
1 

Click to edit Master text styles 
Second level 

Third level 
Fourth level 

Fifth level 
 

EECS 2031 
Software Tools 

Module 5 – Introduction to C 



2 

C vs. Java 

•  Java-like (actually Java has a C-like 
syntax), some differences 

•  No garbage collection 

•  No classes 

•  No exceptions (try … catch) 

•  No String type 

•  Pointers J 



3 

First C Program (first.c) 

#include <stdio.h> 

main() { 

  printf(“hello, world \n”); 

} 

 

Note: #include <filename.h> 
replaces the line by the actual file before 
compilation starts. 

 

 

 



4 

Basic I/O 
•  Every program has a standard input and a 

standard output. 

•  By default, keyboard and monitor, 
respectively 

Input functions Output functions 
scanf() printf() 
getchar() putchar() 
fgets() fputs() 



5 

Output is easy… (celsius.c) 

•  Most of the time, use printf() 
•  Very similar to Java 

•  See Section 1.2 in the textbook 

•  Returns the number of characters printed 

•  Can also use putchar() for a single 
character 



6 

Input is more complicated 

•  Several functions for input should never 
be used because they are unsafe 

•  They are still in the standard library 
because a lot of code out there uses them 

•  Avoid using gets() as well as scanf() 
for strings 

•  Recommended way to read input: 
getchar() or fgets() + sscanf() 



7 

getchar() 

•  To read one character at a time from the 
standard input (the keyboard by default): 

 int getchar(void) 

•  Returns the next input character each 
time it is called 

•  Returns EOF when it encounters end of 
file. 
•  EOF input: Ctrl-D (Unix) or Ctrl-Z 

(Windows). 



8 

getchar() 

•  It buffers input characters until a new line 
or EOF is entered. 
•  That is, nothing happens until you hit Return 

or EOF. 

•  See getchar1.c and getchar2.c

•  Take a look at the man page 

 
 man –S 3 getchar



9 

scanf() 

•  scanf() can be used for formatted input 

•  To read an integer: 

int num; 

scanf("%d", &num); 

•  &num is a pointer to num 



10 

scanf() 

•  To read a char and a float: 

char c; float f; 

scanf("%c %f”, &c, &f); 

•  scanf() stops when it exhausts its 
format string, or when some input fails to 
match 



11 

scanf() 

•  Returns the number of successfully 
matched and assigned input items  

•  Returns 0 if the input does not match the 
specification in the format string (i.e., an 
error). 

•  On the end of file, EOF is returned. 



12 

Line-based I/O 

•  We’ll use fgets to read a line of input 

 fgets(s, n, stdin); 

•  Reads at most one less than the number 
of characters specified by n from the 
given stream and stores them in the string 
s 

•  If ‘\n’ is read, it is also stored in s 

•  Note: we are not guaranteed a full line! 



13 

More examples 

•  getaline.c: Use getchar() to 
implement a function that reads a line of 
input 

•  fgetsscanf.c: Use fgets() and 
sscanf() to read a line of input 

•  sscanf() is similar to scanf() except it 
parses a string provided as an argument 
rather than standard input 



14 

C variable names 

•  Combinations of letters, numbers, and 
underscore character ( _ ) that  
•  do not start with a number 
•  are not a keyword 

•  Upper and lower case letters are distinct 
(x ≠ X) 



15 

C data types 

All data types in C are numeric 

•   char – commonly used for characters (8 bits) 

•   int  ─ integers (either 16 or 32 bits) 

•  long – integers (64 bits) 

•   float – single precision floating point numbers 
(4 bytes) 

•   double – double precision floating point 
numbers (8 bytes) 



16 

Qualifiers 

•  unsigned int  
•  All values are positive 

•  long double 
•  Even more precision than a double 

•  long long is the type that represents 
the largest integers possible in C 

•  short can also be used but is rare 



17 

Qualifiers and data sizes  

•  To get the size of a type, use sizeof() 

 int_size = sizeof( int ); 

 

•  See numeric.c 



18 

Constants 

•  Numeric constants 

•  Character constants 

•  String constants 

•  Constant expressions 

•  Enumeration constants 



19 

Integer Constants 

•  Decimal numbers   
123487 

•  Octal: start with 0 (zero) 
0654 

•  Hexadecimal: starts with 0x or 0X  
0x4Ab2, 0X1234 



20 

Integer Constants 

•  long int: suffixed by L or l 
7L, 106l 

•  unsigned int: suffixed by U or u 
8U,  127u 
 
What number is this? 0XFUL 



21 

Floating-point Constants 

•  Contain a period or scientific notation (or 
both) 

 15.75       25E-4       -2.5e-3       .001 

•  If there is no suffix, the type is considered 
double 

•  Use suffix F or f for float,  L or l for long 

                   100.0F      100.0L 



22 

Character constants 

•  The type char is a numeric type of size 8 
bits 

•  Values are typically given in character 
form between 2 single quotes as in Java 

 char x =‘A’; 

•  Can also use octal notation for special 
characters 
c =‘\012’   
10 in decimal, a new line character 



23 

String Constants 

•  There is no string type in C 

•  Strings are just arrays of characters 

•  However, C allows for string constants 
same as in Java 

•  "hello, " " world" is the same as 
"hello, world” 

•  Useful for splitting up long strings across 
several source lines. 



24 

Constant Expressions 

•  Expressions that involve only constants 

•  Evaluated during compilation 

 

#define MAXLINE 1000 

char line[MAXLINE+1]; 



25 

Enumeration Constants 

enum boolean { NO, YES }; 

•  The first name in an enum has value 0, 
the next 1, and so on, unless explicit 
values are specified. 

enum colours { black, white, 
red, blue, green }; 

•  What is the value of blue? 



26 

Enumeration Constants 

•  If not all values are specified, unspecified 
values continue the progression from the 
last specified value. 

enum months { JAN = 1, FEB, MAR, 
APR, MAY, JUN, JUL, AUG, SEP, 
OCT, NOV, DEC };  

FEB = 2, MAR = 3 etc. 



27 

Declarations 

•  All variables must be declared before use 

•  A variable may also be initialized in its 
declaration. 

 char esc = '\\'; 

 int i = 0; 

 int limit = MAXLINE+1; 

 float eps = 1.0e-5; 



28 

Qualifier const 

•  Indicates that the value of a variable will 
not be changed. 

•  For an array: the elements will not be 
altered. 

 const double e = 2.71828182845; 

 const char msg[] = “Warning: ”; 



29 

Type Conversion 

•  float f; int i;  
•  What is the type of f+i ? 

•  General rule: convert a “narrower” 
operand into a “wider” one without losing 
information. 

•  So i is converted to float before the 
addition. 



30 

More Examples 

•  What is the type and value of the following 
expressions? 

17 / 5 

17.0 / 5 

9 / 2 / 3.0 / 4 



31 

Type Conversion: More Rules 

•  Conversions take place across 
assignments; the value of the right side 
is converted to the type of the left, which 
is the type of the result. 

•  Example: 

int i;  

float f = 7, g = 2; 

i = f / g; 



32 

Type Conversion 

•  Longer integers are converted to shorter 
ones by dropping the excess high-order 
bits. 

int i; char c; 

… 

c = i;  

i = c; 

The value of i may 
change after these 
two lines 



33 

Casting 

•  Casting works the same way as in Java 

 

int a = 9, b = 2;  

double  x; 

x = a / b;          // x is 4.0 

x = a / (double) b; // x is 4.5 

 



34 

Operators 

•  Arithmetic operators: 

   +   -   *   /   % 

•  Relational operators: 
>   >=   <   <=   ==   != 

•  Logical operators:   

 !  &&   || 

•  All the same as in Java 



35 

Conditions 

•  0 is False 

•  Anything else is True 

•  If you #include <stdbool.h> you can 
have something like boolean variables 

  bool valid; 

  valid = false; 

•  Still a numeric value though 



36 

Conditions 

•  Write 

 if (!valid) 

instead of  

 if (valid == 0) 

•  The following is not a syntax error in C 
if (i = 0) 

•  The condition will always be false no 
matter what the value of i is 



37 

Comparing strings 

•  Conditions involving strings should use 
functions from string.h 

•  s1 == s2 is only true if both s1 and s2 
refer to the same memory position 

•  strcmp(s1,s2) returns 
•  0 if the two strings are equal 
•  Negative if s1 is lexicographically first 
•  Positive if s2 is lexicographically first 



38 

Comparing strings 

•  To check if two strings are equal  

 if (strcmp(s1,s2) == 0) 

•  Other useful string functions 
•  strlen(s1) returns the length of string s1 
•  strcat(s1,s2) appends string s2 at the 

end of string s1 

•  Strings in C are mutable! 



39 

Bitwise Operators 

•  They work on individual bits 
& : Bitwise AND 
|  : Bitwise OR 
^ : Bitwise exclusive OR 
~ : Bitwise complement 

•  Useful when each bit has a different 
meaning 

•  Handy when memory was at a premium 

•  See bitwise.c 



40 

Bit Shifting 

•   x<<y means shift x to the left y times. 
•  equivalent to multiplication by 2y 

•   x>>y means shift x to the right y bits. 
•  equivalent to division by 2y 

•  Right shifting may have strange behaviour 
depending on the type of x

•  See shifting.c



41 

Statements and Blocks 

•  Statement: followed by a semicolon. 

•  Block 
•  enclosed between { and } 
•  syntactically equivalent to a single 

statement   
•  no semicolon after the right brace 

•  Variables can be declared inside any 
block 



42 

Control Flow Statements 

•  All are similar to Java 

•  if else 
•  switch 
•  while 
•  for 
•  do while 
•  continue and break for loops 



43 

goto 

•  In C, it is possible to add a label to a line 
of code, and then jump to it from any other 
part of the code 

•  Code that relies on goto statements is 
generally harder to understand and to 
maintain.  So goto statements should be 
used rarely, if at all 

•  break and continue should also be 
used only when necessary 


