EECS 4422/5323 Midterm Sample Answers

Question 1

Let

$$
\mathbf{x}=\left[\begin{array}{ccc}
x_{-1,-1} & x_{0,-1} & x_{1,-1} \\
x_{-1,0} & x_{0,0} & x_{1,-1} \\
x_{-1,1} & x_{0,1} & x_{1,1}
\end{array}\right]
$$

be a structure element kernel anchored at $x_{0,0}$.
Let \mathbf{b} be a binary image with width w and height h, where $b_{i, j}$ is the pixel located at position (i, j).
Write the mathematical expression for generating \mathbf{d}, the dilation of \mathbf{b} with \mathbf{x}. For the purposes of this expression you can assume your image has been appropriately padded.

Answer:

$$
\forall i \in[1, w], \forall j \in[1, h], \quad d_{i, j}=\bigvee_{p=-1}^{p=1} \bigvee_{q=-1}^{q=1}\left(x_{p, q} \wedge b_{i+p, i+q}\right)
$$

Question 2

To normalize the matrix, we find the global current maximum and minimum: $P_{\max }=7, P_{\min }=-6$
We then compute pixel-wise equation:

$$
P_{i, j}^{\prime}=\left(P_{i, j}+6\right) \frac{2}{13}-1
$$

which gives us:

$$
\mathbf{P}^{\prime}=\frac{1}{13}\left[\begin{array}{cccc}
-11 & -1 & -3 & 11 \\
9 & -7 & -5 & 11 \\
-1 & -3 & 13 & -9 \\
-1 & -7 & 9 & -13
\end{array}\right]
$$

Question 3

Applying wrap padding to our image patch (we need to pad by one number since our convolution kernel is 3×3), we get:
$\left[\begin{array}{ccccc}51 & 4 & 8 & 51 & 4 \\ 53 & 10 & 15 & 53 & 10 \\ 67 & 72 & 44 & 67 & 72 \\ 51 & 4 & 8 & 51 & 4 \\ 53 & 10 & 15 & 53 & 10\end{array}\right]$

Computing the kernel cross-correlation with this matrix, we get the following output:

$$
\left[\begin{array}{ccc}
(19-125) & (61-54) & (61-82) \\
(54-71) & (82-80) & (125-95) \\
(80-61) & (95-19) & (71-61)
\end{array}\right]=\left[\begin{array}{ccc}
-106 & 7 & -21 \\
-17 & 2 & 30 \\
19 & 76 & 10
\end{array}\right]
$$

Question 4

See slide 5 in Feature Detection 2 lecture. Any of the characteristics listed there would be acceptable (with explanation).

Question 5

Ellipses are parameterized by four variables, whereas lines are parameterized by two variables. Therefore, the accumulator space for a Hough Transform at equivalent spatial resolution must be much larger for ellipses.

Question 6

$$
y=\max \left(0,\left(\sum_{i=1}^{3} w_{i} x_{i}\right)+b\right)
$$

Note: we didn't really discuss the offset value, b, in class; if this was left out of your answer you would not be penalized.

Question 7

When supplying input with a person holding a cat near her face, it is possible that cross-talk between the cat and human face will cause Yulong's network to behave unpredictably.

