
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 8 – Dynamic Memory Allocation

2

Dynamic Memory Allocation

•  It is often not known at compile time how
much memory will be needed to store the
program’s data

int x;

scanf(“%d”, &x);

int a[x]; /* not allowed in C */

•  How to allocate memory during run time?

3

malloc()

void *malloc(int n);

•  Allocates memory at run time

•  Returns a void pointer to at least n
bytes available

•  Returns NULL if the memory was not
allocated

•  The allocated memory is not initialized

4

void Pointer

•  A void pointer is a variable whose value is
a memory address but does not point to a
specific data type

•  To be useful, it must be converted to a
typed pointer, typically done by assignment

int *a;

a = malloc (5 * sizeof(int));

•  a points to a chunk of memory that can
hold 5 integers

5

 calloc()

 void *calloc(int n, int s);

•  Allocates an array of n elements where
each element has size s

•  calloc() initializes all the allocated
memory to 0

6

 realloc()

•  What if we want our array to grow?
void *realloc(void *ptr, int n);

•  Resizes a previously allocated block of
memory.

•  ptr must have been returned from a
previous calloc, malloc, or realloc

•  The new array may be moved if it cannot
be extended in its current location

7

 free()

 void free(void *ptr)

•  Releases the memory we previously
allocated

•  ptr must have been returned from a
previous calloc, malloc, or realloc

•  C does not do automatic garbage
collection

•  See alloc.c, readname1.c,
readname2.c

8

Be extra careful with pointers!
Common errors:

•  Overruns and underruns
•  Occurs when you reference memory

beyond what you allocated

•  Uninitialized pointers

•  De-referencing null pointers

•  Memory leaks

•  Inappropriate use of freed memory

9

Pointer problems

•  See pow1.c, pow2.c

•  Two very small examples of misusing
memory

•  See null.c

•  In a real system, one should always test
that malloc has returned successfully

10

Memory Leaks

 int *x;

 x = malloc(20);

 x = malloc(30);

•  The first memory block is lost for ever.

•  May cause problems if repeated (available
memory will be exhausted)

11

Using Freed Memory

 char *x;

 x = malloc(50);

 free(x);

 x[0] = ‘A’;

May work on some systems

12

Arrays of Pointers
char *s[]={“one”,”two”,”three”};

•  s is an array of pointers to char

•  Each element of s (s[0], s[1], s[2])
is a pointer to char

•  What is the difference between s and t?

char t[][6]={“one”,”two”,”three”};

13

Arrays of Pointers

•  In t, all characters are stored in the same
memory location

•  In s, all that is stored together is the
pointers. These pointers could be pointing
to different parts of the memory

•  s is an array of strings that can be easily
rearranged (sorted) by changing the
pointer values

14

Pointers and Structures

•  Dynamic memory allocation works in the
same way

Point *points;

points =

 malloc (20 * sizeof *points);

15

Self-referential structures

struct list {

 int data;

 struct list *next;

};

Each struct list contains a piece of
data and a link to another struct list

16

Linked List

•  Pointer head points to the first element

•  Last element pointer is NULL

•  See linkedlist.c

3 10 6 NULL

 head

17

Pointers to Pointers
•  Pointers can point to any valid type

including other pointers

 int **j;

 int *i;

 int k = 10;

 i = &k;

 j = &i;

18

Pointers to Pointers
•  What are double pointers useful for?

•  Returning a pointer from a function

•  Declaring fully dynamic two dimensional
arrays

•  See doublepointer.c

19

Command-Line Arguments

•  Up to now, the signature of the main
function has been int main()

•  Usually it is defined as

int main(int argc, char *argv[])

•  argc is the number of arguments

•  argv is an array of pointers to char
containing the arguments

20

Command-Line Arguments

•  argv[0] is a pointer to a string with the
program name. So, argc is at least 1.

•  argv[argc] is a NULL pointer.

•  See argv.c

•  See echo.c for a possible
implementation of the Unix echo
command

