Assignment One (EECS6327 F19)

Due: in class on Oct 2, 2019.

You have to work individually. Hand in a hardcopy of your answers before the deadline. No late submission will be accepted. No handwriting is accepted. Direct your queries to Hui Jiang (hj@cse.yorku.ca).

1. Multinomial vs. Dirichlet:

(a) Given a Multinomial distribution of m discrete random variables:

$$
\begin{align*}
& \operatorname{Pr}\left(X_{1}=r_{1}, X_{2}=r_{2}, \cdots, X_{m}=r_{m} \mid p_{1}, p_{2}, \cdots, p_{m}\right) \\
& =\frac{\left(r_{1}+\cdots+r_{m}\right)!}{r_{1}!\cdots r_{m}!} p_{1}^{r_{1}} \times p_{2}^{r_{2}} \times \cdots \times p_{m}^{r_{m}} \tag{1}
\end{align*}
$$

where X_{1}, \cdots, X_{m} take all non-negative intergers $r_{1} \geq 0, \cdots, r_{m} \geq 0$ that satisfies $\sum_{i=1}^{m} r_{i}=N$. Prove that the multinomial distribution satisfies the sum-to-one normalization constraint:

$$
\sum_{X_{1}, \cdots, X_{m}} \operatorname{Pr}\left(X_{1}=r_{1}, X_{2}=r_{2}, \cdots, X_{m}=r_{m} \mid p_{1}, p_{2}, \cdots, p_{m}\right)=1
$$

(b) Given a Dirichlet distribution of m continuous random variables:

$$
\begin{align*}
& \operatorname{Pr}\left(X_{1}=p_{1}, X_{2}=p_{2}, \cdots, X_{m}=p_{m} \mid r_{1}, r_{2}, \cdots, r_{m}\right) \\
= & \frac{\Gamma\left(r_{1}+\cdots+r_{m}\right)}{\Gamma\left(r_{1}\right) \cdots \Gamma\left(r_{m}\right)} p_{1}^{r_{1}-1} \times p_{2}^{r_{2}-1} \times \cdots \times p_{m}^{r_{m}-1}, \tag{2}
\end{align*}
$$

derive the following results for the mean and variance:

$$
\begin{gathered}
\mathbb{E}\left(X_{i}\right)=\frac{r_{i}}{r_{0}} \\
\operatorname{Var}\left(X_{i}\right)=\frac{r_{i}\left(r_{0}-r_{i}\right)}{r_{0}^{2}\left(r_{0}+1\right)}
\end{gathered}
$$

where we denote $r_{0}=\sum_{i=1}^{m} r_{i}$.
Hints: $\Gamma(x+1)=x \cdot \Gamma(x)$.
2. Mutual Information: Assume we have a random vector $\mathbf{x}=\binom{x_{1}}{x_{2}}$ which follows a bivariate Gaussian distribution: $\mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$, where $\mu=$ $\binom{\mu_{1}}{\mu_{2}}$ is the mean vector and $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma 2 \\ \rho \sigma_{1} \sigma 2 & \sigma_{2}^{2}\end{array}\right)$ is the covariance matrix. Derive the formula to compute mutual information between x_{1} and x_{2}, i.e., $I\left(x_{1}, x_{2}\right)$.
3. KL Divergence: Assume we have two multi-variate Gaussian distributions: $\mathcal{N}\left(\mathbf{x} \mid \mu_{1}, \boldsymbol{\Sigma}_{1}\right)$ and $\mathcal{N}\left(\mathbf{x} \mid \mu_{2}, \boldsymbol{\Sigma}_{2}\right)$, where μ_{1} and μ_{2} are their mean vectors, and $\boldsymbol{\Sigma}_{1}$ and $\boldsymbol{\Sigma}_{2}$ are their covariance matrices. Derive the formula to compute the KL divergence between these two Gaussian distributions.
4. Linear-Gaussian models: Consider a joint distribution $p(\mathbf{x}, \mathbf{y})$ defined by the marginal and conditional distributions as follows:

$$
\begin{gathered}
p(\mathbf{x})=\mathcal{N}\left(\mathbf{x} \mid \mu, \Delta^{-1}\right) \\
p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right)
\end{gathered}
$$

derive and find expressions for the mean and covariance of the marginal distribution $p(\mathbf{y})$ in which the variable \mathbf{x} has been integrated out.
Hints: You may need to use the Woodbury matrix inversion formula:
$(\mathbf{A}+\mathbf{B C D})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{C}^{-1}+\mathbf{D A}^{-1} \mathbf{B}\right)^{-1} \mathbf{D A}^{-1}$.
5. Discriminant Analysis: Let $(\mathbf{x}, y) \in \mathcal{R}^{d} \times\{0,1\}$ be a random pair such that $\operatorname{Pr}(y=k)=\pi_{k}>0 \quad\left(\pi_{0}+\pi_{1}=1\right)$ and the conditional distribution of \mathbf{x} given y is $p(\mathbf{x} \mid y)=\mathcal{N}\left(\mathbf{x} \mid \mu_{y}, \Sigma_{y}\right)$, where $\mu_{0} \neq \mu_{1} \in \mathcal{R}^{d}$ and $\Sigma_{0}, \Sigma_{1} \in \mathcal{R}^{d \times d}$ are mean vectors and covariance matrices respectively.
(a) What is the (unconditional) density of \mathbf{x} ?
(b) Assume that $\Sigma_{0}=\Sigma_{1}=\Sigma$ is a positive definite matrix. Compute the Bayes classifier. What is the nature of separation boundary between two classes?
(c) Assume that $\Sigma_{0} \neq \Sigma_{1}$ are two positive definite matrices. Compute the Bayes classifier. What is the nature of separation boundary between two classes?

