
1 

Click to edit Master text styles 
Second level 

Third level 
Fourth level 

Fifth level 
 

EECS 2031 
Software Tools 

Module 7 – Arrays, Structs, Pointers 



2 

Arrays 

•  An ordered list of data of the same type 

•  Each item in an array is called an element 

•  Loops commonly used for manipulation 

•  Programmers set array sizes explicitly 



3 

Declaring Arrays 

•  Syntax 
type name[size]; 

•  Examples 
int bigArray[10]; 
double a[3]; 
char grade[10], oneGrade; 



4 

Accessing elements 

•  The following array declaration allocates 
memory for 5 integers 

 int score[5]; 

•  Elements are accessed using the bracket 
notation 

•  score[0] is the first element 
•  score[4] is the last element 

•  The number in the brackets is called the 
index of the element 



5 

Arrays Stored in Memory 

a[0] 

a[1] 

a[2] 

 

a[12] 

1234 
1235 
1236 
1237 
1238 
….. 
… 
… 
 
 
1260 
1261 Some other 

variables 

int a[13]; 



6 

Array Initialization 

•  Array elements are not initialized 
automatically 

•  Initialization can be done at declaration 
time 

 int a[5] = {1, 2, 3, 4, 5}; 

•  Declares array a and initializes first 
element to 1, second to 2 etc.  



7 

Array Initialization 

int b[5] = {11,22}; 

•  Declares array b, initializes first two 
elements, and all remaining elements are 
set to zero 

int c[ ] = {1,2,8,9,5}; 

•  Declares array c, sets its length to 5, and 
initializes all elements 

 



8 

Common error: Index out of range 

•  C does not check array boundaries 

•  It is the responsibility of the programmer 
not to access array elements that do not 
exist 

•  Behaviour is undefined when an out-of-
range index is used 



9 

Common error: Index out of range 

•  Possible results of index out of range 
•  Runtime error 
•  Strange values for other variables 
•  Nothing goes wrong at all 

•  Behaviour may be different when run in 
a different environment 

•  Very hard to debug 

•  See array.c 



10 

Multi-dimensional Arrays 
•  int a[4][5]; 
•  Defines an array of 4 rows and 5 columns 

•  In memory, all elements are laid out in 
row-major order, i.e. first will be the 
elements of the first row, and then the 
elements of the second row etc. 

•  a[1][3] is the element in the second 
row and fourth column 



11 

Multi-Array Initialization 
int a[2][3] = { 

   {22, 44, 66}, // Row 0 

   {97, 98, 99}  // Row 1 

}; 

•  As can be seen above, multi-dimensional 
arrays are really arrays of arrays 

•  a[0] is an array of 3 elements 



12 

Arrays of strings 
char names[5][30]; 

•  Declares an array of 5 strings 

•  Each string can be as long as 29 
characters (remember that the array must 
include space for the \0 character) 

•  names[1] refers to the second string 



13 

Structures 

•  Sometimes data is related 
•  Time expressed in hours and minutes 
•  Coordinates of a point 

•  It would be better to group such related 
data, similarly to what classes do in Java 

•  In C, we can define structures that 
encapsulate related data 



14 

Structures 

struct point { 

  int x; 

  int y; 

}; 

•  The above declares a new type called 
struct point 

•  We can declare variables of this type: 
struct point origin; 



15 

Structure Members 

•  x and y are called the data members of 
the structure 

•  They can be accessed using dot notation 

origin.x = 0; 

origin.y = 0; 



16 

typedef 

•  struct point is an awkward name for 
a type 

•  The typedef keyword allows the 
definition of new types 

typedef struct { 

  int x; 

  int y; 

} Point; 

Point is now 
a valid type 



17 

Nested Structures  

typedef struct rect { 

 Point pt1; 

 Point pt2; 

} Rectangle; 

Rectangle screen; 

screen.pt1.x = 0; 

screen.pt2.y = 400; 



18 

Structures and Functions 

•  Structures are very helpful when it comes 
to functions 

•  They allow a function to return multiple 
pieces of data 

•  A single parameter can also contain 
multiple pieces of data 



19 

Structures and Functions 

Point makepoint(int x, int y) { 

 Point temp; 

 temp.x = x; 

 temp.y = y; 

 return temp; 

} 



20 

Using Structures 

•  Structures cannot  be assigned 

 Point pt1, pt2; 

 pt1.x = 0;  

 pt1.y = 0; 

 pt2 = pt1;   /* Error! */ 

•  Must write a function to copy a structure 



21 

Initializing Structures 

typedef struct { 

   float width; 

   float height; 

} Dimensions; 

Dimensions sofa = {2.0, 3.0}; 



22 

Structures and Arrays 

•  Declaring arrays whose elements are 
structures is helpful in many situations 

 Point points[100]; 

 points[3].x = 34; 

•  We’ll return to arrays and structures once 
we discuss pointers 



23 

Pointers 

•  A pointer is a variable whose value is a 
memory address 

•  The memory address pointed to by the 
pointer typically contains actual data, such 
as integers or structures 

•  The following declares an integer, and a 
pointer to an integer: 

 int i; 
 int *p; 



24 

Pointers and addresses 

•  To connect a pointer to the data, use the 
reference operator & 

 int i = 23; 
 int *p; 

 p = &i; 

•  The general form is: 
  pointer = &data; 
•  The type of data and the type pointer 

points to must match 
 



25 

Dereferencing a pointer 

•  To access the data a pointer points to, use 
the dereference operator * 

 int i = 23; 
 int *p = &i; 

 int j = *p; 

•  Unfortunately, the type declaration of a 
pointer, and its dereferencing look the 
same (*p) but they are quite different 

   



26 

Dereferencing a pointer 

•  If p is a pointer to an integer, then *p can 
be used anywhere an int variable can be 
used 

•  See alias.c 
•  Pointers make debugging much harder!  



27 

Pointer assignment 
•  Consider the following program snippet 

 int i = 8, j = 9; 
 int *p1, *p2; 
 p1 = &i; 
 p2 = &j; 

•  What is the effect of 
 p1 = p2; 

•  What about  
 *p1 = *p2;  



28 

Pointer Assignment 



29 

Pointers and Function Arguments 

•  Suppose we want to write a function that 
swaps the values of two integers a and b 

•  Because of the way arguments are 
passed to functions in C, it is a bit tricky to 
do 

•  See swapWrong.c and swap.c 



30 

Pointers and Function Arguments 

•  C passes arguments to functions by value 

•  This means that a copy of the variable is 
given to the function 

•  The function can only change the local 
copy of the variable 

•  What if we want to change a variable in 
the calling function? 
•  Pass a pointer to the variable 



31 

Pointers and Function Arguments 

•  This is why scanf expects a pointer to 
the data we want to read 
•  It can then access the data, and update it 

•  See Section 6.8 in the textbook 

•  If we want a function to modify a structure, 
we also need to pass a pointer to the 
structure 



32 

Pointers and Arrays 

•  The identifier of an array is equivalent to 
the address of its first element 

 int numbers[20]; 
int *p;  
p = numbers; 

•  p now points to the first element of the 
array 

•  In other words, numbers is the same as 
&numbers[0]  



33 

Pointers and Arrays 

•  The identifier of an array behaves like a 
pointer but cannot be assigned to 

 int numbers[20]; 
int *p;  
numbers = p; // Invalid 

•  p can be assigned to point to any int, but 
numbers will always point to the same 
address 

•  Think of numbers as a constant 



34 

Pointer Arithmetic 
int numbers[20], *p; 
p = numbers;  
int x = *p; 

•  x is equal to the first element of the array 
  int y = *(p+1); 

•  y is equal to the second element of the 
array 

  p++; 

•  p points to the second element of the 
array 

 



35 

Pointer Arithmetic 

int i = 9; 
int *p = &i;  

•  The value of p is the memory address of 
i, e.g. 1234 

•  Adding one to p will increase its value by 
sizeof(int)  

•  After p++; the value of p will be 1238 
(assuming sizeof(int) is 4) 



36 

Pointers and Arrays 

int a[10]; 

int *pa; 

•  All expressions below are valid 

a[i]   ⇔  *(a+i) 

&a[i]  ⇔  a+i 

pa[i]  ⇔  *(pa+i) 

 

 



37 

Computing String Length 

int strlen(char *s) 

{ 

   int n; 

   for (n = 0; *s != '\0’; s++ ) 

     n++; 

   return n; 

} 



38 

Computing String Length 

Following are valid examples of using the 
strlen function in the previous slide 

char array[20] = “hello world”; 

char *ptr = array; 

strlen("hello world”); 

strlen(array); 

strlen(ptr); 



39 

Pointer Arithmetic 

•  Given pointers p and q of the same type 
and integer n, the following pointer 
operations are legal: 

•  p+n,  p–n 
•  n is scaled according to the size of the 

objects p points to.  If p points to an 
integer of 4 bytes, p+n advances by 
4*n bytes 

•  Continued on next slide... 



40 

Pointer Arithmetic 

•  p–q (assuming p>q) 
•  Returns an int: the difference between 

the two addresses divided by 
sizeof(type) 

•  p+q is illegal! 

•  q = p;  p = q + 100; 
•  p and q must point to the same types 
•  Casting is possible but should be 

avoided 



41 

Pointer Arithmetic 

•  More things you can do with pointers 

 if ( p == q ) 

 if ( p != q + n ) 

 p = NULL; 

 if ( p == NULL )  



42 

Counting String Length v2 

int strlen(char *s) 

{ 

 char *p = s; 

 while (*p != '\0') 

  p++; 

 return p - s; 

} 



43 

Important point about strings 

char amessage[] = “hello”; 

char *pmessage  = “hello”;  

•  amessage will always refer to the same 
memory address 

•  pmessage may later be modified to point 
elsewhere 



44 

Pointers to Structures 

Point origin = {0, 0}; 

Point *pp; 

pp = &origin; 

printf("%d\n", (*pp).x); 

•  The parentheses in (*pp).x are 
necessary 

•  *pp.x would imply pp is a structure 



45 

Pointers to Structures 

•  (*pp).x can be written as pp->x 

 printf("%d\n", pp->x); 

•  If a large structure is to be passed to a 
function, it is generally more efficient to 
pass a pointer than to copy the whole 
structure 

•  See pointstruct.c 

 



46 

Why pointers? 

•  Pointers can be confusing and a source of 
hard to resolve bugs, but they are also 
quite powerful 

•  They allow sharing of data 

•  They allow dynamic memory management 
(see next module) 

•  See strcpy.c for more examples 


