of the third case later.

Of course, we also have to modify the stateAdvanced method as follows.

public void stateAdvanced(Search search) {
this.source = this.target;
this.target = search.getStateId();
if (this.source != -1) {
System.out.printf("%d %s %d%n", this.source, this.separator, this.target);

}
}

7.10 Compiling a new Listener
The StateSpacePrinter listener relies on several classes that are part of JPF such as, for example, ListenerAdapter,
which is part of the package gov.nasa.jpf. The bytecode of these classes, which are needed to compile the
StateSpacePrinter class, can be found in the jar file jpf.jar. This jar file can be found in the build directory
of jpf-core. If jpf-core has been installed in the directory /cs/home/franck/projects/jpf/jpf-core,
then the StateSpacePrinter class can be compiled as follows.

javac -cp /cs/home/franck/projects/jpf/jpf-core/build/jpf.jar;. StateSpacePrinter.java

In Eclipse and NetBeans, if the listener StateSpacePrinter is in a different project than jpf-core, then the
jar file jpf.jar needs to be added to to the project.

7.11 Using a new Listener: classpath versus native_classpath
As we already mentioned earlier, JPF is implemented as a JVM. Therefore, JPF has a classpath. This classpath can
be set in a configuration file using the classpath property. JPF’s classpath should contain the Java bytecode of the
classes that need to be model checked. That is, it should contain the bytecode of the system under test and any classes
used by it.

Since JPF is implemented in Java, it runs on top of a JVM, which we will call the host JVM. This host JVM has a
classpath as well. This classpath can be set in a configuration file using the native_classpath property. It should
contain the bytecode of the classes that are needed to run JPF and its extensions, such as listeners.

Assume that the bytecode of the listener StateSpacePrinter can be found in the directory /cs/home/franck/projects/listeners/.
Suppose that the bytecode of the app HelloWorld can be found in the directory /cs/home/franck/projects/code/.
In that case, we can run JPF on the HelloWorld app with the StateSpacePrinter listener using the following
application configuration file.

target=HelloWorld
classpath=/cs/home/franck/projects/code/
native_classpath=/cs/home/franck/projects/listeners/
listener=StateSpacePrinter

86

Chapter 8

Implementing a Reporter

8.1 The PublisherExtension Interface
Rather than using print statements as in the StateSpacePrinter, we can also use JPF’s report system to pro-
vide the results of the verification effort to the user. To exploit the report system, we implement the interface
PublisherExtension, which is part of the package gov.nasa.jpf.report.

public interface PublisherExtension {
void publishStart(Publisher publisher);
void publishTransition(Publisher publisher);
void publishPropertyViolation(Publisher publisher);
void publishConstraintHit(Publisher publisher);
void publishFinished(Publisher publisher);
void publishProbe(Publisher publisher);

}

The PublisherExtension interface contains methods which are invoked whenever a particular event occurs. For
example, the publishTransition method is invoked whenever a transition is traversed by JPF. These meth-
ods receive an object of type Publisher as argument. The class Publisher, which is part of the package
gov.nasa.jpf.report, contains methods that provide information about how the data is formatted by JPF. For
example, the method getOut returns the PrintWriter object which is used by JPF to print the data. The type
of PrintWriter object that JPF uses can be set by means of the JPF property report.publisher. Its default
value is console, but JPF can also produce XML by setting

report.publisher=xml

in the application properties file.

8.2 The State Space in XML Format
The earlier mentioned class ListenerAdapter provides default implementations of all method specifications in
the interface PublisherExtension. Hence, the header of our StateSpacePrinter class becomes as follows.

public class StateSpacePrinter extends ListenerAdapter
implements SearchListener, PublisherExtension

Since we want to publish data whenever a transition is traversed, we implement the publishTransition method.
This method can be implemented as follows.

public void publishTransition(Publisher publisher) {
PrintWriter out = publisher.getOut();

87

*

1

*

1

JPF

Reporter SearchListenerAdapter �interface�
SearchListener

PrintWriterPublisher

�interface�
PublisherExtension

PublisherExtensionAdapter

Figure 8.1: UML diagram of the listener interfaces and related classes.

if (this.source != -1) {
???

}
}

Now that we have moved the printing of the transition to the publishTransition method, we can remove it
from the stateAdvanced method. The latter method can be simplified to the following.

public void stateAdvanced(Search search) {
this.source = this.target;
this.target = search.getStateId();

}

We have left to register our StateSpacePrinter class as a PublisherExtension. This is done in the
constructor as follows.

public StateSpacePrinter(Config config, JPF jpf) {
this.source = -1;
this.target = -1;
jpf.addPublisherExtension(Publisher.class, this);

}

Note that this constructor takes two arguments: a Config object and a JPF object. The latter is needed for JPF’s
reporting system.

88

Chapter 9

Implementing a Search Strategy

In this chapter we provide a recipe for implementing a search strategy within Java Pathfinder (JPF). As a running
example, we use depth-first search (DFS). We name our class DFSearch.

9.1 The Structure of the Class
The Search class, which resides in the package gov.nasa.jpf.search, contains numerous attributes and meth-
ods that may be of use for implementing a search strategy. Hence, we extend this class.

import gov.nasa.jpf.search.Search;

public class DFSearch extends Search {
...

}

The constructor of the Search class takes two arguments. The first argument is a Config object. The class
Config is part of the package gov.nasa.jpf. The Config object contains the JPF properties. These prop-
erties can be set, for example, in the jpf.properties file. The second argument is a VM object. The package
gov.nasa.jpf.vm contains the VM class. The VM object provides the search a reference to JPF’s virtual machine.
To properly initialize the Search object, we add the following constructor to our DFSearch class (and import the
classes Config and VM).

public DFSearch(Config config, VM vm) {
super(config, vm);

}

If JPF is configured to use our DFSearch, JPF will construct a DFSearch object with a Config object captur-
ing JPF’s configuration and a VM object representing JPF’s virtual machine. For DFSearch to properly interact with
JPF, its constructor has to be declared public.

The Search class is abstract. It contains the abstract method search. This method drives the search. It visits
the states of the system under test in a systematic way by traversing transitions. In our DFSearch we implement the
search method. We develop our implementation of the search method in a number of steps.

9.2 The Basic Search
To implement the basis of the search, we use the following three methods from the Search class that categorize the
current state. The method isNewState tests whether the current state has been visited before by JPF. The method
isEndState tests whether the current state is a final state. The method isIgnoredState tests whether the
current state should be ignored by the search. States can, for example, be ignored by using in the system under test the

89

method ignoreIf of JPF’s class Verify which is part of the package gov.nasa.jpf.vm (the Verify class
willl be discussed in more detail in Chapter ??). Several other methods that characterize the current state can be found
in the Search class.

To visit the states, the Search class provides the following two methods. The backtrack method returns the
search to the source state of the transition along which the current state was discovered by the search. The method
returns a boolean: whether the backtrack was successful. A backtrack fails, for example, in the initial state. The
forward method moves the search from the current state to another state along an unexplored transition. The method
returns a boolean: whether the forward was successful. A forward fails, for example, if there are no unexplored
transitions from the current state. The forward method also checks whether any property is violated after the
unexplored transition has been traversed (we will come back to this later).

The class VM contains the method restoreState(VMState) which restores the given state, which has been
visited before. Although we do not need this method to implement DFS, it comes in handy when implementing
breadth-first search (BFS) as we will show later.

Our implementation of the search method is similar to the implementation of depth-first search by means of a
stack (see, for example, [?,]. JPF keeps track of the stack and which states have already been visited by the traversal.
The latter can be tested with the isNewState method inherited from the Search class. Whenever a state that has
already been visited or a final state is reached, we try to backtrack. Before the start of the search method JPF has
already put the initial state on the stack. The methods forward and backtrack, also inherited from the Search
class, are the JPF counterparts of push and pop, respectively. Note that the stack is empty if and only if a pop fails. In
our setting this amounts to the backtrack failing, that is, returning false.

public void search() {
do {
while (this.forward() &&

this.isNewState() &&
!this.isEndState()) {

// do nothing
}

} while (this.backtrack());
}

Whenever we reach an ignored state, we try to backtrack as well.

public void search() {
do {
while (this.forward() &&

this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState()) {

// do nothing
}

} while (this.backtrack());
}

Below, we extend the above search method in several ways by adding different, orthogonal, aspects to the search.

9.3 Other Components
Other components of JPF, such as listeners, can end a search by setting the attribute done of the class Search to
true. This is reflected in the search method as follows.

public void search() {
do {
while (!this.done &&

90

this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

Other components of JPF can also request a search to backtrack by means of the method requestBacktrack of
the class Search. This method simply sets a boolean attribute to true. The method checkAndResetBacktrackRequest
of the class Search tests whether a backtrack has been requested and resets the attribute to false. Requests of back-
tracks can be addressed in our search method as follows.

public void search() {
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

A search can be configured in several ways. Next, we will introduce the JPF properties relevant to a search.

9.4 Search Properties
Recall that JPF can be configured to limit the depth of the search by setting the JPF property search.depth_limit.
The Search class contains the attribute depth, which is initialized to zero, that can be used to keep track of the
depth of the search. It also provides the method getDepthLimit which returns the maximal allowed depth of the
search.

We can keep track of the depth of the search as follows.

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.depth++;

}
return successful;

}

protected boolean backtrack() {
boolean successful = super.backtrack();
if (successful) {
this.depth--;

}
return successful;

91

}

public void search() {
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

We can limit the depth of the search as follows.

private boolean checkDepthLimit() {
return this.depth < this.getDepthLimit();

}

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.depth++;
successful = this.checkDepthLimit();

}
return successful;

}

protected boolean backtrack() {
boolean successful = super.backtrack();
if (successful) {
this.depth--;

}
return successful;

}

public void search) {
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

92

Recall that the JPF property search.min_free captures the minimal amount of memory, in bytes, that needs
to remain free. The method checkStateSpaceLimit of the class Search checks whether the minimal amount
of memory that should be left free is still available. We will use the attribute done to end the search if we run almost
out of memory as follows.

public boolean checkStateSpaceLimit() {
boolean available = super.checkStateSpaceLimit();
if (!available) {
this.done = true;

}
return available;

}

public void search() {
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState() &&
this.checkStateSpaceLimit()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

Recall that the JPF property search.multiple_errors tells us whether the search should report multiple
errors (or just the first one). The forward method also checks whether any property is violated after the unexplored
transition has been traversed. If a violation has been detected then the attribute done is set to true if and only if JPF
has been configured to report at most one error. The method hasPropertyTermination of the class Search
checks whether a violation was encountered during the last transition. The method returns true if and only if a violation
was encountered and the attribute done is set to true. In the context below (that is, being invoked immediate after the
forward method), the latter denotes that JPF has been configured to report at most one error. Furthermore, if done
is set to false (which in this context denotes that JPF has been configured to report multiple errors), then the attribute
requesting a backtrack is set to true.

public void search() {
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState() &&
this.checkStateSpaceLimit() &&
!this.hasPropertyTermination()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

}

93

Assume that we are in a state that is new and neither final nor ignored and also suppose that the forward call
returns true. We distinguish the following three cases.

1. If the forward method does not encounter a violation, then hasPropertyTermination returns false and,
hence, the search continues.

2. If the forward method encounters a violation and search.multiple_errors is set to false, then the
attribute done is set to true and, therefore, hasPropertyTermination returns true. Hence, the search
terminates.

3. If the forward method encounters a violation and search.multiple_errors is set to true, then the
attribute done is set to false and, therefore, hasPropertyTermination returns false and the attribute
requesting a backtrack is set to true. Hence, the search continues. In the next iteration, the search attempts to
backtrack since checkAndResetBacktrackRequest returns true.

9.5 Notifications
A search should also notify listeners of particular events. The Search class provides the following methods. Note
that the methods below correspond to the methods of the interface A search should also notify listeners of particular
events. The Search class provides the following methods. Note that the methods below correspond to the methods of
the interface SearchListener, which can be found in the package gov.nasa.jpf.search.

The first group contains methods that notify listeners of events related to the current state of the search. The method
notifyStateAdvanced notifies the listeners that the current state has been reached as a result of a successful
forward invocation. The method notifyStateProcessed notifies the listeners that the current state has been
fully explored, that is, it has no unexplored outgoing transitions. The method notifyStateBacktracked notifies
the listeners that the current state has been reached by means of a backtrack. The method notifySearchStarted
notifies the listeners that the search has started and the method notifySearchFinished notifies the listeners that
the search has finished. Below, we present the simplest extension of the basic search so that we can introduce all the
above mentioned notifications.

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.notifyStateAdvanced();

} else {
this.notifyStateProcessed();

}
return successful;

}

protected boolean backtrack() {
boolean successful = super.backtrack();
if (successful) {
this.notifyStateBacktracked();

}
return successful;

}

public void search() {
this.notifySearchStarted();
do {
while (this.forward() &&

this.isNewState() &&

94

!this.isEndState()) {
// do nothing

}
} while (this.backtrack());
this.notifySearchFinished();

}

9.6 The Complete Search
We have left to adding the appropriate invocations of the notifyPropertyViolated and notifySearchConstraintHit
methods. The method notifyPropertyViolated notifies the listeners that a violation has been encountered in
the current state. Recall that in our setting the method hasPropertyTermination returns true if and only if a
violation of a property has been detected and JPF has been configured to report at most one error. Hence, this method
cannot be used to report violations of properties. Immediately after an invocation of the forward method, the at-
tribute currentError of the class Search is null if and only if no violation has been detected. Therefore, we can
use this attribute to determine whether we should report a violation of a property.

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.notifyStateAdvanced();
if (this.currentError != null) {
this.notifyPropertyViolated();

}
} else {
this.notifyStateProcessed();

}
return successful;

}

As we already mentioned in Section ??, JPF checks two constraints by default: the depth of the seach and the
amount of remaining memory. The method notifySearchConstraintHit notifies the listeners that a constraint
has been violated. Combining all the above and adding the appropriate invocations of the notifySearchConstraintHit
methods, we arrive at the following.

private boolean checkDepthLimit() {
return this.depth < this.getDepthLimit();

}

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.notifyStateAdvanced();
this.depth++;
successful = this.checkDepthLimit();
if (this.getCurrentError() != null) {
this.notifyPropertyViolated();

}
} else {
this.notifyStateProcessed();

}
return successful;

95

}

protected boolean backtrack() {
boolean successful = super.backtrack();
if (successful) {
this.notifyStateBacktracked();
this.depth--;

}
return successful;

}

public boolean checkStateSpaceLimit() {
boolean available = super.checkStateSpaceLimit();
if (!available) {
this.notifySearchConstraintHit("memory limit reached: " + this.minFreeMemory);
this.done = true;

}
return available;

}

private boolean checkDepthLimit() {
boolean below = this.depth < this.getDepthLimit();
if (!below) {
this.notifySearchConstraintHit("depth limit reached: " + this.depth);

}
return below;

}

public void search() {
this.notifySearchStarted();
do {
while (!this.done &&

!this.checkAndResetBacktrackRequest() &&
this.forward() &&
this.isNewState() &&
!this.isEndState() &&
!this.isIgnoredState() &&
this.checkStateSpaceLimit()) {

// do nothing
}

} while (!this.done &&
this.backtrack());

this.notifySearchFinished();
}

Although the code of the above search method is different from the code of the search method of JPF’s
DFSearch class, which is part of the package gov.nasa.jpf.search, their behaviour is the same.

9.7 Breadth-First Search

As a second example, we implement BFS in a class named BFSearch. We start with extending the class Search.

96

import gov.nasa.jpf.Config;
import gov.nasa.jpf.vm.VM;
import gov.nasa.jpf.search.Search;

public class BFSearch extends Search {
public BFSearch(Config config, VM vm) {
super(config, vm);

}
}

To implement the basic search, we need a few new ingredients. In particular, we use two methods of the class VM
which represents JPF’s virtual machine. The method getRestorableState returns a RestorableVMState
object which represents the current state. The class RestorableVMState is part of the package gov.nasa.jpf.vm.
The method restoreState(RestorableVMState) restores the given state, that is, the current state becomes a
previously visited state provided as an argument. Furthermore, the method isNewState of the class Search tests
whether the current state is new, that is, it has not been visited before by the search.

private RestorableVMState getRestorableState() {
return this.getVM().getRestorableState();

}

private void restoreState(RestorableVMState state) {
this.getVM().restoreState(state);

}

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
while (!queue.isEmpty()) {
RestorableVMState state = queue.poll();
this.restoreState(state);
while (this.forward()) {
if (this.isNewState() &&

!this.isEndState()) {
queue.offer(this.getRestorableState());

}
this.backtrack();

}
}

}

We do not store ignored states in the queue.

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
while (!queue.isEmpty()) {
RestorableVMState state = queue.poll();
this.restoreState(state);
while (this.forward()) {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState()) {

queue.offer(this.getRestorableState());

97

}
this.backtrack();

}
}

}

As before, the attribute done is used to end the search.

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
while (!this.done &&

!queue.isEmpty()) {
RestorableVMState state = queue.poll();
this.restoreState(state);
while (!this.done &&

this.forward()) {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState()) {

queue.offer(this.getRestorableState());
}
this.backtrack();

}
}

}

In our BFS implementation we decided not to support backtrack requests by other JPF components. The class
Search contains the method supportBacktrack which tests whether a search supports backtrack requests. This
method of the Search class always returns true. In our subclass BFSearch, we override this method as follows.

public boolean supportBacktrack() {
return false;

}

As is well known, breadth-first search visits the states level by level. Hence, we only need to increment the depth
whenever we reach the end of a level. To keep track of the end of a level, we use the value null. After enqueuing
the initial state in line 3, we enqueue null in line 4. Whenever we dequeue null, that is, we reach the end of a
level, we increment the depth and enqueue null to keep track of the end of the next level (see line 9–11). Note
that the loop of line ??-?? maintains the invariant that the queue contains null. Hence, we replace the condition
!queue.isEmpty() with queue > 1 in line 7.

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
queue.offer(null);
while (!this.done &&

queue.size() > 1) {
RestorableVMState state = queue.poll();
if (state == null) {
this.depth++;
queue.offer(null);

} else {
this.restoreState(state);
while (!this.done &&

98

this.forward()) {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState()) {

queue.offer(this.getRestorableState());
}
this.backtrack();

}
}

}
}

As for the depth-first search, we introduce a method checkDepthLimit that checks whether the depth has not
reached the limit yet. We use that method in line ?. Note that the method is invoked after the forward method
is invoked in line ?. As the forward takes us to the next level, but we have not incremented the depth yet, we
compensate for this by initializing depth to one, rather than zero.

private boolean checkDepthLimit() {
return this.depth < this.getDepthLimit();

}

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
queue.offer(null);
this.depth = 1;
while (!this.done &&

queue.size() > 1) {
RestorableVMState state = queue.poll();
if (state == null) {
this.depth++;
queue.offer(null);

} else {
this.restoreState(state);
while (!this.done &&

this.forward()) {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState() &&
this.checkDepthLimit()) {

queue.offer(this.getRestorableState());
}
this.backtrack();

}
}

}
}

To end the search when insufficient memory is available, we use the method checkStateSpaceLimit and the
attribute done as follows.

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());

99

queue.offer(null);
this.depth = 1;
while (!this.done &&

queue.size() > 1) {
RestorableVMState state = queue.poll();
if (state == null) {
this.depth++;
queue.offer(null);

} else {
this.restoreState(state);
while (!this.done &&

this.forward()) {
if (!this.checkStateSpaceLimit()) {
this.done = true;

} else {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState() &&
this.checkDepthLimit()) {

queue.offer(this.getRestorableState());
}
this.backtrack();

}
}

}
}

}

The JPF property search.multiple_errors can be dealt with in the same way as in our implementation of
depth-first search.

public void search() {
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();
queue.offer(this.getRestorableState());
queue.offer(null);
this.depth = 1;
while (!this.done &&

queue.size() > 1) {
RestorableVMState state = queue.poll();
if (state == null) {
this.depth++;
queue.offer(null);

} else {
this.restoreState(state);
while (!this.done &&

this.forward()) {
if (!this.checkStateSpaceLimit() ||

this.hasPropertyTermination()) {
this.done = true;

} else {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState() &&

100

this.checkDepthLimit()) {
queue.offer(this.getRestorableState());

}
this.backtrack();

}
}

}
}

}

In the notification code, we use two methods that we have not discussed before. The method notifyStateStored
notifies the listeners that the current state has been stored (so that it can be restored later). The method notifyStateRestored
notifies the listeners that the current state has been restored (by means of the restoreState method). Below, we
introduce all the notifications.

protected boolean forward() {
boolean successful = super.forward();
if (successful) {
this.notifyStateAdvanced();

} else {
this.notifyStateProcessed();

}
return successful;

}

protected boolean backtrack() {
boolean successful = super.backtrack();
if (successful) {
this.notifyStateBacktracked();

}
return successful;

}

private boolean checkDepthLimit() {
boolean below = this.depth < this.getDepthLimit();
if (!below) {
this.notifySearchConstraintHit("depth limit reached: " + this.depth);

}
return below;

}

public boolean checkStateSpaceLimit() {
boolean available = super.checkStateSpaceLimit();
if (!available) {
this.notifySearchConstraintHit("memory limit reached: " + this.minFreeMemory);
this.done = true;

}
return available;

}

public void search() {
this.notifySearchStarted();
Queue<RestorableVMState> queue = new LinkedList<RestorableVMState>();

101

queue.offer(this.getRestorableState());
this.notifyStateStored();
queue.offer(null);
this.depth = 1;
while (!this.done &&

queue.size() > 1) {
RestorableVMState state = queue.poll();
if (state == null) {
this.depth++;
queue.offer(null);

} else {
this.restoreState(state);
this.notifyStateRestored();
while (!this.done &&

this.forward()) {
if (!this.checkStateSpaceLimit() ||

this.hasPropertyTermination()) {
this.done = true;

} else {
if (this.isNewState() &&

!this.isEndState() &&
!this.isIgnoredState() &&
this.checkDepthLimit()) {

queue.offer(this.getRestorableState());
this.notifyStateStored();

}
this.backtrack();

}
}

}
}
this.notifySearchFinished();

}

The code of the above search method is quite different from the code of the search method of the class
BFSHeuristic of the package gov.nasa.jpf.search.heuristic. There are also the three differences in
behaviour. First of all, our search method checks whether the state space limit has been reached, whereas JPF’s does
not. Secondly, JPF’s search method signals that the initial state has been stored before it signals that the search has
started, whereas our search method signals those events in the opposite order. Thirdly, JPF’s search method does
not signal that the initial state has been restored (as it documented in the code), whereas our search method does.

102

Chapter 10

Handling Native Methods

Every JVM includes a native method interface (JNI) that allows Java applications to invoke native methods, that is,
methods that are implemented in a language other than Java but that are invoked from the Java application). This fea-
ture allows programmers to use code that has been already implemented in other languages. In some cases, accessing
code such as C and C++ from applications written in Java can increase the performance. Another advantage of JNI is
that it can be used when Java does not support certain platform-dependent features. Many of the classes of the Java
standard library include invocations of native code.

The core of the JPF is a JVM that is able to execute all of the bytecode instructions that are created by a Java
compiler. JPF itself is written in the Java programming language. That means that JPF is running on top of another
JVM which we call it the host JVM. Figure 10 demonstrates the different layers that are involved in model checking a
system under test using JPF.

Since the core of the JPF is a JVM that executes only Java bytecode instructions, it is not able to execute native
methods. Consider, for example, the following application.

public class Sine {
public static void main(String[] args) {
System.out.println(StrictMath.sin(0.3));

}
}

If we verify the above code, JPF reports the following error.

== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.UnsatisfiedLinkError: cannot find native java.lang.StrictMath.sin
at java.lang.StrictMath.sin(no peer)
at Sinus.main(Sine.java:3)

Its verification effort fails as it encounters the native method sin of the class StrictMath. However, JPF
provides two different mechanisms, which can be combined, to handle calls to native methods. We will discuss these
in the next sections. We will also present an extension of JPF, called jpf-nhandler1. It automates the use of both
mechanisms to handle calls to native methods. The only thing left to the developer is the application configuration file.

10.0.1 Peer Classes
One way to handle native calls in JPF is using peer classes. These are the special classes that are considered as part
of the system under test. The peer classes are verified by JPF and they are completely unknown to the host JVM. By

1bitbucket.org/nastaran/jpf-nhandler

103

bitbucket.org/nastaran/jpf-nhandler

implementing peer classes, we force JPF to use an alternative version of certain Java classes instead of the original
ones. More specifically, if there exists a peer class for some class, JPF loads and uses the peer class instead of the class
itself. Therefore, we can make JPF not verify certain classes, and use the peer classes as alternatives.

Recall that the StrictMath class includes the sin method, which is defined as native. One way handle the sin
native call is to create a peer class StrictMath that implements the sin method in pure Java. Since the original
class StrictMath is part of the package java.lang, our peer class is part of that package as well. To implement
the sin method in pure Java, we can use, for example, Bhaskara I’s sine approximation formula as follows.

package java.lang;

public class StrictMath {
public static double sin (double a) {
return 16 * a * (Math.PI - a) / (5 * Math.PI * Math.PI - 4 * a * (Math.PI - a));

}
}

Note that we do not need to implement all methods of the StrictMath class. After we have implemented
this peer class, we still have to ensure that JPF never loads and verifies the standard class StrictMath. This is
accomplished by adding the peer class StrictMath to JPF’s classpath.

target=Sine
classpath=C:/Users/franck/workspace/examples/bin

In this case, the directory C:\Users\franck\workspace\examples\bin\java\lang should contains the
file StrictMath.class.

10.1 Native Peer Classes
JPF’s model Java interface (MJI) can be used to transfer the execution from JPF to the host JVM. The so called
native peer classes play a key role in MJI. JPF uses a specific name pattern to associate the native peer classes
and their methods with the corresponding classes and methods. For example, the native peer class associated with
sun.misc.Unsafe is named JPF_sun_misc_Unsafe (see Figure ??). Whenever JPF gets to a call associated
with a native peer method, it delegates the call to the host JVM. Hence, the native call is not model checked, which is
impossible since JPF can only handle Java bytecode, but executed on the host JVM. Great care has to be taken when
developing a native peer class. For example, since classes and objects are represented differently in JPF than in an
ordinary JVM, in a native peer class one often has to translate from the one representation to the other and back.

104

Bibliography

[BBF+01] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci,
Philippe Schnoebelen, and Pierre McKenzie. Systems and Software Verification: Model-Checking Tech-
niques and Tools. Springer-Verlag, 2001.

[BJC+13] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen. Reversible debugging
software. Technical report, Cambridge University, Cambridge, United Kingdom, January 2013.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Shawn Laubach, Corina Pǎsǎreanu, Robby, and Hongjun
Zheng. Bandera: extracting finite-state models from Java source code. In Carlo Ghezzi, Mehdi Jazayeri,
and Alexander Wolf, editors, Proceedings of the 22nd International Conference on Software Engineering,
pages 439–448, Limerick, Ireland, June 2000. ACM.

[CGK+18] Edmund Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith. Model Checking.
The MIT Press, 2018.

[RDH03] Robby, Matthew Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular software model
checking framework. In Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 267–276, Helsinki, Finland, September 2003. ACM.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. Model checking
programs. Automated Software Engineering, 10(2):203–232, April 2003.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and Seungjoon Park. Model checking programs. In
Proceedings of the 15th IEEE International Conference on Automated Software Engineering, pages 3–12,
Grenoble, France, September 2000. IEEE.

105

	Installing JPF
	Installing Sources with Git
	Setting User Environment Variable JAVAHOME
	Running Gradle
	Adding to the System Environment Variable PATH
	Creating the site.properties File

	Updating Sources with Git
	Installing Sources with Git within Eclipse
	Updating Sources with Git within Eclipse
	Installing JPF Plugin for Eclipse
	Installing Sources with Git within NetBeans
	Updating Sources with Git within NetBeans
	Installing JPF Plugin for NetBeans
	Installing an Extension of JPF
	Installing Sources with Mercurial
	Running Ant
	Updating the site.properties File
	Updating Sources with Mercurial
	Installing Sources with Mercurial within Eclipse
	Updating Sources with Mercurial within Eclipse
	Installing Sources with Mercurial within NetBeans
	Updating Sources with Mercurial within NetBeans

	Running JPF
	Running JPF within a Shell or Command Prompt
	Detecting Bugs with JPF
	Running JPF within Eclipse
	Running JPF within NetBeans

	Configuring JPF
	Properties Files
	The Site Properties File
	The Project Properties Files
	The Application Properties Files

	JPF Properties
	Randomization

	Using an Extension of JPF
	Paths

	Using a Listener
	Using the StateSpaceDot Listener
	Using the BudgetChecker Listener
	Using the EndlessLoopDetector Listener

	Using a Search Strategy
	Depth-First and Breadth-First Search
	Search Properties

	Using a Reporter
	Console
	The report.console.start Property
	The report.console.transition Property
	The report.console.probe Property
	The report.console.propertyviolation Property
	The report.console.constraint Property
	The report.console.finished Property

	Implementing a Listener
	The SearchListener Interface
	Printing the State Space
	The State Space in DOT Format
	The VMListener Interface
	Printing the Bytecode Mnemonics
	Timing the Garbage Collector
	Amount of Nondeterminism
	A Simple Profiler
	Parametrizing a Listener
	Compiling a new Listener
	Using a new Listener: classpath versus nativeclasspath

	Implementing a Reporter
	The PublisherExtension Interface
	The State Space in XML Format

	Implementing a Search Strategy
	The Structure of the Class
	The Basic Search
	Other Components
	Search Properties
	Notifications
	The Complete Search
	Breadth-First Search

	Handling Native Methods
	Peer Classes
	Native Peer Classes

	Testing a Search Strategy
	Randomly Generating Randomized Java Code
	Recording Search Notifications

