
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 3 – Unix under the hood

2

Processes

•  Each running program on a UNIX system
is called a process.

•  Processes are identified by a number
(process id or PID).

•  Each process has a unique PID.

•  There are usually several processes
running concurrently in a UNIX system.

3

ps command

 % ps a list all processes

 PID TTY STAT TIME COMMAND

 2763 pts/11 S+ 0:10 pine

14468 pts/19 R+ 0:00 ps

14780 pts/21 S 0:00 xterm

26772 pts/2 S+ 0:01 emacs

 ...

4

Background processes

•  A process may be in the foreground, in the
background, or be suspended

•  To see all background processes: jobs

•  To bring a process to the foreground: fg

•  To suspend the foreground process:
CTRL-Z

•  Put all suspended processes to the
background: bg

5

kill

% kill -KILL PID

to terminate a process

% kill –STOP PID

to suspend a process

6

Process-related Terminal Keystrokes

•  Kill the foreground process: CTRL-C

•  Suspend the foreground process: CTRL-Z

7

Multiple process example

•  What processes will be created if I run this
script?

% cat welcome

#!/bin/sh

echo Hello World!

8

Processes in the last example

9

Processes: Explanation
•  Every process is a “child” of some other

process

•  Your login shell fires up a child shell to
execute the script

•  The child shell fires up a new (grand)child
process for each command.

•  The parent shell sleeps while child
executes.

10

Processes: Explanation
•  Every process has a unique PID.

•  Parent does not sleep while running
background processes.

11

Process-Related Variables

•  Variable $$ is PID of the shell.

% shpid

 PID TTY TIME CMD

 5658 pts/75 00:00:00 shpid

 5659 pts/75 00:00:00 ps

11231 pts/75 00:00:00 tcsh

PID of shell is = 5658

12

Process Exit Status

•  As we saw already, $? is a process-
related variable that returns the exit status
of the last process to terminate

•  Good practice: Specify your own exit
status in a shell script using the exit
command.
•  If no exit code is given, 0 is returned

13

Environment and Shell Variables

•  Shell variables: apply only to the current
instance of the shell; used to set short-
term working conditions.
•  displayed using set command.

•  Environment variables: set at login and
are available to all shells
•  displayed using printenv command.

14

Environment and Shell Variables

•  By convention, environment variables
have UPPER CASE and shell variables
have lower case names.
•  Examples: HOME is an environment

variable, home is a shell variable

•  Most of the time, one deals with
environment variables, unless you want
distinct behaviour only in the current shell

15

PATH

•  PATH is an environment variable that
specifies directories to search for
commands and programs

•  Try echo $PATH in your account

•  Add to the value of PATH with something
like

setenv PATH ${PATH}:/cs/fac/bin

16

.cshrc

•  To add a path permanently, add the last
line of the previous slide to the end of
the .cshrc file in your home directory

