
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 6 – C Program Structure

2

Program Structure

•  C programs are comprised of variables
and functions residing in one or more
source files

•  Let’s discuss functions a bit further...

3

Functions

•  A function is a named list of statements

•  A function may have:
•  a number of parameters, that is, input

that can be passed to the function
•  a return type that describes the value

that this function returns to the calling
function

4

Defining Functions

•  We have seen how to define functions

 int main() {
 declarations
 statements
 }

•  Defining a function describes its return
value, its parameters and provides the
code that implements the function

5

Returning values

•  Two ways to end execution in a function:
•  Let the code fall off the end
•  Use the return keyword

•  return takes an optional argument - the
value to return

 return 0;

or if the return type is void

 return;

6

Declaring Functions

•  Sometimes we want to use a function
without describing how it works

•  Declaring a function tells us its return
type and arguments but not its code.

 int putchar(int c);

•  Like a function definition but with a ;
instead of a block

7

Declaring Functions

•  We can omit argument names

 int putchar(int);

•  The type of arguments is what matters

•  Good practice recommends putting
names

8

void

•  void means “nothing”

•  As a parameter list: no parameters

 int getchar(void);

•  As a return type: no return value

 void exit(int status);

•  exit causes your program to end

9

int main()?

•  Why use: int main()
instead of: void main()

•  The return value of main() is the
program’s exit status

•  In main(),
return x;
is the same as exit(x);

10

Beware!

•  Returning a value from a function that
should return void is an error

•  Returning nothing from a function that
should return a value is valid but
unpredictable
•  Return value is undefined

•  Do neither!

11

Scope

•  Should be familiar

•  Variables only exist within their block
{

 int x;
 {
 int y;
 }
 /* y not defined here */

}

12

Global Variables

•  What if we want a variable to be available
to more than one function?

•  Declare it outside of a function:

 int x;

 void add_n_to_x(int n) {

 x += n;

 }

•  Visible in all functions

13

Global Variables

•  Local variables can have the same name
as global ones:

int x;

void set_x_to_m(int m) {

 int x;

 x = m;

}

local x

14

Multiple Files

•  Global variables (as well as functions) are
visible in other C files

•  See main.c and calc.c

•  It is possible to only declare a variable,
and not define it by using the extern
keyword

 extern int var;

•  Does not allocate memory for var

15

How C Programs are Compiled

•  C programs go through three stages to be
compiled:
•  Preprocessor - handles #define and
#include

•  Compiler – converts each C source file
into binary processor instructions
(“object code”)

•  Linker - puts multiple files together and
creates an executable program

16

How C Programs are Compiled

•  When compiling multiple files, all .c files
are converted to .o files

•  Then all .o files are combined (linked) to
make a program.

17

How C Programs are Compiled

•  You do not have to do this all in one step

•  -c creates just object files (“compiles”
only)

 gcc -c main.c

•  Creates a file called main.o

 gcc -c calc.c

 gcc -o main main.o calc.o

18

Hiding Functions and Variables

•  By default, all functions and global
variables in a source file are visible to
functions in other source files

•  This can be undesirable as it pollutes the
global namespace and may expose
sensitive data

19

Hiding Functions and Variables

•  Hide global variables or functions with the
static keyword

 static int variable;

•  static has a different meaning inside a
function
•  makes a variable persistent

20

static (Persistent Variables)

•  Local variables in functions are automatic
•  They are created when the function is

called and vanish when the function
returns

•  Global variables are by their nature
persistent.

•  What if we want a variable in a function to
be persistent?
•  Declare it static

21

static (Persistent Variables)

int unique_int(void) {

 static int counter;

 return counter++;

}

•  The value of “counter” is preserved
between calls to unique_int

•  Question: initial value of counter?

22

static (Persistent Variables)

•  Normally variables are not initialized for
you (i.e. their values are undefined)

•  However, static variables (and global
variables) they are explicitly initialized to
zero

•  So the first call to unique_int returns 0

23

The C Preprocessor

•  Removes comments

•  Handles preprocessor directives, such as
#define and #include

•  Output is C code

•  Compile as below to see the preprocessor
output

 gcc –E main.c

24

#define

•  #define defines macros

•  Macros substitute one value for another

 #define IN 1

 state = IN;

becomes

 state = 1;

•  #define performs text search and
replace

25

#define

•  Macros can also have arguments

 #define SQUARE(x) x*x

 y = SQUARE(4);

becomes

 y = 4*4;

•  Substitution does not happen inside string
constants

•  See prep.c

26

#define

•  Macros are often used to define constants
but their use is discouraged

•  Preferable to use

 const int PI = 3.1415927;

•  Macros can cause many unexpected
syntax errors

•  For example...

27

#define

•  Using the SQUARE macro from before

 SQUARE(5+2)

becomes

 5+2*5+2 = 17 (!)

•  Would need to use parentheses
defensively, e.g.

 #define SQUARE(x) ((x)*(x))

 ((5+2)*(5+2)) = 49

28

#undef

•  What we can define, we can undefine

 #define X 3

•  X is replaced with 3, until...

 #undef X

•  X is not replaced, until ...

 #define X 4

•  X is now replaced with 4

29

#if - Conditional Compilation

•  We can also use the preprocessor to
select what code to compile

#if 1

/* This gets compiled */

#else

/* This doesn’t */

#endif

30

#if - Conditional Compilation

•  #if takes a constant integer expression
and macros can be used

•  This is a good use case for macros

#define DEBUG 1

#if DEBUG

printf(“debugging message\n”);

#endif

31

#ifdef - Conditional Compilation

•  Usually, we would like to test to see if a
macro has been defined

 #ifdef DEBUG

 printf(“debugging\n”);

 #endif

 #ifndef DEBUG

 printf(“not debugging\n”);

 #endif

32

#ifdef - Conditional Compilation

•  Often used for platform-specific features

 #ifdef MACOSX

 /* Mac code */…

 #else

 /* Other code */

 #endif

33

#include & Header Files

•  #include inserts the contents of another
file at this point

•  #include is usually used for header files

•  Header files are C code. They usually
contain
•  Function declarations
•  External variable declarations
•  Macro definitions

34

Multiple Files Revisited

•  See main2.c, calc2.c, calc2.h

•  A very common use of #ifndef

#ifndef CALC2_H

#define CALC2_H

 extern int res;

 void square(int x);

#endif

