
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 1 – Intro to Unix

2

What is UNIX?

•  An Operating System (OS)
•  Mostly coded in C
•  It provides a number of facilities:

•  Management of hardware resources
•  Directory and file system
•  Execution of programs

3

GUI vs. Command Line

•  When you log in to your EECS account,
you get a graphical interface built on top
of the Unix kernel

•  In this course, we are concerned with the
command line interface of Unix

•  You access it with the help of the shell, a
program that runs every time you open a
Terminal window

4

Hardware

Kernel

Compilers

Kernel-Shell Relationship

5

The Shell

•  The shell does 4 jobs repeatedly:

display
prompt

execute
command

process
command

read
command the shell

6

Unix Commands

•  There are many of them

•  We will see some of the most useful ones

•  The very basics:

•  ls, cp, mv, rm
•  cd, pwd, mkdir, rmdir
•  man

7

Some more commands

•  date Gives time and date

•  cal Calendar
cal 1969
cal 7 2011

•  passwd Changes your
 password

8

 You and the System

•  uptime Machine’s ‘up’ time

•  hostname Name of the machine

•  whoami Your name

•  who

9

history

% history 8

 325 12:48 ls

 326 12:48 m ex1.c

 327 12:49 who

 328 12:50 history 10

 329 12:52 ls -a

 330 12:56 ls Stack/

 331 12:57 ls

 332 12:57 history 8

10

echo
•  When one or more strings are provided as arguments,

echo by default repeats those strings on the screen.

% echo This is a test.

This is a test.

•  It is not necessary to surround the strings with quotes,
as it does not affect what is written on the screen.

•  If quotes (either single or double) are used, they are not
repeated on the screen.

% echo 'This is' "a test. "

This is a test.

•  To display single/double quotes, use \' or \"

11

The File System

•  Directory structure

•  Current working directory

•  Path names

•  Special notations

12

Directory Structure

13

Current Working Directory

•  In a shell, the command ls shows the contents
of the current working directory.

•  pwd shows the full path of the current working
directory.

•  cd changes the current working directory to
another.

14

Path Names

•  A path name is a reference to something in the
file system.

•  A path name specifies the set of directories you
have to pass through to find a file.

•  Directory names are separated by / in UNIX.

•  Path names beginning with / are absolute path
names.

•  Path names that do not begin with / are
relative path names (start search in current
working directory).

15

Special Characters

•  . refers to the current directory

•  .. refers to the parent directory
•  cd ..
•  cd ../Notes

•  ~ refers to the home directory
•  cat ~/lab3.c

•  To go directly to your home directory, type
•  cd

16

Wildcards (File Name Substitution)

•  Allow user to refer to several files at once

•  How to list all files in the current directory
that start with ‘a’?

 ls a*

17

? – Matches single character

•  ls a?.txt  
 

a1.txt a2.txt ab.txt  
 

•  ls lab1.???  
 

lab1.doc lab1.pdf

18

* - Matches several characters

•  ls a*.txt  
 

a1.txt a2.txt abcd.txt
abc.txt a.b.txt ab.txt  

•  ls lab1.*  
 

lab1. lab1.c lab1.doc
lab1.docx lab1.pdf

19

[…] – Matches all listed
characters

•  ls lab[123].pdf  
 

lab1.pdf lab2.pdf lab3.pdf  

•  ls a[ab]*.???  
 

abcd.txt abc.txt ab.txt

20

cat, more
% cat phone_book

Yvonne 416-987-6543

Amy 416-123-4567

William 905-888-1234

John 647-999-4321

Annie 905-555-9876

% more phone_book

Similar to cat, except that the file is displayed one screen at a time.

21

tail, head
% tail phone_book

Display the last 10 lines

% tail -5 phone_book

Display the last 5 lines

% tail -1 phone_book

Display the last line

% tail –n +13 phone_book

Display the file starting from the 13th line.

head is similar for the beginning of the file

22

wc

% wc a1.txt

 12 13 68 a1.txt

% wc *.pdf

 12 13 68 lab1.pdf

 17 18 101 lab2.pdf

 17 31 165 lab3.pdf

 46 62 334 total

% wc -c a1.txt

68 a1.txt

% wc -w a1.txt

13 a1.txt

% wc -l a1.txt

12 a1.txt

23

cmp, diff
% cmp file1 file2

file1 file2 differ: char 9, line 2

% diff phone_book phone_book2

2c2

< Amy 416-123-4567

> Amy 416-111-1111

24

Stdin / Stdout

•  Each Unix command reads input from
standard input (stdin) and produces output
to standard output (stdout)

•  By default, stdin is the keyboard, and
stdout is the screen

•  But this can change…

25

Input / Output Redirection

•  Redirect output to a file (overwriting)
•  ls > all_files.txt

•  Append output to a file
•  ls >> all_files.txt

•  Read input from a file
•  wc < all_files.txt

26

Pipes

•  A way to connect the output of one
program to the input of another program
without a temporary file.

ls –1 | wc –l count number of files

who | sort sort user list

who | wc –l count users

27

Command Terminators

•  New line or ; - Execute in order

 % date; who

•  & - Do not wait for command to complete

 % nedit lab9.c&
•  Used to put a long-running command

“in the background” while you continue
to use the terminal for other
commands.

28

Single Quotes

•  What’s the difference between these two
commands?

 % ls a*t

 % ls 'a*t'

•  Quotes do not have to surround the whole
argument.

 % echo a'*'t

 a*t

29

Double Quotes

•  Double quotes can also be used to protect
special characters, but …

•  The shell will interpret $, \ and `…`
inside the double quotes.

•  So don’t use double quotes unless you
intend some processing of the quoted
string.

30

sort

% cat phone_book

Yvonne 416-987-6543

Amy 416-123-4567

William 905-888-1234

John 647-999-4321

Annie 905-555-9876

% sort phone_book

Amy 416-123-4567

Annie 905-555-9876

John 647-999-4321

William 905-888-1234

Yvonne 416-987-6543

31

sort – Useful options

sort –r reverse normal order

sort –n numeric order

sort –nr reverse numeric order

sort –f case insensitive

32

uniq

•  Removes repeated lines in a file

 uniq [-c] [input [output]]

•  Notice difference in args:
•  1st filename is input file
•  2nd filename is output file

•  If input is not specified, use stdin

•  If output is not specified, use stdout

33

uniq

•  Only works for lines that are adjacent, e.g.

abacus

abacus

bottle

abacus

 becomes

abacus

bottle

abacus

34

uniq

•  With the -c option output is a count of
how many times each line was repeated

•  For previous input:

 2 abacus

 1 bottle

 1 abacus

35

sort + uniq

•  uniq is a little limited but we can combine
it with sort

 sort | uniq –c

•  Counts number of times line appears in
file

•  Output would now be:

 3 abacus

 1 bottle

36

sort + uniq

abacus

abacus

bottle

abacus

abacus

abacus

abacus

bottle

3 abacus

1 bottle sort uniq

37

cut

•  Used to split lines of a file

•  A line is split into fields

•  Fields are separated by delimiters

•  A common case where a delimiter is a
space:

 hello there world
field

delimiter

38

cut - Syntax

•  cut [-ffields] [-ccolumns]
 [-ddelimiter] [filename …]

•  If filenames are given on command line,
input is taken from those files

•  If no filenames are given, input comes
from stdin

•  This approach to input is very common

39

cut – Extracting fields

 cut -f3 -d,

•  Extract field 3 from each line

•  Fields are separated by commas

•  With an input of

 hello,there,world,!

•  output would be just world

40

cut – Extracting characters

 cut -c30-40

•  Extract characters 30 through 40
(inclusive) from each line

•  Note that we can use ranges (e.g. 4-10) or
lists (e.g. 4,6,7) as values for -f or -c.

41

tr

•  Maps characters from one value to
another

 tr string1 string2

 tr [-d] [-c] string

•  Input is always stdin, output is always
stdout

•  A character in string1 is changed to the
corresponding character in string2

42

tr

•  A simple example:

 tr x y

•  All instances of x are replaced with y

•  Each string can be a set of characters

 tr ab xy

•  a is replaced with x, b is replaced with y

43

tr

•  The -d option means delete the given
characters

 tr -d xyz

•  Delete all x, y, and z characters

•  The -c option means "complement”

 tr -d -c xyz

•  Delete everything except x, y, and z

44

Why Are These So Weird?

•  Unix philosophy:
 Do one thing and do it well

•  tr doesn't know how to read from files,
but the cat command does:

 cat filename | tr …

45

grep

•  Outputs all lines in the input that match
the given regular expression
grep [options] regex [file …]

 e.g.

 grep hello *.txt

outputs all lines containing hello in any file
that ends in .txt in the current directory

46

Regular Expressions

•  A regular expression is a special string (a
sequence of characters)

•  Describes a search pattern, i.e. each
regular expression matches a set of
strings

•  grep uses regular expressions to search
the contents of files

•  Looks like wildcards but is quite different!

47

Literals

•  Letters and numbers are literal - that is
they match themselves:

•  The regular expression
 foobar

matches only the string
 foobar

48

. – Matches exactly one character

•  The regular expression
 fooba.

Matches the following strings
 foobar
 foobat
 foobay
 etc.

49

. – Matches exactly one character

•  Each dot must match exactly one
character

•  The regular expression
 f..bar

matches
 foobar or fWRbar

but not
 fubar or fooobar

50

[] – Matches any listed character

•  The regular expression
 foob[aeiou]r

matches only the 5 strings
 foobar
 foober
 foobir
 foobor
 foobur

51

* - 0 or more of the last character

•  The regular expression
 fo*

matches
 f
 fo
 foo
 fooo
 foooo

etc.

52

* - 0 or more of the last character

•  The regular expression
 [0-9][0-9]*

matches all decimal numbers including
ones with leading zeros such as

 000042

53

* - 0 or more of the last character

•  The regular expression
 .*

matches anything
including an empty string

54

^ $ - Beginning and end of line

•  The regular expression
 ^foobar

matches any line that starts with
 foobar

•  The regular expression
 foobar$

matches any line that ends with
 foobar

55

grep

•  Let’s say you want to search for any string
that starts with b followed by 0 or more a’s
in file a.txt

•  The following will not work
 grep ba* a.txt

•  Why not?

56

grep Options

•  -i case-insensitive search (don’t
distinguish between a and A)

•  -v invert search (output lines which don’t
match)

•  -l Output only the names of files with
matching lines

•  -c Output only the number of lines that
match

57

grep – Interesting Uses

 grep -v '^#'

Removes all lines beginning with '#'

 grep -v '^[]*$'

Removes all lines which are either

empty or contain only spaces

58

fgrep (faster grep)

•  Like grep, fgrep searches for things but
does not do regular expressions - just
fixed strings

 fgrep 'hello.*goodbye'

Searches for string “hello.*goodbye” - does
not match it as a regular expression

59

egrep (extended grep)

•  grep interprets only basic regular
expressions.

•  Extended regular expressions use
additional metacharacters to allow
expression of more elaborate search
patterns

•  Use egrep if you require this

60

? – 0 or 1 of the last character

•  The regular expression
 [1-9][0-9]?

matches all numbers from 1 to 99

•  The regular expression
 colou?r

matches
 color
 colour

61

| - Used as an OR

•  The extended regular expression
 0|[1-9][0-9]?

matches all numbers from 0 to 99

•  Parentheses can be used as well

62

Finding Files

•  Wildcards are limited

•  The following commands help us to find
files and run commands on them

63

find

•  Finds files with given properties

 find path [expression …]

•  Not just regular files - includes directories,
devices - everything it finds in the
filesystem

•  Starts at the given path and examines
every file in every directory it finds
recursively

64

find

•  We can specify expressions to designate
which files we are interested in and what
to do with them

•  All expressions begin with a dash

 find ~ -print

Outputs the name of every file in your home
directory (including subdirectories)

65

find

•  Expressions are handled left-to-right

•  For each file examined, each expression
is evaluated as true or false

•  Stop processing for a file if an expression
is false

•  e.g. –empty evaluates to true if the file is
empty, false otherwise

66

find

•  Another expression: -type filetype

•  True if the examined file is of the specified
type

•  f = regular file, d = directory

 find ~ -type d –empty

Outputs all empty directories under your
home directory.

67

find

-name pattern
true if the name of the file matches the
wildcard pattern

 find ~ -type f -name '*.doc’

Finds all files under your home directory
which are regular files and end in .doc

68

xargs

•  Syntax: xargs command

•  Executes given command for each word
in its stdin

find ~ -type f -name '*.txt’ |
xargs wc –l

Counts number of lines in all .txt files

69

File permissions

•  Try ls –l

•  Each file comes with a 10-character string

 -rwxr--r--

The owner of this file can read, write, and
execute this file, but everybody else can
only read it

70

File/Directory Permissions

Letter Meaning
r Permission to read the file or the

contents of a directory
w Permission to write to the file, or

create a new file in a directory
x For a file: permission to execute

For a directory: permission to enter
the directory and execute programs
in it

71

Changing Permissions

Letter Meaning
u The user who owns the file
g The group the file belongs to
o The other users
a All of the above

72

chmod Command

chmod who+permissions filename

chmod who-permissions filename

chmod u+x my_script

chmod a+r index.html

chmod a+rx Notes/

73

chmod with Binary Numbers

chmod UGO myFile

U = a number from 0 to 7 whose binary
representation denotes the read, write, and
execute permissions for the user

G,O = Same for group and others

chmod 644 myFile

6 means the user can read and write

Group and others can only read

74

chgrp Command

A file owner can change the group a file
belongs to

chgrp grp_name filename

Examples:

chgrp submit lab1

chgrp labtest lab9

75

id Command

To display the group(s) a user belongs to,
use the id command:

% id cse12345

uid=12695(cse12345)
gid=10000(ugrad)
groups=10000(ugrad)

76

Processes

•  Each running program on a UNIX system
is called a process.

•  Processes are identified by a number
(process id or PID).

•  Each process has a unique PID.

•  There are usually several processes
running concurrently in a UNIX system.

77

ps command

 % ps a list all processes

 PID TTY STAT TIME COMMAND

 2763 pts/11 S+ 0:10 pine

14468 pts/19 R+ 0:00 ps

14780 pts/21 S 0:00 xterm

26772 pts/2 S+ 0:01 emacs

 ...

78

Background processes

•  A process may be in the foreground, in the
background, or be suspended

•  To see all background processes: jobs

•  To bring a process to the foreground: fg

•  To suspend the foreground process:
CTRL-Z

•  Put all suspended processes to the
background: bg

79

kill

% kill -KILL PID

to terminate a process

% kill –STOP PID

to suspend a process

80

Frequently Used Terminal Keystrokes

•  Kill the current process: CTRL-C

•  Suspend the current process: CTRL-Z

•  End of input: CTRL-D

81

Homework

•  Activate your EECS account before the
lab (instructions on course webpage)

•  Login to your EECS account and try all
these commands

•  Read the tutorials posted as part of the
labs

•  Answer lab questions

