
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 2 – Shell scripts

2

What Is a Shell?

•  A program that interprets your requests to
run other programs

•  Most common Unix shells:
•  Bourne shell (sh)
•  C shell (csh - tcsh)
•  Korn shell (ksh)
•  Bourne-again shell (bash)

•  In this course we focus on Bourne shell
(sh)

3

A note of caution

•  The default shell in your EECS account is
not the Bourne shell

•  For all the examples in this set of slides to
work interactively, first run sh

•  Many things are similar between the
different kinds of shell, but there are
important differences

4

The Bourne Shell

•  A high level programming language

•  Processes groups of commands stored in
files called scripts

•  Includes
•  Variables
•  Control structures

5

Shell scripts

•  Text files that contain one or more shell
commands

•  # indicates a comment
•  Except on line 1 when followed by !

% cat welcome

#!/bin/sh

echo 'Hello World!’

6

Shell scripts must be executable

% welcome

welcome: Permission denied.

% chmod 744 welcome

% ls -l welcome

-rwxr--r-- 1 bil …

% welcome

Hello World!

7

Just like a command

% welcome > greet_them

% cat greet_them

Hello World!

8

Shell Script Variables

•  All shell variables store strings

•  There are no numeric values in a shell
script!

•  There are five possible types of shell
script variables…

9

1. Command-line arguments

•  $0 is the name of the script

•  $1 is the first command-line argument

•  $2 is the second command-line argument

•  …

•  $# is the number of arguments

•  See scripts showargs and chex

10

2. Process-related variables

•  $? is the exit status of the last command

•  0 – successful execution

•  Non-zero – Something went wrong

•  See script igrep

11

Redirection tricks

•  Want to run a command to check its exit
status and ignore the output?

diff f1 f2 > /dev/null

•  Want to redirect standard error and
standard output?

diff f1 f2 >& /dev/null

12

3. Environment variables

•  Contain information about the system

•  Available in all shells

•  Examples: USER, HOME, PATH

•  To display your environment variables,
type printenv

13

4. Shell Variables

•  Used to tailor the current shell

•  Examples: cwd, prompt

•  To display your shell variables, type
set

14

5. User Variables

•  Variable name: combination of letters,
numbers, and underscore character (_)
that do not start with a number

•  Avoid existing commands and shell/
environment variables

•  Assignment: name=value

•  No space around the equal sign!

15

User Variables

•  To use a variable: $varname

•  Operator $ tells the shell to substitute the
value of the variable name

•  See script ma

16

if Statement
if condition
then
 command(s)
elif condition_2
then
 command(s)
else
 command(s)
fi

then and else
need to be on a
separate line!!

17

Conditions

•  A condition in a shell script is designated
in one of two equivalent ways:

1. Using the test command

test $name = “bil”

2. Using the square bracket notation

[$name = “bil”]

Spaces are important!

18

File conditions

-e arg True if file arg exists

-f arg True if arg is an ordinary file

-d arg True if arg is a directory

! –d arg True if arg is not a directory

19

File conditions

-r arg True if arg is readable

-w arg True if arg is writable

-x arg True if arg is executable

-s arg True if size of arg is larger than 0

20

Numeric conditions

Condition Java Equivalent
n1 –eq n2 n1 == n2
n1 –lt n2 n1 < n2
n1 –gt n2 n1 > n2
n1 –le n2 n1 <= n2
n1 –ne n2 n1 != n2
n1 –ge n2 n1 >= n2

21

if – then – else scripts

•  if_else
•  check_file
•  check_file2
•  chkex
•  chkex2

22

case Statement
case variable in
pattern1) command(s);;
pattern2 | pattern3) command(s);;
…
patternN) command(s);;
*) command(s);; #otherwise
esac

•  Patterns can contain wildcards

•  See script caseex

23

for loops

for variable in list

do

 command(s)

done

•  variable is a user variable

•  list is a sequence of strings separated
by spaces

24

for scripts

•  fingr
•  $* stands for all command-line

arguments

•  fsize
•  makeallex

25

while loops

while condition

do

 command(s)

done

•  See script whileex

26

until loops

until condition

do

 command(s)

done

•  See script grocery

27

break and continue

•  Interrupt loops (for, while, until)

•  break jumps to the statement after the
nearest done statement
•  terminates execution of the current loop

•  continue jumps to the nearest done
statement
•  brings execution back to the top of the

loop

•  See script breakex

28

Reading User Input

•  Syntax: read varname
•  No dollar sign

•  Reads from standard input

•  Waits for the user to enter something
followed by <RETURN>

•  Stores what is read in user variable

•  To use the input: echo $varname

•  See scripts greeting, doit

29

Reading User Input

•  More than one variable may be specified

•  Each word will be stored in separate
variable

•  If not enough variables for words, the last
variable stores the rest of the line

•  See script read3
•  Note use of printf instead of echo

30

More on command-line arguments

•  $1, $2, … normally store command
line arguments.

•  Their values can be changed using the
set command

 set newarg1 newarg2 …

•  See script setparam

31

Shifting arguments

•  To parse command-line arguments one can
also use the shift operator

•  Shifts contents of $2 into $1, $3 into $2 …

•  Eliminates argument that used to be in $1

•  After a shift, the argument count stored in
$# is automatically decreased by one

•  Allows access to 10th argument and beyond

•  See script shiftex, my_copy

32

All Command Line Arguments

•  Both $* and $@ get substituted by all
the command line arguments

•  They are different when double-quoted
•  "$@" expands such that each argument

is quoted as a separate string
•  "$*" expands such that all arguments

are quoted as a single string

•  See script displayargs

33

Quoting issues

•  What if I want to output a dollar sign?

•  Two ways to prevent variable substitution:

echo '$dir'

echo \$dir

•  Note: echo "$dir" is the same as
echo $dir

34

User Variables and Quotes

•  If value contains no space, no need to use
quotes: dir=/usr/include/

•  Unless you want to protect the literal $

•  See script quotes

35

User Variables and Quotes

•  If value contains one or more spaces:

•  Use single quotes for NO variable
substitution
•  A dollar sign is a dollar sign

•  Use double quotes for variable
substitution
•  A dollar sign followed by a variable name

will be substituted by the variable value

36

Back quotes

•  Enclosing a command invocation in back
quotes (the character usually to the left of 1)
results in the whole invocation substituted
by the output of the command

% dateVar=`date`

% echo $dateVar

Mon 16 Sep 2019 10:29:26 EDT

•  See scripts quotes2, twodirs

37

Arithmetic Operations Using expr
•  The shell is not intended for numerical

work

•  However, the expr utility may be used for
simple arithmetic operations on integers

 sum=`expr $1 + $2`

•  Note: spaces are required around the
operator + (but not allowed around the
equal sign)

•  See script cntx

38

Shell Script Functions

•  Syntax:

function_name()
{
 command(s)
}

•  Allows for structured shell scripts

•  See script funcex

