
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

EECS 2031
Software Tools

Module 10 – Debugging

2

Debugging

•  Finding the source of logic errors in a
complex software system can be very
hard

•  One can use printf to trace the state of
the program but this can be very tedious

•  Debuggers are tools that help
programmers examine the state of the
program as it is running

3

gdb

•  gdb is a command-line debugger that can
be used with C or C++ programs

•  To use gdb, the program must be
compiled with the –g flag

 gcc –g main.c –o main.exe

•  This adds extra information in the
executable, so the debugger can trace
your program

4

gdb
•  To launch gdb with the specially-created

executable: gdb main.exe

•  This opens something like a shell, where
you can enter commands interactively
•  You can recall commands with the arrow

keys, use TAB for auto-completion etc.
•  help [command] prints information on

a command
•  apropos [word] prints all commands

whose description contains word

5

gdb commands
•  run: Runs the program normally

•  If the program crashes, you will get
information, such as the line of code that
caused the crash, parameter values at the
time of crash, a stack trace etc.

•  If the program does not crash but contains
logic errors, you want to stop at important
points and observe the state of the
program

6

Breakpoints

•  Debuggers use breakpoints to decide
when to stop execution

•  Any line of code can be chosen as a
breakpoint

•  If the execution of the program gets to
that line, the debugger will stop the
execution and allow the user to continue
one line at a time

7

gdb commands
•  break: Adds a breakpoint

 break main.c:42

•  Execution will stop if it ever reached line
42 in main.c

 break func1

•  Execution will stop if function func1 gets
called

8

Conditional breakpoints

•  We are often interested in stopping
execution at a given line only if certain
conditions hold

•  Can set a conditional breakpoint with

 break main.c: 42 if i > 9

9

gdb commands
•  Once execution has stopped at a break

point:

•  continue: Continues execution until the
next breakpoint

•  step: Execute one more line of code

•  next: Execute one more line of code but
treat function calls as one instruction

•  print var: Print the value of variable
var

10

Watchpoints

•  It is also possible to stop the execution of
the program every time the value of a
particular variable is changed

•  Set a watchpoint for a variable var with
 watch var

•  Output gives you the previous and the new
value of variable var

•  See debugging.c

11

More gdb commands

•  where: Gives the stack trace to the
current point of execution

•  finish: Continue to the end of the
current function

•  info break: Print all breakpoints and
watchpoints

•  delete 3: Delete breakpoint #3 (as
listed by info break

•  quit: Exit the debugger

12

valgrind

•  While gdb is great for debugging logic
errors, it can only help with basic memory
management issues

•  To detect memory overruns and leaks, run
the specially created executable under
valgrind

•  See memcheck.c
gcc –g memcheck.c –o main.exe

valgrind main.exe

13

valgrind

•  Produces a lot of output
•  Focus on lines of code that produce

errors, such as
•  Use of uninitialised value
•  Invalid write
•  40 bytes are definitely lost...
•  See link to quick start guide on course

website

