
Assignment (EECS6327 F19)

Due: in class on Dec 4, 2019.

You have to work individually. Hand in a hardcopy of your answers before the dead-

line. No late submission will be accepted. No handwritting is accepted. Direct your queries

to Hui Jiang (hj@cse.yorku.ca).

1. (Soft-margin Support Vector Machine) The primary problem of soft-margin

support vector machine (SVM) is

min
w,b,ξi

1

2
wᵀw + C

N∑
i=1

ξi

subject to

yi(w
ᵀxi + b) ≥ 1− ξi and ξi ≥ 0 ∀i ∈ {1, 2, · · · , N}

use the Lagrangian technique to derive its dual problem as

max
α

eᵀα− 1

2
αᵀQα

subject to

yᵀα = 0

0 ≤ α ≤ C

2. (Convolutional Neural Networks) Consider a simple convolutional neural net-

work consisting of two hidden layers, each of which is composed of convolution

and ReLU, and then followed by a max pooling and soft-max layer. Assume each

convolution uses K kernels of 5 × 5 with a stride of 1 in each direction (no zero-

padding), each kernel is denoted as a tensor of w(f1, f2, p, k, l), where 1 ≤ f1, f2 ≤ 5,

1 ≤ k ≤ K, and l indicates the layer number l ∈ {1, 2}, and p indicates the number

of features maps in each layer. The max pooling layer uses 4 × 4 patches with a

stride of 4 in each direction.
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(a) Derive the error back-propagation (BP) to compute the gradients for all kernels

w(f1, f2, p, k, l) in this network when the cross-entropy loss is used.

(b) In object recognition, translating an image by a few pixels in some direction

should not affect the category recognized. Suppose that we consider image

with an object in the foreground on top of uniform background. Also suppose

that the objects of interest are always at least 10 pixels away from the borders

of the image. Is this neural network invariant to translations of at most 10

pixels in some direction? Here the translation is applied only to the foreground

object while keeping the background fixed. If your answer is yes, show that

the neural network will necessarily produce the same output for two images

where the foreground object is translated by at most 10 pixels. If your answer

is no, provide a counter example by describing a situation where the output

of the neural network is different for two images where the foreground object

is translated by at most 10 pixels. If your answer is no, can you find any

particular translation by at most 10 pixels, where the neural network will

generate invariant output only for this translation?

3. (Transformer) Suppose that we have a multi-head transformer, where A(j), B(j) ∈
Rd×l, C(j) ∈ Rd×o (j = 1 · · · J), see lecture notes for the detailed structure of such

a transformer.

(a) Estimate the computational complexity of the forward pass of this transformer

for an input sequence X ∈ Rn×d.

(b) Derive the error back-propagation (BP) to compute the gradients forA(j), B(j), C(j)

when an objective function Q(·) is used.

4. (Maximum Likelihood Estimation) Assume we have K different classes, i.e.

ω1, ω2, · · · , ωK . Each class ωk (k = 1, 2, · · · , K) is modeled by a multivariate

Gaussian distribution with the mean vector µk and the covariance matrix Σ, i.e.,

p(x | ωk) = N (x | µk,Σ), where Σ is the common covariance matrix for all K

classes. Suppose we have collected N data samples from these K classes, i.e.,

{x1,x2, · · · ,xN}, and let {l1, l2, · · · , lN} be their labels so that ln = k means the

data sample xn comes from the k-th class, ωk.
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Based on the given data set, derive the maximum-likelihood estimates for all model

parameters, i.e., all mean vectors µk (k = 1, 2, · · · , K) and the common covariance

matrix Σ.

5. (EM algorithm) Consider a D-dimensional variable x, each of whose dimensions,

xd, is an integer. Suppose the distribution of these variables is described by a

mixture of the multinomial distributions so that

p(x) =
K∑
k=1

πk p(x|µk) ∝
K∑
k=1

πk

D∏
d=1

µxdkd

where the parameter µkd denotes the probability of d-th dimension in k-th compo-

nent, subject to 0 ≤ µkd ≤ 1 (∀k, d) and
∑

d µkd = 1 (∀k).

Given an observed data set {xn}, where n = 1, · · · , N , derive the E and M step

equations of the EM algorithm for optimizing the mixing weights πk (
∑

k πk = 1)

and the component parameters µkd of this distribution by maximum likelihood.
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